Skip to main content
. 2023 May 4;11:1173094. doi: 10.3389/fcell.2023.1173094

TABLE 1.

Summary table of deep learning studies for glaucoma diagnosis with OCT images as input.

References Year Model Dataset Aim Result
Ran et al. 2019 ResNet GON/No GON detect GON Primary validation: AUROC: 0·969, sensitivity: 89%, specificity: 96%, accuracy: 91%
Training, testing, and primary validation dataset 2926/1951 External validation: AUROC: 0·893–0·897, sensitivities: 78%–90%, specificities: 79%–86%, accuracies: 80%–86%
External validation dataset 1434/610
Noury et al. 2022 DiagFind Glaucoma/Non-glaucoma manifest glaucoma AUC: perimetric glaucoma
Stanford: 0.91
Hong Kong: 0.80
India: 0.94
Nepal: 0.87
Training 1022/542
Validation 142/61
Test 453/241
External validation dataset 1642/1035
Ran et al. 2022 ResNet yes GON and yes MF/no GON and yes MF/yes GON and no MF/no GON and no MF GON AUROC
MF GON: Internal validation 0.949
External testing dataset 0.890–0.950
Training 1679/890/629/721 MF: 0.855–0.896
Tuning 195/163/32/70
Internal validation 205/114/36/99
External testing dataset 1347/515/677/777
Asaoka et al. 2019 Deep learning Glaucoma/Non-glaucoma early glaucoma AUC
Pretraining: 93.7%
Without pretraining: 76.6%–78.8%
Pretraining 1371/193
Training 94/84
Test 114/82
Medeiros et al. 2021 ResNet50 86 123 progressive glaucomatous changes over time AUC: 0.86
Medeiros et al.
2019 ResNet34 Normal/Suspect/Glaucoma quantify glaucomatous structural damage MAE: 7.39 μm
AUC: predictions: 0.944
actual measurements: 0.940
Training 3982/13 410/9136
Test 877/3345/2070
Kamalipour et al. 2023 CNNA Normal/Suspect/Glaucoma estimate central 10° visual field MAE
CNNA: 4.04 dB
CNNT Training and Validation 174/367/623
LR Test 20/71/110
Christopher et al. 2021 ResNet50 10-2 Visual Field/24-2 Visual Field estimating visual function 10-2
R2 MD:0.82
PSD: 0.69
MAE MD: 1.9 dB
Training 2131/277 24-2
R2 MD:0.79
PSD: 0.68
MAE MD: 2.1 dB
Test 2674/325
Lee et al. 2020a HDLM Normal/Suspect/Glaucoma predicts macular ganglion cell-inner plexiform layer thickness MAE: 4.76 μm
292/109/388
Hao et al. 2022 ResNet + LSTM Glaucoma/Non-glaucoma angle-closure screening AUC
Casia dataset: Images 0.766; Original videos 0.820; Aligned videos 0.905.
159/210 Zeiss dataset: Images 0.767; Original videos 0.837; Aligned videos 0.919
Xu et al. 2019 ResNet18 Open angle/Closed angle detect gonioscopic angle closure and primary angle closure disease AUC: gonioscopic angle: 0.928
disease: 0.952
Cross-validation 1632/1764
Test 311/329
Li et al. 2022b ResNet34 Task I/Task II Task I (1) narrow iridocorneal angles Task I
AUC: 0.943, sensitivity: 0.867, and specificity: 0.878
Training 4515/378 Task II (2) peripheral anterior synechiae Task II
AUC: 0.902, sensitivity: 0.900, and specificity: 0.890
Internal validation 1101/376
External testing 2222/102
Randhawa et al. 2021 ResNet18 Open angle/Closed angle detect gonioscopic angle closure AUC: 0.894–0.922
CHES train 1764/1632
CHES test 329/311
Singapore 570/9595
USC 66/234
Shon et al. 2022a β-VAE Training 1692 extract a low-dimensional latent structure mean values of visual field index: 86.4%
mean deviation: −5.33 dB
Validation 419
Shon et al. 2022b VAE Training 1692 Analysis the latent structure Among the symmetrical latent variables, the first three and the last demonstrated easily recognized features.
Validation 419
Muhammad et al. 2017 HDLM Glaucoma/Health or suspects Distinguish glaucoma eyes accuracy: 63.7%–93.1%
57 eye/45 eye
Butola et al. 2020 LightOCT Choroidal neovascularization/Diabetic macular edema/Drusen/Normal Distinguish glaucoma eyes accuracy: 96%
Training 27 206/11 349/8617/51 140
Test 250/250/250/250
Yang et al. 2021 InceptionResNetV2 Open angle/Closed angle detect the static gonioscopic angle closure and peripheral anterior synechia static gonioscopic angle closure
AUC: 0.963 sensitivity: 0.929
specificity: 0.877
Training 3 4705/1 5945 appositional from synechial angle closure
AUC: 0.873
Sensitivity: 0.846
Specificity 0.764
Validation 8037/3254
Test 7860/3024
Soltanian-Zadeh et al. 2021 WeakGCSeg Training samples/Testing samples Cell-level quantitative features of retinal ganglion cells WeakGCSeg is on par with or superior to human experts and is superior to other state-of-the-art networks.
Subject 1 (IU/IU) Healthy: 7:14/1:2
Subject 2 (IU/IU) Healthy: 7:14/1:1
Subject 3 (FDA/FDA) Healthy: 3:4-5/1:1-2
Glaucoma: 4:8/1:2
Subject 4 (IU/FDA Healthy: 8:16/4:6
FDA/IU Healthy: 4:6/8:16
IU + FDA/IU + FDA) Healthy: 9:16–17/9:16–17

● ResNet residual network, GON, glaucomatous optic neuropathy; AUROC, area under the receiver operating characteristic; AUC, area under curve; MF, myopic features; MAE mean absolute error; CNN, convolutional neural network; LR, ordinary least squares linear regression models; MD, mean deviation; PSD, pattern standard deviation; HDLM, hybrid deep learning method; LSTM, long short-term memory; CHES, the Chinese American Eye Study; USC, the University of Southern California; VAE variational auto-encoder; IU, the Indiana University; FDA, the U.S., food and drug administration.