TABLE 1.
References | Year | Model | Dataset | Aim | Result | ||
---|---|---|---|---|---|---|---|
Ran et al. | 2019 | ResNet | GON/No GON | detect GON | Primary validation: AUROC: 0·969, sensitivity: 89%, specificity: 96%, accuracy: 91% | ||
— | — | Training, testing, and primary validation dataset | 2926/1951 | — | External validation: AUROC: 0·893–0·897, sensitivities: 78%–90%, specificities: 79%–86%, accuracies: 80%–86% | ||
— | — | External validation dataset | 1434/610 | — | — | ||
Noury et al. | 2022 | DiagFind | Glaucoma/Non-glaucoma | manifest glaucoma | AUC: perimetric glaucoma | ||
Stanford: 0.91 | |||||||
Hong Kong: 0.80 | |||||||
India: 0.94 | |||||||
Nepal: 0.87 | |||||||
— | — | Training | 1022/542 | — | — | ||
— | — | Validation | 142/61 | — | — | ||
— | — | Test | 453/241 | — | — | ||
— | — | External validation dataset | 1642/1035 | — | — | ||
Ran et al. | 2022 | ResNet | yes GON and yes MF/no GON and yes MF/yes GON and no MF/no GON and no MF | GON | AUROC | ||
MF | GON: Internal validation 0.949 | ||||||
External testing dataset 0.890–0.950 | |||||||
— | — | Training | 1679/890/629/721 | — | MF: 0.855–0.896 | ||
— | — | Tuning | 195/163/32/70 | — | — | ||
— | — | Internal validation | 205/114/36/99 | — | — | ||
— | — | External testing dataset | 1347/515/677/777 | — | — | ||
Asaoka et al. | 2019 | Deep learning | Glaucoma/Non-glaucoma | early glaucoma | AUC | ||
Pretraining: 93.7% | |||||||
Without pretraining: 76.6%–78.8% | |||||||
Pretraining | 1371/193 | — | — | ||||
Training | 94/84 | — | — | ||||
Test | 114/82 | — | — | ||||
Medeiros et al. | 2021 | ResNet50 | 86 123 | progressive glaucomatous changes over time | AUC: 0.86 | ||
Medeiros et al. | |||||||
2019 | ResNet34 | Normal/Suspect/Glaucoma | quantify glaucomatous structural damage | MAE: 7.39 μm | |||
AUC: predictions: 0.944 | |||||||
actual measurements: 0.940 | |||||||
— | — | Training | 3982/13 410/9136 | — | — | ||
— | — | Test | 877/3345/2070 | — | — | ||
Kamalipour et al. | 2023 | CNNA | Normal/Suspect/Glaucoma | estimate central 10° visual field | MAE | ||
CNNA: 4.04 dB | |||||||
— | CNNT | Training and Validation | 174/367/623 | — | — | ||
— | LR | Test | 20/71/110 | — | — | ||
Christopher et al. | 2021 | ResNet50 | 10-2 Visual Field/24-2 Visual Field | estimating visual function | 10-2 | ||
R2 MD:0.82 | |||||||
PSD: 0.69 | |||||||
MAE MD: 1.9 dB | |||||||
— | — | Training | 2131/277 | — | 24-2 | ||
R2 MD:0.79 | |||||||
PSD: 0.68 | |||||||
MAE MD: 2.1 dB | |||||||
— | — | Test | 2674/325 | — | — | ||
Lee et al. | 2020a | HDLM | Normal/Suspect/Glaucoma | predicts macular ganglion cell-inner plexiform layer thickness | MAE: 4.76 μm | ||
— | — | 292/109/388 | — | — | |||
Hao et al. | 2022 | ResNet + LSTM | Glaucoma/Non-glaucoma | angle-closure screening | AUC | ||
Casia dataset: Images 0.766; Original videos 0.820; Aligned videos 0.905. | |||||||
— | — | 159/210 | — | Zeiss dataset: Images 0.767; Original videos 0.837; Aligned videos 0.919 | |||
Xu et al. | 2019 | ResNet18 | Open angle/Closed angle | detect gonioscopic angle closure and primary angle closure disease | AUC: gonioscopic angle: 0.928 | ||
disease: 0.952 | |||||||
— | — | Cross-validation | 1632/1764 | — | — | ||
— | — | Test | 311/329 | — | — | ||
Li et al. | 2022b | ResNet34 | Task I/Task II | Task I (1) narrow iridocorneal angles | Task I | ||
AUC: 0.943, sensitivity: 0.867, and specificity: 0.878 | |||||||
— | — | Training | 4515/378 | Task II (2) peripheral anterior synechiae | Task II | ||
AUC: 0.902, sensitivity: 0.900, and specificity: 0.890 | |||||||
— | — | Internal validation | 1101/376 | — | — | ||
— | — | External testing | 2222/102 | — | — | ||
Randhawa et al. | 2021 | ResNet18 | Open angle/Closed angle | detect gonioscopic angle closure | AUC: 0.894–0.922 | ||
— | — | CHES train | 1764/1632 | — | — | ||
— | — | CHES test | 329/311 | — | — | ||
— | — | Singapore | 570/9595 | — | — | ||
— | — | USC | 66/234 | — | — | ||
Shon et al. | 2022a | β-VAE | Training | 1692 | extract a low-dimensional latent structure | mean values of visual field index: 86.4% | |
mean deviation: −5.33 dB | |||||||
— | — | Validation | 419 | — | — | ||
Shon et al. | 2022b | VAE | Training | 1692 | Analysis the latent structure | Among the symmetrical latent variables, the first three and the last demonstrated easily recognized features. | |
— | — | Validation | 419 | — | — | ||
Muhammad et al. | 2017 | HDLM | Glaucoma/Health or suspects | Distinguish glaucoma eyes | accuracy: 63.7%–93.1% | ||
— | — | 57 eye/45 eye | — | — | |||
Butola et al. | 2020 | LightOCT | Choroidal neovascularization/Diabetic macular edema/Drusen/Normal | Distinguish glaucoma eyes | accuracy: 96% | ||
— | — | Training | 27 206/11 349/8617/51 140 | — | — | ||
— | — | Test | 250/250/250/250 | — | — | ||
Yang et al. | 2021 | InceptionResNetV2 | Open angle/Closed angle | detect the static gonioscopic angle closure and peripheral anterior synechia | static gonioscopic angle closure | ||
AUC: 0.963 sensitivity: 0.929 | |||||||
specificity: 0.877 | |||||||
— | — | Training | 3 4705/1 5945 | — | appositional from synechial angle closure | ||
AUC: 0.873 | |||||||
Sensitivity: 0.846 | |||||||
Specificity 0.764 | |||||||
— | — | Validation | 8037/3254 | — | — | ||
— | — | Test | 7860/3024 | — | — | ||
Soltanian-Zadeh et al. | 2021 | WeakGCSeg | Training samples/Testing samples | Cell-level quantitative features of retinal ganglion cells | WeakGCSeg is on par with or superior to human experts and is superior to other state-of-the-art networks. | ||
— | — | Subject 1 (IU/IU) | Healthy: 7:14/1:2 | — | — | ||
— | — | Subject 2 (IU/IU) | Healthy: 7:14/1:1 | — | — | ||
— | — | Subject 3 (FDA/FDA) | Healthy: 3:4-5/1:1-2 | — | — | ||
Glaucoma: 4:8/1:2 | |||||||
— | — | Subject 4 (IU/FDA | Healthy: 8:16/4:6 | — | — | ||
FDA/IU | Healthy: 4:6/8:16 | ||||||
IU + FDA/IU + FDA) | Healthy: 9:16–17/9:16–17 |
● ResNet residual network, GON, glaucomatous optic neuropathy; AUROC, area under the receiver operating characteristic; AUC, area under curve; MF, myopic features; MAE mean absolute error; CNN, convolutional neural network; LR, ordinary least squares linear regression models; MD, mean deviation; PSD, pattern standard deviation; HDLM, hybrid deep learning method; LSTM, long short-term memory; CHES, the Chinese American Eye Study; USC, the University of Southern California; VAE variational auto-encoder; IU, the Indiana University; FDA, the U.S., food and drug administration.