Skip to main content
. 2023 May 4;10:1170331. doi: 10.3389/fmed.2023.1170331

TABLE 4.

Model screening of prediction mortality COVID-19 patients shows a high AUC and specificity for most ML-based methods such as support vector machine, neural boosted and K Nearest Neighbors.

Method N Entropy R2 Misclassification rate AUC RASE Generalized R2 Sensitivity Specificity
Training set
Bootstrap forest 1224 0.419 0.125 0.927 0.290 0.532 63 97
Boosted tree 1224 0.414 0.109 0.917 0.287 0.527 73 97
Neural boosted 1224 0.312 0.143 0.874 0.316 0.416 61 95
Nominal logistic 1224 0.287 0.147 0.866 0.322 0.386 66 96
Generalized regression lasso 1224 0.269 0.152 0.863 0.325 0.365 74 97
Support vector machines 1224 0.248 0.147 0.885 0.322 0.34 85 99
Decision tree 1224 0.234 0.158 0.82 0.334 0.323 71 96
Fit stepwise 1224 0.22 0.152 0.825 0.335 0.308
K nearest neighbors 1224 0.152 0.168 80 98
Validation set
Neural boosted 519 0.291 0.144 0.857 0.317 0.392 57 94
Fit stepwise 519 0.282 0.146 0.846 0.319 0.382
Generalized regression lasso 519 0.258 0.152 0.844 0.325 0.353 72 97
Nominal logistic 519 0.240 0.152 0.840 0.328 0.331 61 94
Boosted tree 519 0.238 0.158 0.837 0.331 0.328 55 98
Decision tree 519 0.235 0.1541 0.8112 0.33513 0.3247 70 96
Support vector machines 519 0.2316 0.1387 0.8354 0.32522 0.3205 81 99
Bootstrap forest 519 0.1909 0.1638 0.8072 0.34281 0.2691 73 97
K nearest neighbors 519 0.0855 0.1734 83 96