TABLE 4.
Method | N | Entropy R2 | Misclassification rate | AUC | RASE | Generalized R2 | Sensitivity | Specificity |
Training set | ||||||||
Bootstrap forest | 1224 | 0.419 | 0.125 | 0.927 | 0.290 | 0.532 | 63 | 97 |
Boosted tree | 1224 | 0.414 | 0.109 | 0.917 | 0.287 | 0.527 | 73 | 97 |
Neural boosted | 1224 | 0.312 | 0.143 | 0.874 | 0.316 | 0.416 | 61 | 95 |
Nominal logistic | 1224 | 0.287 | 0.147 | 0.866 | 0.322 | 0.386 | 66 | 96 |
Generalized regression lasso | 1224 | 0.269 | 0.152 | 0.863 | 0.325 | 0.365 | 74 | 97 |
Support vector machines | 1224 | 0.248 | 0.147 | 0.885 | 0.322 | 0.34 | 85 | 99 |
Decision tree | 1224 | 0.234 | 0.158 | 0.82 | 0.334 | 0.323 | 71 | 96 |
Fit stepwise | 1224 | 0.22 | 0.152 | 0.825 | 0.335 | 0.308 | ||
K nearest neighbors | 1224 | 0.152 | 0.168 | 80 | 98 | |||
Validation set | ||||||||
Neural boosted | 519 | 0.291 | 0.144 | 0.857 | 0.317 | 0.392 | 57 | 94 |
Fit stepwise | 519 | 0.282 | 0.146 | 0.846 | 0.319 | 0.382 | ||
Generalized regression lasso | 519 | 0.258 | 0.152 | 0.844 | 0.325 | 0.353 | 72 | 97 |
Nominal logistic | 519 | 0.240 | 0.152 | 0.840 | 0.328 | 0.331 | 61 | 94 |
Boosted tree | 519 | 0.238 | 0.158 | 0.837 | 0.331 | 0.328 | 55 | 98 |
Decision tree | 519 | 0.235 | 0.1541 | 0.8112 | 0.33513 | 0.3247 | 70 | 96 |
Support vector machines | 519 | 0.2316 | 0.1387 | 0.8354 | 0.32522 | 0.3205 | 81 | 99 |
Bootstrap forest | 519 | 0.1909 | 0.1638 | 0.8072 | 0.34281 | 0.2691 | 73 | 97 |
K nearest neighbors | 519 | 0.0855 | 0.1734 | 83 | 96 |