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Autosomal dominant polycystic kidney disease is caused by
mutations in PKD1 or PKD2 genes. The latter encodes
polycystin-2 (PC2, also known as TRPP2), a member of the
transient receptor potential ion channel family. Despite most
pathogenic mutations in PKD2 being truncation variants, there
are also many point mutations, which cause small changes in
protein sequences but dramatic changes in the in vivo function of
PC2. How these mutations affect PC2 ion channel function is
largely unknown. In this study, we systematically tested the ef-
fects of 31 point mutations on the ion channel activity of a gain-
of-function PC2 mutant, PC2_F604P, expressed in Xenopus oo-
cytes. The results show that all mutations in the transmembrane
domains and channel pore region, and most mutations in the
extracellular tetragonal opening for polycystins domain, are
critical for PC2_F604P channel function. In contrast, the other
mutations in the tetragonal opening for polycystins domain and
most mutations in the C-terminal tail cause mild or no effects on
channel function as assessed in Xenopus oocytes. To understand
the mechanism of these effects, we have discussed possible
conformational consequences of these mutations based on the
cryo-EM structures of PC2. The results help gain insight into the
structure and function of the PC2 ion channel and themolecular
mechanism of pathogenesis caused by these mutations.

Autosomal dominant polycystic kidney disease (ADPKD),
one of the most common genetic diseases in humans, is caused
by mutations in either PKD1 or PKD2, two genes encoding
polycystin-1 (PC1) and polycystin-2 (PC2, or TRPP2) protein,
respectively (1–4). PC1 is a member of the polycystic kidney
disease proteins family, which has 11 transmembrane domains,
a large extracellular N terminus, and a relatively short intra-
cellular C terminus (1, 5, 6). In contrast, PC2 protein belongs
to the transient receptor potential (TRP) cation channel su-
perfamily polycystin subfamily (TRPP) (7). Similar to the other
TRP proteins, PC2 has six transmembrane domains and
intracellular N and C termini (8, 9). The last six trans-
membrane domains of PC1 share sequence and structural
similarity with the transmembrane domains of PC2.
‡ These authors contributed equally to this work.
* For correspondence: Yong Yu, yuy2@stjohns.edu.
Present address for: Mahmud Arif Pavel, Division of Cardiology, Department

of Medicine, University of Illinois at Chicago, Chicago, Illinois 60,612, USA.

© 2023 THE AUTHORS. Published by Elsevier Inc on behalf of American Society for
BY license (http://creativecommons.org/licenses/by/4.0/).
Like all other TRP proteins, PC2 is involved in tetramer
assembling. In the absence of PC1, PC2 forms a homotetramer
and functions as a nonselective cation channel (10–13). In the
presence of PC1, three PC2 assemble with one PC1 into a
heterotetramer through their C-terminal coiled-coil domain
and a relatively large extracellular loop (14–19). In this com-
plex, both PC1 and PC2 function as ion channel pore-forming
subunits (20). This extracellular loop, linking the first and
second transmembrane domains in PC2 and the correspond-
ing sixth and seventh transmembrane domains of PC1, is
called tetragonal opening for polycystins (TOP) domain or
polycystin-mucolipin domain (PMD) (21–23). The cryo-EM
structures of the core fragments of the homomeric PC2
complex and the heteromeric PC1/PC2 complex, which in-
cludes the transmembrane domains and the TOP domains,
have been resolved (14, 23–25). In both complexes, the TOP
domains assemble into a donut-shaped tetramer, sitting on top
of the transmembrane domains as a lid (14, 23–25). Due to its
specific location in channel structures, TOP domains may also
be involved in regulating channel gating and ion permeability
as reported in TRPML1 (22).

The roles that the homomeric PC2 channel and the het-
eromeric PC1/PC2 channel play in ADPKD remain elusive,
partially due to the lack of reliable activation mechanism of
either homomeric PC2 or heteromeric PC1/PC2 channel,
which has made their functional study very challenging. To
help with this challenge, we developed gain-of-function (GOF)
mutants of the PC2 and PC1/PC2 channels, which have pro-
vided capable platforms for channel function analysis of these
channels (10, 20, 26–28). The GOF PC2 homomeric channel
mutant, PC2_F604P, gave rise to a robust current when it was
expressed in Xenopus laevis oocytes (10). In in vivo experi-
ments, PC2_F604P, compared to wildtype PC2, more efficiently
rescued the PC2 downregulation-induced morphological ab-
normalities in zebrafish embryos (10, 27). The cryo-EM
structure of PC2_F604P shows that the F604P mutation leads
to twisting and rotation of the bottom half of the S6 helix and
opens the lower gate (27). The F604P mutation–induced
conformational changes in the pore domain of PC2 are
similar to what happens in the natural gating process of some
other TRP channels such as TRPV, TRPML, and the homol-
ogous polycystin-L channels (27, 29, 30). Thus, we believe the
structure of P2C_F604P should mimic the naturally gated
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Effects of pathogenic mutations on polycystin-2 channel
wildtype PC2. This assumption set the foundation for using
PC2_F604P in testing the effects of ADPKD pathogenic
mutations.

Sequencing the PKD2 gene in ADPKD patients has identi-
fied more than 200 mutations that are likely pathogenic (Mayo
Clinic ADPKD Database, http://pkdb.mayo.edu). Most of these
mutations cause truncations, insertions, deletions, or frame-
shifts that lead to large changes in the protein sequence of
PC2. Besides these mutations, 23 substitutions and three
single-amino acid deletion mutations were found to be path-
ogenic (ADPKD Data Base, pkdb.mayo.edu, data by December
2021). Even though such point mutations cause small changes
in protein sequences, they should have a large effect on the
in vivo function of PC2 as they lead to ADPKD. Further
investigation of their pathogenic mechanisms will enhance our
understanding of the structure and function of PC2 and may
also provide guides on early-onset ADPKD diagnostics and
mutation-specific treatments. In this work, we studied how
these 26 point pathogenic mutations, as well as five other point
mutations, which have uncertain clinical significance, affect
PC2 channel function by testing the effect of these mutations
on the activity of the GOF PC2_F604P channel. Taking
advantage of the reported cryo-EM, crystal, and NMR struc-
tures, we have also tried to link the functional results to po-
tential conformational outcomes caused by these mutations.

Results

ADPKD pathogenic point mutations included in this study

Among the 26 pathogenic point mutations, 17 are located
on the extracellular TOP domain, which appears as a hotspot
for ADPKD pathogenic mutations (Fig. 1, A–C); seven are
mapped on transmembrane domains 3 to 6, a critical area
associated with channel gating and ion permeability (Fig. 1, A
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and B); and two were found on the intracellular C-terminal tail
of PC2 (Fig. 1A). In our tests, we have also included another
five single or double amino acid substitution/deletion muta-
tions that were reported in the ADPKD Database but were
found to have uncertain clinical significance (Fig. 1A, labeled
in orange). Four of them are in the C terminus of the channel,
and one (T419A) is in the TOP domain. Among the 31 mu-
tations, nine have been tested in our previous study (10). To
give a comprehensive view of this topic, we tested these mu-
tants again with the others. The new results of these mutations
are consistent with those in the previous study.

The majority of the TOP domain pathogenic mutations reduce
the current of the GOF PC2_F604P channel

The lid-like extracellular TOP domain is composed of three
α-helices (H1-3), five anti-parallel β sheets (β1-5), and two
extended intersubunit interaction motifs called finger 1 and
finger 2 (Fig. 2, A and B) (25) [named three-leaf clover
extension 1 and 3 in (23)]. Finger 1 is a protruding hairpin-like
structure that is essential for efficient association with another
β-turn structure from the TOP domain of the neighboring
subunit (23, 25). Mutations on finger 1 may disrupt the
homotetrameric channel assembly. Six substitution mutations,
R325P, R325Q, C331S, Y345C, S349P, and A356P are localized
on finger 1 and thus at the interface between TOP domains
from two neighboring subunits (Fig. 2C). To determine their
effects on channel activity, we introduced these mutations into
the GOF PC2_F604P channel, expressed them in X. laevis
oocytes, and tested their channel function with the two-
electrode voltage clamp (TEVC) method. The results show
that the two R325 mutations, R325P and R325Q, did not
change channel current, while the other four mutants, C331S,
Y345C, S349P, and A356P, lead to largely reduced, even
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features of the TOP domain of PC2. Red dots indicate the positions of the four finger 1 pathogenic mutations that significantly reduce the channel activity of
PC2_F604P. Green dot indicates the position of the mutants R325P and R325Q, which did not significantly affect the channel activity. The same color codes
are used in (B and C) and other figures. B, the tested mutations in finger 1 are shown with sticks on the side view of the cryo-EM structure of the TOP domain
(25). C, top view of the TOP domains from two PC2 subunits, showing the positions of the tested mutations and that finger 1 is directly involved in TOP
domain interaction. The positions of the mutations are indicated with the residues’ alpha carbons shown in spheres. D, structural details show the local
interactions that mutated residues are involved. Black dashed lines indicate hydrogen bonds. C331 and C344 form a disulfide bond. E, representative I–V
curves (left) and a scatter plot and bar graph (right) showing the currents of the indicated PC2 channels. The scatter plot and bar graph show the current
sizes at +60 mV in a solution containing 100 mM NaCl, 2 mM CaCl2, and 2 mM Hepes, pH 7.5. Oocyte numbers for the bar graph are indicated in pa-
rentheses. The inward currents are inhibited by extracellular Ca2+ as previously reported (10). Data are presented as mean ± SD in bar graph (n.s.: not
significant, ***p < 0.001, Student’s t test). F, surface biotinylation followed by Western blot showing the expression levels of the indicated proteins in lysate
and plasma membrane of oocytes. Asterisk indicates the monomer band of PC2 on the SDS-PAGE gel, while the hollow stars indicate the oligomers.
Although at most of the time, the density of the oligomer bands can be random (may be due to variance in sample preparation), they are always heavier in
the lysate sample of the mutant C331S (left panel). However, the oligomer bands in the surface sample are similar to that of the other mutants (right panel).
PC2, polycystin-2; TOP, tetragonal opening for polycystins.
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abolished current of PC2_F604P channel (Fig. 2E). Western
blot shows that PC2_F604P and the additional mutants were
all expressed well in oocytes (Fig. 2F, left panel). By purifying
the channel proteins on the plasma membrane with a surface
biotinylation method, we found that PC2_F604P and all the
new mutant channels, including the four that have significantly
low channel activity, have good expression on the plasma
membrane (Fig. 2F, right panel). Thus, the reduced current of
the four mutants mentioned above most likely is not caused by
poor expression or trafficking of the channel proteins in
oocytes.

Analyzing the cryo-EM structure of finger 1 gives us hints
on the possible molecular mechanism of the effects of these
mutations. Among the five affected residues, Y345 is directly
involved in the assembly of the TOP domain tetramer by
forming a hydrogen bond with N432 in the TOP domain from
the neighboring subunit (25). All the other four residues are
not directly involved in the interaction between TOP domains.
However, most of them play key roles in maintaining the
structure of the finger 1 (Fig. 2D). C331 forms a disulfide bond
with C344, which fixes the overall shape of finger 1 (Fig. 2D)
(23, 25). A previous study has shown that this disulfide bond is
essential for PC2 channel function (31). Thus, the C331S
mutation will break this interaction and lead to the deforma-
tion of finger 1. Since Y345 is close to C331 and C344, Y345C
mutation may potentially disturb the correct disulfide bond
formation between C331 and C344 by interacting with one of
them. C349P and A356P will lead to conformational change at
the ending part of finger 1 (Fig. 2D) and abolish the interaction
between the backbone of A356 with Y391 in the second β
sheet (β2). R325 is located at the starting point of finger 1 and
is involved in interaction with Q323 in β1, T419 in β3, and
P358 at the end of finger 1 (Fig. 2D). Since adding either R325P
or R325Q mutations did not change the activity of the
PC2_F604P channel, R325 and its interactions are not essential
for the channel function of PC2_F604P.

The mutation sites R322 (with mutations R322Q and
R322W), S378 (S378Δ), G390 (G390S), and R440 (R440S) are
in β1, finger 2, and β4, respectively. However, they stay in close
proximity in the 3D structure, and all face toward the bottom
of the TOP domain (Fig. 3, A and B). Therefore, we tested
them as a group. In the cryo-EM structure of PC2, finger 2
interacts with the outer pore pre-S6 loop of the neighboring
subunit and may be directly involved in regulating pore
structure and ion permeation (Fig. 3, B and C) (25). Beta sheets
1 and 4 (β1 and β4) are essential for the overall structure of the
TOP domain and interact with the loop between S3 and S4
(Fig. 3, B and C) (25). The turn between β3 and β4 (β3- β4
turn) interacts with finger 1 from the neighboring TOP
domain and is essential for TOP tetramer assembly (25). Our
recording results show that all mutations, except for R322W,
significantly reduce the PC2_F604P current (Fig. 3E). Among
them, S378Δ only gave rise to very small currents (Fig. 3E).
Surface biotinylation results show that all mutants, including
the S378Δ, have relatively good overall and surface expression
(Fig. 3F), suggesting that the reduction of channel currents
may not simply be caused by reduced protein expression.
4 J. Biol. Chem. (2023) 299(5) 104674
Analysis of the structural details demonstrates that R322 is
involved in stabilizing the β-sheets structure via backbone
hydrogen bonds (Fig. 3D). It also bridges the interaction be-
tween the β-sheets and finger 2 by forming cation-π interac-
tion with F423 on β3 and a hydrogen bond with G388 in finger
2 (Fig. 3D). R322W mutation probably can preserve this
bridging by forming π-π stacking interaction with F423, thus
keeping the channel function. On the other hand, R322Q
mutation will lead to the loss of these interactions. S378 seems
to not be involved in any direct interaction with the sur-
rounding residues (Fig. 3D). However, the lack of this residue
in the S378Δmutant will lead to a dramatic change in the local
conformation. G390 has intensive hydrogen bond interaction
with T369 in finger 2 (Fig. 3D). G390S will interfere with these
interactions and lead to distortion of the structure of finger 2.
R440 plays a similar role as R322 in bridging the interaction
between finger 2 and the β sheets by forming cation-π in-
teractions with both F423 on β3 and H379 in finger 2 (Fig. 3D),
and R440S mutation will abolish these interactions.

We next checked three mutations, W280R, Y292C, and
W414G, that are located between the two extracellular-facing
helices (helix 2 and 3) and the β-sheets in the TOP domain
(Fig. 4, A–C). W280 and Y292 are in helix 2, while W414 is in
the loop turn between helix 3 and β3. They are hydrophobic
residues and play critical roles in stabilizing the hydrophobic
core of the TOP domain structure. Our recording data show
that while the W414G mutation completely abolishes the
current of PC2_F604P, W280R, or Y292C mutations led to no
change in the PC2_F604P channel current (Fig. 4E). All mu-
tants, including W414G, have good overall and plasma
membrane expression as detected by surface biotinylation
(Fig. 4F). When checking the local interactions where the three
residues are involved in, we found that the side chain of W280
has loose hydrophobic interaction with L415, while that of
Y292 is only involved in forming one hydrogen bond with S396
(Fig. 4D). The lack of intensive interaction of these two resi-
dues may explain why PC2_F604P-W280R and PC2_F604P-
Y292C still have relatively normal channel function (Fig. 4E).
In contrast, the side chain of W414 forms hydrogen bonds
with A365 on finger 2 and π-stacking interaction with F358 on
finger 1 (Fig. 4D). The W414G mutation will abolish these
interactions and destabilize the confirmation of both fingers 1
and 2.

The H3-β3 turn and β4-β5 turn are close to each other in
the cryo-EM structure of PC2, and they interact with the H1
helix, H1-β3 turn, and β3-β4 turn from the adjacent subunit,
forming a significant portion of the binding interface between
two TOP domains (Fig. 5, A–C) (25). Thus, the structure of
these two turns is critical for TOP domain tetramer assembly.
In this area, three pathogenic mutations (G418V, R420G, and
T448K) and one mutation with uncertain significance (T419A)
are included in the PKD database. In our recordings, we found
that all three pathogenic mutations abolished the current of
PC2_F604P, while T419A led to no effect to channel current
(Fig. 5E). All mutations, including the three pathogenic mu-
tations that have significantly small channel currents, have
good overall and plasma membrane expression as detected by
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the tested mutations. D, structural details show the local interactions that W280, Y292, and W414 are involved. Black and orange dashed lines indicate
hydrogen bonds and π-stacking interaction, respectively. E, representative I–V curves (left) and a scatter plot and bar graph (right) showing that the currents
of the indicated PC2 channels. The scatter plot and bar graph show the current sizes at +60 mV in a solution containing 100 mM NaCl, 2 mM CaCl2, and
2 mM Hepes, pH 7.5. Oocyte numbers for the bar graph are indicated in parentheses. Data are presented as mean ± SD in bar graph (n.s.: not significant,
***p < 0.001, Student’s t test). F, surface biotinylation followed by Western blot showing the expression levels of the indicated proteins in lysate and plasma
membrane of oocytes. The samples in the left panel were run together with the samples in the left panel of Fig. 5F in our experiment and are presented and
discussed separated in two figures based on the mutations’ locations in the cryo-EM structure. Thus, the first two lanes (“uninjected” and “F604P”) in both
lysates and surface samples, as the negative and positive controls, were used in both Figs. 4F and 5F. PC2, polycystin-2; TOP, tetragonal opening for
polycystins.

Effects of pathogenic mutations on polycystin-2 channel

6 J. Biol. Chem. (2023) 299(5) 104674



TOP domian

H1 H2 β1 β2 β3H3 β4 β5

finger 1 finger 2 H3-β3 turn β3-β4 turn β4-β5 turnluminal loop

T4
19

A
G

41
8V

R
42

0G

T4
48

K

T448K

T419A

G418V

R420G

β1
β2

β3

β4

β5

H3-β3 turn

β4-β5 turn

H3

T448K
T419A

G418V

R420G

H1

finger 1

finger 1

finger 2

H2

G41
8V

F60
4P

R42
0G
T44

8K
Un-i

nje
cte

d

G41
8V

F60
4P

R42
0G
T44

8K
Un-i

nje
cte

d

A

B
C

E

F

D

Lysates Surface
F604P + F604P +

T419

R325

T448
G418

R420

Q323

β4-β5 turn

H3-β3 turn

β1

0

1

2

F604PUn-injected

V = +60 mV

***
(14)

***
(35)

***
(20) ***

(20)

n.s.
(13)

(74)

T419AG418V T448KR420G
F604P + 

anti-
PC2

anti-
β-actin

IB:

F60
4P

F60
4P

Lysates Surface

F60
4P

 +

T41
9A F60

4P
 +

T41
9A

N
or

m
al

iz
ed

 C
ur

re
nt

 

anti-
PC2

anti-
β-actin

IB:

-50 50

-1

1

2

3

4

F604P

Un-injected

Voltage (mV)

C
ur

re
nt

 (μ
A)

_G418V
_T419A
_R420G
_T448K

150

100

250

35

(kDa)

150

100

250

35

(kDa)

Figure 5. Variant effects caused by four mutations on the side of the TOP domain. A, the diagram shows the structure features of the TOP domain of
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T419A which does not reduce channel activity. T419A is indicated as a mutation that causes uncertain clinical significance in ADPKD Database (pkdb.mayo.
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dashed lines indicate hydrogen bonds. E, representative I–V curves (left) and a scatter plot and bar graph (right) showing the currents of the indicated PC2
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surface biotinylation (Fig. 5F). We then checked the in-
teractions that these residues are involved in the cryo-EM
structure (Fig. 5D) (25). We found that the side chain of
R420 is intensively involved in forming hydrogen bonds with
backbone and residues in finger 1 and the β4-β5 turn and plays
key roles in maintaining the local confirmation (Fig. 5D).
Although not many direct interactions were found formed by
the side chains of G418 and T448, G418V will most likely
reduce the flexibility of the H3-β3 turn, and T448K will
dramatically change the charge of the local environment and
affect the interaction with the neighboring TOP domain.
Consistently, we previously found that the T448K mutation
reduced the interaction between PC2 TOP domains (19). In
the cryo-EM structure, the side chain of T419 is involved in
forming hydrogen bonds with Q323 and R325 at β1-finger 1
junction and with the backbone of the H3-β3 turn (Fig. 5D).
Thus, it plays a role in maintaining the local confirmation.
Since T419A does not change PC2_F604P current, we assume
that either these interactions are not critical, or the alanine
mutation preserves most of these interactions.

Together, by performing TEVC recording, we show that
most of the TOP domain pathogenic mutations significantly
decrease or completely abolishe the channel activity, although
some others do not have an obvious effect on the current of
the GOF PC2_F604P channel. Since these mutations have a
relatively good expression on the plasma membrane, the
overall structure of PC2 must have been preserved in these
mutant channels. Thus, we hypothesize that the function
reduction is due to the local conformational changes or defects
in TOP domain assembly caused by these mutations.
Pathogenic mutations in the transmembrane domains abolish
the PC2-F604P channel activity

Four pathogenic single amino acid mutations, D511V,
L517R, N580K, and F605Δ, were found in the transmembrane
helices of PC2 (Fig. 6, A and B). Similar to other TRP channels,
each PC2 subunit has six transmembrane helices (S1-S6). The
first four (S1-S4) forms a domain that is structurally like the
voltage sensor domain (VSD) of canonical voltage-gated cation
channels, although only two (K572 and K575) of four gating
charges are preserved in S4 of PC2 (25). The last two trans-
membrane helices (S5 and S6) form the pore domain, which is
directly involved in forming the ion-conducting pore of PC2
and all other TRP channels. In voltage-gated channels, the link
between S4 and S5 (S4-S5 linker) is essential for conducting
the voltage sensing by VSD to channel gating. The S4-S5 linker
and first half of S5 also play key roles in the gating of TRP
channels since multiple mutations in this region have been
found to lead to the GOF effect of many TRP channels (32).
Previously, we generated a GOF PC2 channel by introducing
the F604P mutation (10). F604P is in the first half of S5 and is
in the core of a cluster of hydrophobic interactions between S5
and S6 (10, 23). Although the overall cryo-EM structure of
PC2_F604P is similar to that of the WT PC2, significant
structural shifts happen at the S4-S5 linker and S5, most likely
due to the bend of S5 and the weakened interaction between
8 J. Biol. Chem. (2023) 299(5) 104674
S5 and S6 caused by F604P mutation (Fig. 6C) (27). At the
same time, twisting and bending movements of distal S6,
induced by the transition of a π-helix structure in the middle
of S6 to α-helix, lead to the opening of the lower gate of the
channel (Fig. 6C) (27).

Our results show that all four pathogenic mutations found
in the transmembrane domains abolished the current of
PC2_F604P (Fig. 6D). In our surface biotinylation experiments,
all four pathogenic mutations showed significant expression
on plasma membrane (Fig. 6E). Although we noticed some
variation on the overall and surface expression between that of
PC2_F604P and some of the new mutants (Fig. 6E), the almost
complete absence of channel activity in these four mutations
are clearly not caused by loss of surface expression.

The first two mutations D511V and L517R are in S3. Similar
to our results, D511V mutation has been previously shown in
several studies to not affect the expression and trafficking of
PC2 expressed in cultured cells but abolished PC2 function,
including its channel activity (10, 11, 33–36), although another
one reported that D511V reduces the stability of exogenously
expressed PC2, which leads to lower expression of PC2 (37). In
the cryo-EM structure, D511 was found to directly interact
with both K572 and K575 to stabilize both S3 and S4 (25).
Thus, mutation D511V will most likely disturb the VSD
structure. Similarly, switching from a hydrophobic residue to a
positively charged residue on S3, in the case of the L517R
mutation, may abolish the channel activity due to a similar
reason. N580 is located at the junction of S4 and the S4-S5
linker (Fig. 6B). The latter has a significant structural shift in
PC2_F604P structure compared to that of WT, which leads to
a roughly 180� turn of the N580 side chain (Fig. 6C). The
N580K mutation will restrict the proper structure shift in this
region. As for F605Δ, a significant conformational change
around F604P is expected due to this mutation. Thus, both
N580K and F605Δ mutations seem to abolish channel activity
by directly affecting the GOF effect of the F604P mutation.
However, due to the essential role of the S4-S5 linker and the
first half of S5 in TRP channel gating, these two mutations
most likely will also affect the gating of WT PC2. The D511V,
L517R, and N580K may also interrupt a potential PIP2 binding
in this region, which was proposed in a previous study (38).
Pathogenic mutations in the outer pore region abolish the
PC2_F604P channel function

The last two transmembrane helices of PC2, S5 and S6, form
the ion-conducting pore of the channel. The outer pore region
of PC2, formed by the linker between S5 and S6, has a classic
structure that contains the outer pore loop, the first pore helix
(pore H1), a selectivity filter loop, and then the shorter second
pore helix (pore H2) (Fig. 7, A and B) (23–25). There are three
ADPKD pathogenic single amino acid mutations, F629S,
C632R, and R638C, which lie in the pore H1 of the outer pore
region (Fig. 7, B and C). In our functional test, all three mu-
tations abolished the activity of PC2_F604P, even though they
expressed well on plasma membrane (Fig. 7, E and F). We
assume that all three mutations likely preclude ion



S1 S2

S3

S4 S5 S6

TOP domian
S3-S4
loop EF-hand Colied-Coli

N C
Pore

S4-S5
linker

D
51

1V
L5

17
R

N
58

0K

F6
05

∆

D511V

D511

N580K

N580

F605Δ

D51
1V

F60
4P

L5
17

R
N58

0K
Un-i

nje
cte

d

F60
5∆

D51
1V

F60
4P

L5
17

R
N58

0K
Un-i

nje
cte

d

F60
5∆

150

100

250

35

A

B C

D

S1

S1
S1

S2

S2
S2

S3

S3
S3

S4

S4
S4

S5

S5
S5

S4-S5 linker

S4-S5
linker

S4-S5 
linker

S6

S6

L517R

L517

Structure solved with Cryo-EM

L517

D511

N580

F605
F605

S6

P2C_WT
vs.

PC2_F604P

Lysates Surface

anti-PC2

anti-β-actin

IB:

F604P + F604P +
E

0

1

2

V = +60 mV

***
(12)

F604PUn-injected

***
(14)

***
(22)***

(14)***
(13)

(43)

D511V L517R N580K F605Δ

F604P + 

N
or

m
al

iz
ed

 C
ur

re
nt

 

-50 50

-1

1

2

3

4

F604P
_D511V
_L517R
_N580K
_F605∆
Un-injected

Voltage (mV)

C
ur

re
nt

 (μ
A)

(kDa)

Figure 6. Pathogenic mutations in transmembrane domains abolish channel activity of PC2_F604P. A, the diagram shows the structural features of
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Figure 7. Pathogenic mutations in the outer pore region abolish the channel activity of PC2_F604P. A, the diagram shows the structural features of
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permeability of the channel by disturbing the structure of the
outer pore region. In the cryo-EM structure, R638 is essential
for stabilizing the structure of pore helix 1 by forming a
hydrogen bond with T635 in pore helix 1 and a cation-π
interaction with F646 on a neighboring subunit (Fig. 7D) (25).
C632 has also been previously shown to play a role in the
assembly of PC2 (39).
Pathogenic mutations in the C-terminal tail do not have large
effect on the PC2_F604P channel function

The intracellular C-terminal tail of PC2 has functional sig-
nificance, as many ADPKD pathogenic mutations in PC2, such
as N720X, R742X, and Y762X, result in truncation of this tail
(ADPKD Database, pkdb.mayo.edu). The C-terminal tail of
PC2 contains two significant structural elements: a Ca2+-
binding EF-hand domain (N720-S795) and a coiled-coil
domain (Y836-L894) (Fig. 8A). The structure of the EF-hand
domain has been published (40, 41). However, the role that
Ca2+ binding in this domain plays in regulating channel ac-
tivity has been controversial (42, 43). The coiled-coil domain is
involved in protein assembly. Two early studies demonstrated
that coiled-coil domains in the C-terminal tail of PC1 and PC2
are involved in their association (17, 18). Later studies from
our and the other labs refined the location of this coiled-coil
domain to a Y836-L894 region and found that this domain
forms a trimer in solution and plays a role in both homomeric
assembly of PC2 and heteromeric assembly between PC1 and
PC2 (15, 16, 44–46). Abolishing the coiled-coil trimer forma-
tion greatly weakens the homomeric assembly of PC2 and the
heteromeric assembly between PC1 and PC2 (16, 23). Later
evidence shows that the coiled-coil domains are not necessary
for PC1 and PC2 assembly when proteins are overexpressed,
possibly due to the interactions at the TOP and the trans-
membrane domains (14, 24, 25, 39, 45). However, these results
do not rule out the possible critical role of the coiled-coil
interaction in complex assembly when protein expression
level is low in vivo.

In our experiments, we tested six mutations located in the
C-terminal tail. Two of them, D866G and R878Δ, are likely
pathogenic, while the other four, L736/N737Δ, R798C,
T931M, and S949F, have uncertain significance according to
the ADPKD Database (pkdb.mayo.edu) (Fig. 8A). Our results
show that these mutations have a relatively moderate effect on
PC2_F604P channel activity, except for T931M, which has
about half the activity compared to PC2_F604P (Fig. 8B).
When being checked for surface expression, all mutations
showed a comparable amount of surface expression as
PC2_F604P (Fig. 8C). Due to the limits of the experiential
methods, we could not completely rule out the possibility that
the subtle change in current sizes of R798C mutant is the
result of small changes in surface expression. However, it is
clear that the significant smaller current of the T931M mutant
was not simply caused by defect in its surface expression.

Three cryo-EM structures of PC2 homotetramer and one of
PC1/PC2 heterotetramer have been previously reported (14,
23–25). However, the intracellular N and C termini of PC2 are
missing in all structures, due to either the truncated constructs
used or the flexibility of the termini. Although structural in-
formation of R798, T931, and S949 are not available, L736 and
N737 are seen in the NMR structures of the EF-hand domain
(Fig. 8D) (40, 41), and D866 and R878 are in the crystal
structure of the coiled-coil domain (Fig. 8E) (16). Unlike the
canonical EF-hand domains, the one in PC2 contains only one
Ca2+ binding site formed in the second helix-loop-helix motif,
but not the first (Fig. 8D) (40, 41). Hydrogen bonds formed
between L736 and L770 (Fig. 8D) connect the two antiparallel
loops and stabilize the structure Ca2+ binding site. Thus, L736/
N737Δ mutation will likely destabilize the Ca2+ binding. Here,
we found that this mutation did not significantly reduce
channel activity of PC2_F604P (Fig. 8B). This result is
consistent with what was previously reported that abolishing
the Ca2+-binding in the EF-hand domain does not change PC2
channel function in primary cilia and ER membrane (42).

We have previously solved a crystal structure of the PC2
coiled-coil domain trimer (16). In this structure, the N-ter-
minal two thirds of the coiled-coil domain is tightly bundled
together by hydrophobic interactions among the three helices,
while the C-terminal one thirds of domain, from A873 to
G895, splays open (Fig. 8E). Both R878 and D886 are in the C-
terminal 1/3 and are not directly involved in the assembly of
this trimer (Fig. 8E). Thus, both R878Δ and D886G mutations
most likely do not affect the formation of the coiled-coil trimer
of PC2. We have previously found that even deleting the entire
C-terminal region of this coiled-coil domain has no such effect
(16). Consistently, we did not see channel function change
after introducing these two mutations in PC2_F604P (Fig. 8B).
It is worth noticing that D866G was previously proposed to
cause an mRNA splicing variant with frameshift (33). It could
explain the possible cause of ADPKD with this mutation. At
the same time, the R878Δ mutation will likely interfere with
the coiled-coil interaction between PC1 and PC2, which is
discussed in the Discussion below. No structural information
is available for R798, T931, and S949. How T931M reduces the
channel current of PC2_F604P is presently unknown.
Discussion

Understanding how pathogenic mutations affect the PC2
channel activity helps us gain insight into the structure and
function of PC2 and how malfunction of this channel plays its
role in ADPKD. However, due to the lack of knowledge on
PC2 channel activation, it has been challenging to carry out the
related study. The F604P GOF mutation found in our previous
work leads to constitutive activation of PC2 and allows us to
record reliable and robust current from this ion channel (10).
With the PC2_F604P mutant channel, we were able to sys-
tematically test the effects of 31 single point mutations,
including 26 clinically pathogenic mutations, on PC2 channel
activity. Since F604P mutation-caused conformational changes
in PC2, especially that in the channel pore region and the gate,
is similar to what was found in the gating process of other TRP
channels, we believe the structure of PC2_F604P mimics
wildtype PC2 in a natural open status. Thus, the results we
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Figure 8. Effects of the pathogenic mutations in C-terminal tail of PC2_F604P. A, the diagram shows the structural features of the C-terminal tail of PC2.
Red and orange dots indicate the positions of the mutations that significantly reduce the channel activity of PC2_F604P, while green dots indicate the
positions of the mutations that do not significantly reduce channel activity. B, representative I–V curves (left) and a scatter plot and bar graph (right)
showing the currents of the indicated PC2 channels. The scatter plot and bar graph show the current sizes at +60 mV in a solution containing 100 mM NaCl,
2 mM CaCl2, and 2 mM Hepes, pH 7.5. Oocyte numbers for the bar graph are indicated in parentheses. Data are presented as mean ± SD in bar graph (*p <
0.05, ***p < 0.001, Student’s t test). C, surface biotinylation followed by Western blot shows the expression levels of the indicated proteins in lysate and
plasma membrane of oocytes. Results shown in two groups from two separate experiments. Although samples in the second group gave significant lower
surface signal due to the usage of different batch of the surface biotinylation kit, it is clear that the new mutants had comparable surface expression as
F604P in the same group. D, NMR structure of the EF-hand domain of PC2 showing the location of L736 and N737, as well as the hydrogen bonds (dotted
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domain. F, left: structural model of the complex formed by three PC2 coiled-coil domains and one PC1 coiled-coil domain (15), showing the positions of the
tested two mutations. Right: Structural details of the model to show the interaction between R877 and R878 on PC2 and D4234 and E4239 on PC1. PC2,
polycystin-2; PC1, polycystin-1.
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obtained in this study will help us gain insight into how these
pathogenic mutations impact WT PC2 channel activity. At the
same time, a drawback of using a GOF mutant is that its
activation has bypassed the channel gating process. Thus, if a
mutation affects gating, we will not be able to detect this effect.
However, due to the challenge of recording wildtype PC2
channel activity, the GOF mutant channel is still the best
choice we have for the current study.

Our results show that these pathogenic mutations cause
various effects on the channel activity of PC2_F604P. The TOP
domain is a hotspot of known pathogenic point mutations of
PC2. The majority of these mutations, 17 out of 26, occur in
the TOP domain (Fig. 1). Within these 17 mutants, 12 of them
abolish or significantly reduce the channel activity of
P2C_F604P without affecting the plasma membrane trafficking
of the channel in oocytes (Figs. 2–5). We predicted that most
of these mutations will lead to significant local conformational
changes in TOP structure by disrupting key interactions within
or between TOP domains. These results demonstrate the
essential role of the TOP domain in PC2 channel function.
Our results also show that all seven pathogenic point muta-
tions in the transmembrane domains, S4-S5 linker, and the
pore region abolish channel function (Figs. 6 and 7). These
results are consistent with the assumption that the trans-
membrane domains, especially S3-S5 and the S4-S5 linker, are
critical for channel structure and gating in TRP channels and
voltage-gated ion channels (32, 47), while the pore region is
essential for ion conductance. Most C-terminal tail mutations
we have tested in this study, including two clinical pathogenic
mutations R878Δ and D886G, led to relatively mild effects, if
any, on PC2_F604P channel activity. How these mutations, as
well as the TOP domain mutations that do not affect channel
activity, lead to ADPKD cannot be explained by our current
results. Their possible pathogenic mechanisms may include (1)
affecting the gating of the wildtype PC2 channel; (2) interfering
with the trafficking of PC2 in vivo, including that to primary
cilia; (3) leading to abnormal alternative splicing of PKD2 RNA
as shown in previous studies (33, 48, 49); and (4) leading to
dysfunction of the heteromeric PC1/PC2 channel, which was
not tested in this study. It is also possible that one mutation
causes a consequence that is a combination of different effects.

The effects of some of these PC2 pathogenic mutations on
PC2 function have been tested in previous studies. Among
these mutations, D511V in S3 has been widely reported to
abolish the PC2 channel function (10, 11, 34, 36, 39, 45, 50,
51), which is consistent with our finding here (Fig. 6). Previ-
ously, Vien et al. tested the effects of a group of pathogenic
mutations in the TOP domain (R322W, R322Q, R325P,
R325Q, and C331S) on PC2 channel activity in primary cilia
(31). They found that all these five tested mutations did not
affect the ciliary trafficking of PC2. However, they all abolished
PC2 current when tested within a voltage range from −100
to +100 mV, due to the large positive shift of the voltage
threshold in the mutants (31). In our tests, we also found
C331S almost completely abolished PC2_F604P current, and
R322Q significantly reduced the current (Figs. 2 and 3).
However, R322W, R325P, and R325Q mutants had similar
channel activity as PC2_F604P (Figs. 2 and 3). The results
suggest a possibility that although these mutations interfere
with the voltage dependence of the channel activity, it is not
detectable anymore once the channel is opened by the GOF
mutation F604P. It is worth noticing though that the voltage-
dependent gating of the PC2 channel was not seen when it was
expressed in either Xenopus oocyte or HEK 293T cells (10, 16,
25); thus, this property may be related to the microenviron-
ment in cilia. A previous study reported that the PC2-W414G
mutant did not go to primary cilia when expressed in LLC-PK1
cells but gave rise to similar channel activity as the WT
channel in a single-channel recording using bilayers made
from ER-enriched vesicles (52). Here, we found W414G
abolishes PC2_F604P current (Fig. 4). This inconsistency may
be caused by different methods and systems used in the
recording and needs to be further investigated. The missense
mutation c.1320G > T (R440S) in the TOP domain was pre-
viously found to interfere with normal RNA splicing of PC2
and lead to more production of a variant that is missing exon 6
(48). Our result here shows that besides the effect on splicing,
R440S also causes a reduction of PC2 ion channel function
(Fig. 3).

How these PC2 pathogenic mutations affect the function of
the PC1/PC2 heteromeric channel is worth further investiga-
tion. Since the TOP domain is directly involved in the as-
sembly of the PC1/PC2 complex, we assume that the
mutations that happen at the interface of PC2 TOP domains,
such as the mutations in finger 1, will potentially also change
the assembly and function of the heteromeric channel. This
may also be true for mutations located in the pore region. We
have discussed above that R878Δ and D886G do not affect the
coiled-coil trimer formation of the C-terminal tail of PC2 since
they are not in the tightly bundled portion of this trimer.
However, both our experimental and computational modeling
results suggested that the C-terminal loose structure of this
coiled-coil trimer forms the major interface for the association
of the PC1 coiled-coil domain (Fig. 8F) (15, 16). In our model,
the PC1/PC2 coiled-coil domain complex shows a di-trimer
configuration, with an upstream dimer formed by all three
PC2 helices and a downstream trimer formed by one PC1 helix
and two PC2 helices (Fig. 8F) (15). The K876/R877/R878/E879
charge cluster increases the flexibility of the C-terminal
portion of the PC2 helix and facilitates the formation of the
trimer with PC1. Also, R877 and R878 directly interact with
E4239 and D4234, respectively, and are essential for the as-
sembly of this complex (Fig. 8F) (15). Double mutation
R877G/R878G almost completely abolished the binding be-
tween PC1 and PC2 coiled-coil domains (15). The deletion
mutation R878Δ will not only disrupt the interaction at this
site but also induce a rotation of the downstream region of the
PC2 coiled-coil helix and disturb the downstream hydrophobic
interaction that was shown to be critical for the assembly of
the PC1/PC2 coiled-coil complex in our model (15). Together,
these findings help us gain insight into a hypothesis that some
PC2 C-terminal pathogenic mutations cause ADPKD likely
through disrupting the assembly of PC1/PC2 complex, instead
of PC2 homotetramer.
J. Biol. Chem. (2023) 299(5) 104674 13
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Experimental procedures

cDNA constructs and cloning

Human TRPP2 cDNAs (National Center for Biotechnology
Information accession no. U50928) were cloned into a modi-
fied pGEMHE vector for in vitro transcription. Mutations were
generated by PCR, and all constructs were confirmed by
sequencing.

Electrophysiology

RNAs were synthesized in vitro and injected into Xenopus
laevis oocytes (30 ng RNA/oocyte). After injection, oocytes
were incubated at 18 �C for 2 to 3 days, and the TEVC method
was used to record whole-cell currents. All recordings have
been repeated with at least three batches of oocytes, and most
of them have been completed additional times. Unless other-
wise indicated, oocytes were recorded at room temperature in
a bath solution containing 100 mM NaCl, 2 mM CaCl2, and
2 mM HEPES, pH 7.5.

A standard TEVC protocol includes holding oocytes at
0 mV and measuring the current-voltage (I-V) relationships by
applying 80 ms voltage steps from −80 to +60 mV in 10 mV
increments.

Oocyte lysate preparation

The protein expression of all mutations tested in this study
has been confirmed by Western blot. All Western blots were
repeated at least two times. To prepare oocyte lysate samples,
oocytes were collected after TEVC recording and washed twice
with cold OR2 solution (82.4 mM NaCl, 2.5 mM KCl, 1 mM
MgCl2, 10 mM HEPES, pH 7.6). They were then incubated in a
lysis solution containing 1x PBS, 1 mM EDTA, 10% glycerol,
1% n-Dodecyl- β-D-maltoside, and 1/50 (v/v) Protease Inhib-
itor Cocktail (Sigma Aldrich). Ten microliter of lysis solution
was used per oocyte. Oocytes were homogenized by passing
through a 25-G needle 10 times, and lysates were incubated by
rotating at 4 �C for 1 h. After centrifuging for 30 min at
10,000g, supernatants were collected.

Oocyte surface protein purification with biotinylation

Proteins expressed on Xenopus oocyte plasma membrane
were detected at least twice with the Pierce Cell Surface Bio-
tinylation and Isolation kit following a modified protocol
described previously (53). Briefly, 2 to 3 days after RNA in-
jection, oocytes (40 per group) were collected and washed twice
with cold OR2 solution (82.4 mM NaCl, 2.5 mM KCl, 1 mM
MgCl2, 10 mM HEPES, pH 7.6). Oocytes were then incubated
with 0.4 mg/ml sulfo-NHS-SS-biotin in ice-cold OR2 at 4 �C
for 30 min. The reaction was then quenched, and oocytes were
washed, following the manufacturer’s protocol. Oocytes were
lysed, and supernatants were collected as described above.
After centrifuging for 30 min at 10,000g, supernatants were
collected. Lysates were mixed with NeutrAvidin Agarose at 4
�C overnight. After beads were washed, proteins were eluted
with 50 mM DTT at 37 �C for 30 min. Eluted samples were
analyzed by SDS–PAGE and Western blot.
14 J. Biol. Chem. (2023) 299(5) 104674
SDS-PAGE and Western blot

Oocyte lysate and surface biotinylation samples were run on 4
to 12% Bolt Bis-Tris Plus gels (Thermo Fisher Scientific) and
transferred to polyvinylidene fluoride membrane. Mouse mono-
clonal anti-PC2 antibody (YCE2, Santa Cruz Biotechnology),
mousemonoclonal anti-β-actin antibody (GenScript), and IRDye
680RD goat-anti-mouse IgG secondary antibody (Li-COR) were
used. Blot signals were visualized with LI-COR Odyssey.

Structural graphics

The structural graphics of TRPP2 shown in all figures were
prepared with the software PyMOL (The PyMOL Molecular
Graphics System).

Statistical analysis

Electrophysiology data were analyzed with Excel or
GraphPad Prism 8, and statistical significance was determined
by an unpaired, two-tailed Student’s t test. The currents of
F604P and the other new mutants were normalized to the
mean of F604P currents recorded from the same batch of
oocytes, and the results of each individual mutant was
compared to that of F604P in t test. t test results of p< 0.05
were considered statistically significant (differences p< 0.05
denoted by *p< 0.01 denoted by **, and p< 0.001 denoted by
***). Results are presented as mean ± SD. Raw data used in bar
graphs and t-tests are included in Supporting information.
One recorded current from W280R and another one from
T448K were removed during data analysis since they are un-
reasonably much larger than all other currents from the same
mutant, possibly due to membrane leakage.

Animal use

Frogs care and experimental protocols were conducted
upon approval of the Institutional Animal Care and Use
Committee (IACUC) at St John’s University.

Data availability

All data are contained within the manuscript.
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