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Abstract

Purpose: To develop a deep neural network for respiratory motion compensation in free-

breathing cine MRI and evaluate its performance.

Methods: An adversarial autoencoder network was trained using un-paired training data from 

healthy volunteers and patients who underwent clinically indicated cardiac MRI examinations. 

A U-net structure was used for the encoder and decoder parts of the network and the code 

space was regularized by an adversarial objective. The autoencoder learns the identity map for 

the free-breathing motion-corrupted images and preserves the structural content of the images, 

while the discriminator, which interacts with the output of the encoder, forces the encoder to 

remove motion artifacts. The network was first evaluated based on data that were artificially 

corrupted with simulated rigid motion with regard to motion correction accuracy and presence 

of any artificially created structures. Subsequently, to demonstrate the feasibility of the proposed 

approach in vivo, our network was trained on respiratory motion-corrupted images in an unpaired 

manner and was tested on volunteer and patient data.

Results: In the simulation study, mean structural similarity index (SSIM) for the synthesized 

motion-corrupted images, and motion-corrected images were 0.76, and 0.93 (out of 1), 

respectively. The proposed method increased the Tenengrad focus measure of the motion-

corrupted images by 12% in the simulation study and by 7% in the in-vivo study. The average 

overall subjective image quality for the motion-corrupted images, motion-corrected images, 

and breath-hold images were 2.5, 3.5, and 4.1(out of 5.0), respectively. Non-parametric paired 

comparisons showed that there was a significant difference between the image quality scores 

of the motion-corrupted and breath-held images (P<0.05), however after correction there was 
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no significant difference between the image quality scores of motion-corrected and breath-held 

images.

Conclusion: This feasibility study demonstrates the potential of an adversarial autoencoder 

network for correcting respiratory motion-related image artifacts without requiring paired data.
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INTRODUCTION

In current clinical practice of thoracic and abdominal MRI, images are commonly acquired 

during a breath-hold to compensate for respiratory motion. Physiological limitations of 

breath-holding constrain the data acquisition window to approximately 15–20 seconds 

in relatively healthy patient populations. In clinical practice, many patients undergoing 

MRI have impaired breath-holding abilities, further limiting the acquisition window. As 

a result, 3D acquisitions are not routinely performed during a single breath-hold, despite 

previous efforts1–4. Many approaches have been proposed to enable free-breathing thoracic 

and abdominal MRI, including real-time single-shot cine imaging5–7 and the use of non-

Cartesian sampling (e.g. radial), which tends to be less sensitive to respiratory motion8–10. 

However, the use of these approaches is not without compromise. For example, single-

shot imaging approaches are generally of inferior image quality, signal-to-noise ratio 

or resolution when compared to their corresponding k-space segmented techniques. Non-

Cartesian sampling, although relatively immune to motion, is prone to various other types 

of image artifacts, including streaking, off-resonance blurring and issues related to gradient 

delays. Alternative methods for respiratory motion compensation include respiratory bellows 

gating11–13, diaphragm navigators14, and MR self-gating15. These techniques, as a whole, 

result in prolonged scan time and reduced scanning efficiency, as a significant portion 

of the data is discarded. In addition to longer acquisition times, these techniques each 

suffer from their own respective drawbacks. Respiratory bellows rely on air pressure signal, 

which may not always have a well-defined correlation with the respiratory position of 

various anatomical structures. Diaphragmatic navigators and MR self-gating navigators have 

enabled high quality imaging of the coronary arteries16,17; however, their adoption in routine 

clinical imaging remains limited, in part because irregular and abrupt breathing pattern 

changes often reduce image quality and reliability. Multiple methods have been proposed for 

motion correction18–20, where motion is corrected in k-space using well-known relationships 

between affine motion and the corresponding k-space. However, these corrections are often 

inadequate because of significant non-rigid and deformable motion, which does not have 

well-defined k-space correction methods.

In this work, we sought to investigate the use of deep neural networks (DNNs) for 

respiratory motion compensation in MRI to alleviate some of the aforementioned problems. 

DNNs, particularly convolutional DNNs, have presented new possibilities for tackling a 

wide range of inverse problems including image inpainting, super resolution21–24, denoising 

and deblurring25–31 in an efficient manner. The main advantage of DNNs over classical data 
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processing approaches is that it learns the effective features and priors in a data-driven 

fashion. To date, few studies have implemented DNNs for motion compensation31–35. 

Recent studies have shown that DNN can correct rigid-motion artifacts in brain imaging 
32,33,36. They mainly trained convolutional neural networks with pixel-wise objective 

functions in a supervised manner. Haskell et al. combined a deep convolutional network 

with model-based motion estimation approach in an iterative manner to reduce the rigid 

motion artifacts from the 2D T2-weighted rapid acquisition with refocused echoes (RARE) 

brain images36. Their algorithm is of iterative nature, and in each iteration, the output of 

the convolutional neural network (CNN) was used to estimate the motion parameters and to 

correct the image k-space. They used time series registration information from fMRI scans 

to create the realistic motion trajectories. Then, they modified motion-free raw k-space brain 

data to synthesize realistic rigid-motion-corrupted images, and subsequently they estimated 

the motion parameters and forced the data consistency.

However, for DNN-based respiratory motion compensation in cardiac and abdominal 

imaging, supervised learning approaches are generally not feasible because the ground 

truth non-rigid motion data, which is needed for training the network, is either extremely 

challenging to obtain or simply not available. Kustner et al. reported a feasibility study 

to correct rigid and non-rigid motion artifacts by implementing a conditional generative 

adversarial network (GAN) (MedGAN), in which the generative network consists of eight 

cascaded U-nets31. The network was trained using a combination of adversarial, style 

transferring, and perceptual loss functions37. Among the loss functions used by Kustner 

et al.31, the perceptual loss function requires paired data, which is challenging to obtain, 

especially for non-rigid motion correction tasks. In addition, there are >108 trainable 

parameters in the network architecture used by Küstner et al31. Armanious et al. used a cycle 

consistency approach to extend the MedGAN in a way that can be trained in unsupervised 

manner38. They incorporated an attention module in their generator network to capture 

long-range dependencies. They mainly focused on reducing rigid simulated artifacts from 

brain datasets and achieved promising results.

The goal of this study was to develop and validate a DNN-based platform to remove 

respiratory motion artifacts in free-breathing imaging. We chose 2D cardiac cine imaging 

as an exemplary target application to validate our technique. In particular, based on the 

numerous challenges associated with obtaining the ground truth non-rigid motion data, we 

aimed to develop a network that can be trained in an unsupervised manner. In particular, our 

DNN is based on an adversarial autoencoder39–41 network structure to take advantage of its 

ability to be trained in a self-supervised manner without access to paired training data or 

the ground truth motion data. In our work, the encoder and decoder part of the adversarial 

autoencoder are both convolutional U-nets. The autoencoder’s code space is regularized with 

an adversarial loss network. The autoencoder preserves anatomical accuracy and consistency 

during the motion correction process while the adversarial network regularizes the encoder 

and drives the code space to be as close as possible to a motion artifact-free image. By 

leveraging the intrinsic competition between these two networks during the training process, 

we expect motion-corrected, artifact-free images to preserve their fidelity with regard to the 

overall anatomical structure and consistency.
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METHODS

Theory

An autoencoder is a neural network that reconstructs an output that is almost identical to its 

input with the goal of learning useful representations of the input data42. Figure 1(a) shows a 

general architecture of an autoencoder. It consists of two parts, the encoder and the decoder. 

The encoder and decoder can be expressed as Enθ z x , De∅ x z : where, z represents the 

code space and θ, ∅ are the learnable parameters of the encoder and decoder networks, 

respectively. Equation 1 formulates the objective function of the autoencoder network as an 

L1-norm minimization problem:

minθ, ∅ExϵX x − De∅ Enθ x 1 , [1]

where, x is a batch of the data selected from dataset X. In general, putting constraints on 

the autoencoder, such as limiting the dimension of code space or adding regularization to 

the code space prevents them from learning a trivial identity mapping. In our problem, the 

code space has the same dimension as the input data. Therefore, a proper approach is to add 

a special regularizer to the code space to produce the motion-corrected images. Equation 2 

describes the objective function of the regularized autoencoder:

minθ, ∅ExϵX x − De∅ Enθ x 1 + βR Enθ x , [2]

where β is the tuning parameter for the regularizer. Such a regularizer needs to be capable 

of assessing the presence and extent of significant motion artifacts in the image and the 

regularizer needs to be differentiable. Although without access to paired data, an explicit 

form of the metrics to be used for such assessment may not exist, it can be learnt via 

the neural network. Such a neural network uses an adversarial loss to force the code 

space to be similar to the motion-free images. Figure 1(b) shows a graphical view of the 

proposed platform. As can be seen in the Figure 1(b), an adversarial objective is added to 

the conventional autoencoder structure to regularize the output of the encoder. The input 

of the encoder xϵX is the motion-corrupted image acquired during free breathing without 

any means of motion compensation. The output of the encoder z is one of the inputs of 

the discriminator network during network training. In addition, the discriminator has access 

to motion artifact-free images Y that are not necessarily paired with the input X for the 

encoder. Through the training process, the discriminator drives the encoder to correct motion 

artifact in such a way that the discriminator network is not able to distinguish between 

unpaired high-quality images acquired during breath-holds that are free of motion artifacts 

and the motion-corrected images generated by the encoder. Equation 3 shows the adversarial 

regularizer of the network:

minθEnmaxϑDi EyϵY logDiϑ y + ExϵX log 1 − Diϑ Enθ x , [3]

where ϑ and θ are the trainable parameters of the encoder and discriminator network. 

Equation 4 shows the full objective function of the entire proposed network with regularizer 

weight β = 1:
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minθ, ∅ExϵX( x − De∅ Enθ x 1) + minθEnmaxϑDi EyϵY logDiϑ y + ExϵX

log 1 − Diϑ Enθ x [4]

The first term in the Eq. 4 represents the reconstruction objective and it preserved the overall 

accuracy of the motion-corrected images with regard to anatomical structure and image 

content. The second term in Eq. 4 is the regularizer and its role is to force the encoder 

part to produce the images with similar appearance as motion-free images. The detailed 

network structure, including the layers and number of kernels, are shown in the Figure A1 

(Online Supplemental Materials). In our cardiac cine imaging validation, the input for the 

encoder was motion-corrupted free-breathing cardiac cine data acquired with a conventional 

k-space segmented cardiac cine imaging sequence during free breathing. The high-quality 

imaging data were obtained using standard clinical breath-held cardiac cine data from 

patients who underwent clinically indicated cardiac MRI. Because the proposed platform 

does not require paired data for training and can be trained in a self-supervised fashion, the 

high-quality breath-held data could be obtained from a cohort of subjects separate from the 

motion-corrupted data.

Training Procedures:

In the training phase, the autoencoder and the discriminator network were trained with 

Stochastic Gradient Descent (SGD) in two phases – the accuracy phase and the correction 

phase. In the accuracy phase, the autoencoder updates its encoder U-net and the decoder 

U-net to minimize the reconstruction error of the input. In the correction phase, the 

discriminator and the encoder U-net were trained in an adversarial manner, where the 

discriminator first updates its structure to distinguish between the high-quality cardiac cine 

data and the samples from the output of the encoder; subsequently, the encoder U-net 

was updated to produce images that are as similar as possible to the high-quality cardiac 

cine data. Both networks, autoencoder and the discriminator, were trained in an end-to-end 

fashion and updated in the training phase sequentially mini-batch after mini-batch. Our 

training algorithm is summarized in Table 1.

Relatively large image patch size of 128×128 was used as the input to the autoencoder 

network. Previous studies show that generation of large size image in an adversarial 

manner is difficult compared to smaller size i.e. 64×64, because larger image patch size 

generally makes it easier for the discriminator to differentiate between the images provided 

by the generator and the high-quality data43,44. Most stable adversarial training methods 

were based on 64×64 patch size51. In order to stabilize the adversarial training process, a 

Markovian-patch-based approach was used to train the correction phase network46. During 

the training process, the output of the encoder for each epoch was divided into 4 patches of 

size 64×64 and the discriminator either accepts or rejects the decision based on the average 

probability calculated for the 4 patches.

To update the weights of the correction (encoder + discriminator) and accuracy network 

(autoencoder), the Adam optimizer was used with the momentum parameter β =0.9, mini-

batch size= 64, and initial learning rate 0.0001 that is halved every 15,000 iterations. All 

the weights were initiated with random normal distributions with a variance of σ = 0.01 
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and mean μ=0. The first iteration was started by updating the accuracy network and for 

the second iteration, the decoder part was kept frozen with no updates while the correction 

network was updated. This process was continued and, in each epoch, we produced the 

test results to make decision for stopping criteria. The training was performed with the 

Tensorflow interface on a commercially available graphics processing unit (GPU) (NVIDIA 

Titan XP, 12GB RAM). We allowed 125 epochs that took approximately 11 hours for 

training.

Data Acquisitions

To evaluate the performance of the proposed neural network and demonstrate its utility, we 

tested our strategy for cardiac cine imaging. Our institutional review board approved the 

study, and each subject provided written informed consent. The datasets used to train and 

test our network consisted of three groups:

1. Free breathing 2D multi-slice, retrospective EKG-triggered, balanced steady 

state free precession (bSSFP) cardiac cine MR images in the short- and long-

axis views from 20 healthy volunteers (Avanto Fit, Siemens Healthineers). The 

sequence parameters included TR(repetition time)/TE(echo time)=42.45/1.19 

ms, FOV(field of view)=271 × 300 mm2, resolution= 1.74 × 1.92 mm2, 25 

cardiac phases, slice thickness=6 mm, 3–10 slices, acquisition time=8–12s. As 

the data were acquired using standard clinical cardiac cine imaging sequences 

but during free breathing, they were contaminated by respiratory motion 

artifacts. For comparison purposes, the same sequence was repeated during 

breath-hold for each healthy volunteer. The free-breathing acquisition time was 

similar to breath-hold.

2. Standard clinical breath-held 2D multi-slice, retrospective electrocardiogram 

(ECG)-triggered, bSSFP cardiac cine MR images in the short-axis, horizontal 

long-axis, and vertical long-axis views from 162 patients. These images were 

acquired as part of clinically indicated cardiac MRI scans and were collected 

retrospectively. These images were acquired during breath-holds, had 10–14 

slices (one slice per breath-hold of 8–12s), and were used as the high-quality 

imaging data for the adversarial network.

3. Standard ECG-triggered, bSSFP breath-held cardiac cine images in the short-

axis and horizontal long-axis views were acquired from 10 additional patients as 

part of their clinically indicated cardiac MRI examination. In addition, in each 

of the 10 patients, we performed the same cardiac cine imaging sequence during 

free-breathing.

Before the network was trained and tested during our in-vivo study, we performed a 

simulation study based on data from Group 2 with simulated rigid motion. The goal of the 

simulation study was to confirm our technique’s motion correction accuracy by commonly 

used metrics such as peak signal to noise ratio (PSNR) and structural similarity index 

(SSIM), which would not be possible for the in vivo study due to lack of ground truth data. 

More details of the simulation study are in the Evaluations section.
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For the in vivo network training and validation, we used 15 out of the 20 volunteers’ data 

from Group 1 and all of the breath-held cardiac cine imaging data from the 162 patients 

in Group 2. Our network training process was performed in an un-paired fashion. All the 

breath-held data from Groups 1&2 were shuffled randomly in each training batch before 

they were used as input data for the discriminator network. All the free-breathing data 

from Group 1 were randomly shuffled as well before they were used as input data for 

the autoencoder network. The anatomical orientation (short axis or long axis) was matched 

between the input data for the autoencoder and the input data for the discriminator network 

for each training batch. Our network testing was based on the remaining 5 volunteers’ data 

in Group 1 and all the data from Group 3.

To increase the flexibility of the network in correcting the motion artifact for arbitrary image 

sizes, our network was trained based on 128 × 128 patches extracted from the datasets. Each 

data set was reconstructed by applying adaptive coil combination to a single complex image 

and normalized to −1 to 1. Each single complex image was formatted as a real tensor with 

real and imaginary channels. In total, 125000 patches were used to train and validate the 

network and 25300 patches were used to test the network.

Evaluations

Evaluation of the network performance consisted of four main parts:

a. Motion Correction Accuracy:

One major concern is whether the reconstructed image is consistent with 

the breath-held reference. Due to the generative nature of the adversarial 

autoencoders, it is important to ensure motion accuracy with regard to structural 

and anatomical content. To evaluate the motion correction accuracy and confirm 

that the proposed platform is capable of correcting the motion-corrupted datasets 

in un-paired training process, a simulation study was conducted. 1D translational 

respiratory motion of the diaphragm with variable displacements ranging from 

10 to 20 pixels was introduced to corrupt the k-space data from Group 2 using 

a well-known relationship between k-space and the image space as shown in Eq. 

5, where the simulated translation vector is (x0, y0), M1 and M2 are the k-space 

data before and after motion corruption, respectively.

M2 kx, ky = e−j2π kxx0 + kyy0 × M1 kx, ky [5]

In our simulation, k-space of the Group 2 was divided into 16 segments. To 

find the diaphragm position for each segment, the respiratory signal was divided 

to 800-ms cardiac cycles and each cycle was divided into 20 cardiac segments. 

Inferior-superior diaphragm position was expressed as a function of time47 in Eq. 

6

y t = y0 − b[cos πt
T − φ ]

2n
, [6]
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where y0, y0 − b are the position of diaphragm during end-exhalation and end 

inhalation, T and φ are the period and initial phase of the respiratory cycle, and n 

controls the shape of the simulated motion curve. For average diaphragm motion 

as described in47, φ = 0 , n = 3, and T = 4sec were selected. Our simulated 

motion assumed that each pixel had an isotropic size of 1mm2, y0 = 5 and b 

varied from 10 to 20 pixels.

Figure 2(a) shows details of simulation process for an image with 256 phase-

encoding k-space lines. The respiratory cycle was divided into 5 cardiac cycles, 

where each cycle was further divided into 20 cardiac phases. In Figure 2(a), 

only the first cardiac phase in each cardiac cycle is shown as a dashed-rectangle. 

To simulate the motion-corrupted image, each data were divided to 16 k-space 

segments and each segment was multiplied by the phase term corresponding to 

its motion on the simulated motion curve shown in Fig. 2(a) according to Eq. 5.

In our simulation study, all clinical breath-held cine data in Group 2 were 

used to synthesize the motion corrupted datasets. Out of the 162 synthesized 

motion-corrupted data sets, 20 were randomly chosen as testing data and 

were excluded from the training process. The remaining 142 data sets were 

used to train the network in an unpaired manner. Figure 2 (b) shows an 

example of the synthesized images and artifacts. These images with synthesized 

artifact also enabled us to partially prove that our network does not produce 

extra structures. Assessment of motion correction accuracy was performed by 

calculating Tenengrad focus measure, PSNR and SSIM for the simulated test 

data on the image level.

b. Quantitative Sharpness: To quantify the sharpness of an image, the Tenengrad 

focus measure was used48,49. To calculate the Tenengrad focus measure, the 

image is convolved with a Sobel operator and the square of all the magnitudes 

greater than a threshold is reported as a focus measure. Equation 7 formulates the 

Tenengrad measure:

FTenengrad = ∑
i, j

I i, j ** S 2 + I i, j ** ST 2, [7]

where I i, j  shows the image and S is the Sobel operator: S =
1 0 −1
2 0 −2
1 0 −2

. Because 

of difference in the size of the test cases in both simulation and in-vivo studies, 

the mean of the Tenengrad measure without threshold was calculated and 

normalized based on the breath-hold value.

c. Subjective Image Quality Scoring: The motion-corrupted test data from the 5 

testing volunteer data sets in Group 1 and the 10 patient testing data sets in 

Group 3, their corresponding motion-corrected images after our network, and 

the corresponding breath-held reference cardiac cine images were randomized 

and presented to an experienced reader with >5 years of experience in reading 

clinical cardiac MRI who was blinded to the acquisition technique or patient 
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information. The reader scored each of the images, which were presented as 

cine movies, with regard to image quality with an emphasis on motion artifacts 

according to the criteria in Table A1 (Online Supplementary Materials)50,51.

d. Cardiac Function Analysis: Motion-corrected images were further evaluated with 

regard to indices of cardiac function measurements, including left ventricular 

end-diastolic volume (EDV), end systolic volume (ESV), stroke volume (SV), 

and ejection fraction (LVEF). These indices were measured from automatic 

segmentations of epicardial and endocardial left ventricular borders using a 

commercial tool (Arterys Cardio DL, Arterys Inc, San Francisco, CA). The 

cardiac function analysis was based on 5 of the test cases, which had full 

stack of short-axis-view images covering from the apex to the base. The same 

cardiac function measurements were repeated for the clinical standard breath-

hold cardiac cine images acquired on the same 5 subjects.

Statistical Analysis

Statistical analysis was performed using R (version 3.5.3). Statistical tests were applied on 

the subjective image quality scores to answer two main questions: 1) was there any statistical 

difference between the motion-corrected, breath-held, and motion-corrupted images? 2) 

If yes, among the mentioned groups, which pairs had statistically significant difference? 

To answer these questions, Friedman’s two-way analysis52,53 and non-parametric paired 

comparison tests were applied. Significance level for all statistical test was assumed at α = 

0.05.

RESULTS

Simulation Study

Figure 3 shows representative examples of artifact-free images, artificially motion-corrupted 

images, and motion-corrected images. Based on the absolute error map, the proposed 

network was able to sharpen the edge and remove the ghosting artifact without generating 

extra structures.

Figure 4 shows the frequency plot of SSIM and PSNR scores for the simulated test datasets. 

Mean value (green circles) and 95% confidence interval (black lines) were also added to the 

top of each chart. Based on the SSIM scores, the proposed network produced images that 

were structurally similar to the ground truth and increase the SSIM 22% in comparison 

to motion-corrupted images. Also, the PSNR results show that our motion correction 

network was able to reduce the residual errors and improve PSNR by 25% in comparison 

to motion-corrupted images. The normalized Tenengrad focus measure was 0.82±0.06 for 

the motion-corrupted images and 0.92±0.04 for the motion-corrected images, representing a 

12% increase using the proposed technique.

In Vivo Study

After validating the proposed method’s performance in correcting synthesized motion, the 

network was trained and tested based on in vivo motion-corrupted datasets. Throughout the 

training process, intermediate output in each epoch was exported to monitor the training 
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process. Figure 5 shows improvement in quality of the output image through the training 

process. After 5 epochs, the outputs were blurry and had substantial artifacts, which would 

easily enable the discriminator network to classify unequivocally as fake images. However, 

as the training went on, the image quality of the encoder output was progressively improved. 

After 125 epochs, the quality of the images was sufficiently high for the discriminator to 

label them as real images.

Figure 6 shows representative images from two test volunteers’ data. The motion-corrected 

image (column b) reduced the motion artifact from the motion-corrupted image (column c) 

and provided visually sharper images at the interventricular septum and better visualization 

of the heart and adjacent structures. Residual minor blurring still exists for smaller 

structures, however.

Figure 7 shows representative examples of breath-held cine (a), motion-corrected free-

breathing cine (b), and motion-corrupted free-breathing (c) images from a patient who 

underwent a clinically indicated cardiac MRI exam. The network was able to eliminate the 

motion artifact seen at the left ventricular myocardium and the right ventricle. The motion-

corrected images overall resemble the breath-held cine images. Supporting videos S2 (S2-1, 

S2-2, S2-3) provide 3 cardiac cine movie examples for motion-corrupted, motion-corrected 

and breath-held data. The normalized Tenengrad focus measure was 0.86±0.13 for the 

motion-corrupted images and 0.92±0.11 for the motion-corrected images, which represent a 

7% increase using the proposed motion correction network.

Figure 8 shows Bland-Altman plots of the left ventricular SV, ESV, EDV, and LVEF for 

the cardiac functional analysis. The cardiac function parameters calculated based on our 

motion-corrected images were in good agreement with standard breath-hold images.

Figure 9(a) summarizes image quality scores. To identify any statistically significant 

difference in the overall image quality of breath-held cine, motion-corrected, and motion-

corrupted groups, the null hypothesis assumed that the rank distribution of groups is the 

same. The null hypothesis was rejected significantly (P < 0.05) by applying Friedman’s two-

way analysis on the rank scores of different groups. Figure 9(b) reports paired comparisons 

between the mentioned groups. As can be seen, there was no statistically significant 

difference between the qualitative scores of motion-corrected and breath-held groups. Due 

to the statistically significant difference between the scores of motion-corrected and motion 

corrupted groups as highlighted by yellow edge, we conclude that the proposed method, 

increases the overall image quality of the motion-corrupted images.

DISCUSSION

We proposed a deep learning-based method to reduce respiratory motion artifacts and 

tested it for free-breathing cardiac cine imaging. The proposed method was evaluated in 

terms of SSIM, PSNR, image sharpness score and subjective image quality. We showed 

that our adversarial autoencoder technique can effectively reduce or eliminate blurring and 

ghosting artifacts associated with respiratory motion while enabling free-breathing scanning. 

Using an adversarial autoencoder neural network in the proposed scheme has several 
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advantages over the conditional generative adversarial networks for motion correction. First, 

the network does not require paired data because network training can be performed in 

a self-supervised manner. Second, image data consistency and anatomical accuracy was 

enforced implicitly in training process using an autoencoder network to ensure the motion-

corrected image retains the important anatomical and structural content of the image. It is 

worth noting that the data consistency and anatomical accuracy may be enforced explicitly 

if the process of non-rigid motion-corruption is well-defined mathematically or if we had 

access to strictly paired motion-corrupted/motion-free data.

In medical imaging applications, acquiring large amounts of paired data for motion 

correction tasks can be highly challenging and time consuming. Other approaches, such 

as conditional GANs, usually use L1 or perceptual loss functions for the generator network, 

which requires paired data to stabilize the training process. In our adversarial autoencoder, 

the autoencoder path preserves the overall structural content accuracy, which is mandatory 

for medical imaging applications; while the adversarial path forces the encoder network to 

correct the motion artifacts in the images.

Typical motion-induced effects in MRI include blurring, ghosting, regional signal loss, and 

appearance of other unphysical signals54. Based on the quantitative sharpness analysis, 

the proposed method was able to increase the sharpness score in the simulation study by 

12% and in the in-vivo study by 7%. It seems that there is a drop in the improvement of 

the sharpness score from the simulation study to the in-vivo study. It may be explained 

by considering the difference between the simulation and the in-vivo study. Realistically, 

motion corruption for Cartesian cine images under free breathing tends to cause more 

ghosting effect than blurring. Therefore, baseline normalized Tenengrad focus measure is 

expected to be higher for the real motion affected images than the simulated motion affected 

images, which was predominantly blurred by the simulated motion.

Two important concerns for our type of technique are: 1) whether the pathologies were 

preserved in the proposed motion correction network; 2) whether our adversarial-based 

network introduced new spurious anatomical features in the images. Based on our expert 

radiologist’s evaluation of 3 test set images, we did not find any cases where any of these 

two scenarios occurred. However, we caution that larger scale evaluations in future studies 

are clearly warranted before a definitive conclusion can be made.

One of the innovations of this work with regard to the network architecture is that we used 

convolutional U-Nets for the Encoder and Decoder. In other commonly used autoencoders, 

the code space is often of smaller dimension/size compared to the input. However, for 

our application, the code space is the motion-corrected image and needs to have exactly 

the same size as the input images. Therefore, both the encoder and decoder parts of the 

autoencoder need to be networks that produce an output that is of the same size as the input. 

Convolutional U-Net has this desirable property. We note that there are many other potential 

network structures that also have this property (input size = output size), residual networks 

and dense networks being just two examples. However, several nice characteristics of U-Net 

made it a suitable choice: 1) It covers a large receptive field without increasing the depth of 

the network. 2) It is able to extract the features in multi-scale levels of the resolution. 3) The 
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dense connections between the different levels of the U-Net make its training process very 

stable and effective.

Several further enhancements of the network may help improve its performance. First, we 

did not exploit all available information in MR data. Exploiting the multi-channel data as 

well as acquisition details could increase the capability of the network to correct respiratory 

motion artifacts. Several conventional motion correction methods identify k-space data that 

are corrupted by motion, often by leveraging redundant k-space signal afforded by multiple 

receiver coils55,56. The proposed technique operates more in the image space. The input data 

are motion-corrupted images that have already been reconstructed from motion-corrupted 

k-space. Therefore, our approach is fundamentally different from the aforementioned 

methods. As is with many other types of deep neural networks, our technique cannot be 

mathematically fully understood in analytical forms. We speculate that our network relies 

on learning and recognizing the underlying patterns of motion artifacts that are typically 

present in a free-breathing scan in order to improve the image quality and remove motion 

contamination. We expect our approach could be applied in tandem after conventional 

motion correction methods are finished to remove any residual motion artifacts. Second, 

we focused on correcting motion under normal free breathing condition. The performance 

of our technique in the presence of deeper than normal breathing remains to be evaluated. 

Using prior information about the characteristics of the motion may constrain the degrees of 

motion and correct the motion more effectively. For example, incorporating the respiratory 

bellows signal could afford us extra information about the motion-corrupted k-space lines. 

This extra information could enable us to incorporate the explicit data consistency term 

in the network, which could further improve the performance of our technique. Third, our 

platform is a 2D network, which performs correction in-plane. For through-plane motion, 

implementing a 3D adversarial autoencoder may be considered. Fourth, we did not take into 

account the differences in image FOV between the training data and the testing data when 

training the network. Therefore, motion correction capability of our network for arbitrary 

FOV should be investigated. Fifth, we did not compare our method with other free-breathing 

imaging methods, such as self-gated and real-time imaging. Such a comparison is clearly 

warranted in future studies.

Our study has limitations. It is possible that our technique might not fully remove any 

motion-related artifacts in our image. A larger study with more clinical validation is clearly 

needed. For future work, focusing on data augmentation may be very beneficial if we 

could realistically simulate in vivo motion patterns and their associated MR signal, which 

is currently challenging. In the absence of this, an alternate approach is to use unpaired 

high-quality data to train an adversarial autoencoder network.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Various structures of the autoencoder: a) A simple autoencoder which encodes the high 

dimensional inputs into the code space data, which is usually of substantially reduced 

dimensions, by applying a series of convolutional layers. The decoder recovers the same 

input data from the code space data. b) An adversarial autoencoder (AAE) combines 

a simple autoencoder with an adversarial regularizer called discriminator to the code 

space. The discriminator is trained with the goal of accurately differentiating between data 

generated for the code space of the autoencoder and the data from the external data source 

Y. The adversarial autoencoder is trained with the goal of generating the code space data 

that resemble the external source data Y. The end result of the AAE network is that the code 

space data are driven to represent the external data source as much as possible during the 

adversarial (and competing) training processes between the encoder part of the autoencoder 

and the discriminator. In the context of our motion correction work using AAE, the encoder 

and decoder networks are each a convolutional U-net, the input x of the autoencoder is 

a free-breathing motion-corrupted image, the code space data is the corresponding motion-

corrected image of the same dimensions, and the external data source Y is unpaired standard 

breath-hold motion-free reference images. The code space is driven by the discriminator 

network to be motion-corrected images such that they resemble the motion-free images from 

the external source Y. More details about the structure of our network are included in Figure 

A1.
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Figure 2. 
Motion simulation process of the Simulation Study. a) respiratory motion pattern and 

corruption process. Each k-space line is intentionally corrupted by adding a signal phase 

term that corresponds to the simulated motion distance for the line. b) (From top to bottom) 

Sample of the original motion-free image, the synthesized respiratory motion-corrupted 

image, and the error map between them.
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Figure 3. 
Motion accuracy simulation study results. Columns a, b, and c are the ground truth, motion-

corrected, and synthetically motion-corrupted images. Absolute error map between ground 

truth and the motion-corrected/motion-corrupted images are shown in columns d and e, 

respectively. The first row shows an example for the vertical long-axis view, the second row 

presents a horizontal long-axis view, and the third row represents the short-axis view.
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Figure 4. 
Quantitative simulation analysis. SSIM and PSNR, common metrics for image evaluation, 

were calculated for the simulated motion-corrupted data sets (bottom row) and motion-

corrected images (top row). Both scores were reported by frequency plot and 95% of 

confidence interval. Mean values are shown with green circles; 95% of confidence intervals 

are depicted by black lines.
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Figure 5. 
Image quality of the encoder output image with respect to the number of training epochs. As 

the training progresses, the image quality increases steadily.
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Figure 6. 
Representative images in the short-axis view, and vertical long-axis view from two volunteer 

subjects. Columns a, b, and c show the breath-held cine, motion-corrected free-breathing 

cine, and motion-corrupted free-breathing cine images, respectively. Green arrows highlight 

structures that were recovered completely by the network. Red arrows point to regions of 

residual blurring.
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Figure 7. 
Representative cardiac cine images from a testing data acquired on a patient. Columns 

a, b, and c show standard clinical breath-held cine, the motion-corrected cine based on 

free-breathing data, and motion-corrupted cine data, respectively. White arrows show that 

the left ventricle region is significantly affected by motion artifacts and these artifacts were 

removed by the proposed network.
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Figure 8. 
Functional analysis: Left ventricular endocardial borders are automatically segmented to 

compute stroke volume (SV), end-systolic volume (ESV), end-diastolic volume (EDV), and 

ejection fraction (LVEF) for 5 test cases. Bland-Altman plots confirm that there is agreement 

with 95% confidential level between functional metrics measured from breath-hold free of 

the motion images and motion-corrected images.
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Figure 9. 
Blinded overall image quality reading and non-parametric paired comparison. (a) Frequency 

of overall image quality scores for each group. (b) Results from non-parametric paired 

comparisons. Statistically significant differences between pairs are highlighted by yellow 

lines.
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Table 1.

Training algorithm: De(.), En(.), and Di(.) stands for the Decoder, Encoder, and Discriminator, respectively. 

First two lines belong to the accuracy phase of the training process and the remaining lines belong to the 

correction phase.

Algorithm 1 Minibatch stochastic gradient descent training of adversarial autoencoder network.

For number of training iterations do:
 • Sample minibatch of m motion corrupted examples 

{x1, x2… xm}
from motion-corrupted set 
X
.
 • Update the Encoder and the Decoder by ascending its stochastic gradient:

  

∇θEn, ∅De
1
m ∑i = 1

m xi − De(En xi ) 1

 • Sample minibatch of m motion corrupted examples 

{x1, x2… xm}
from motion-corrupted set 
X
.
 • Sample minibatch of m breath-hold examples 

{y1, y2… ym}
from motion-free set 
Y
.
 • Update the discriminator by ascending its stochastic gradient:

  

∇ϑDi
1
m ∑i = 1

m logDi yi + log(1 − Di En xi )
 • Sample minibatch of m motion corrupted examples 

{x1, x2… xm}
from motion-corrupted set 
X
.
 • Update the Encoder by descending its stochastic gradient:

  

∇θEn
1
m ∑i = 1

m log(1 − Di En xi )
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