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SUMMARY

Lymphocytes are key for immune surveillance of tumors, but our understanding of the spatial 

organization and physical interactions that facilitate lymphocyte anti-cancer functions is limited. 

We used multiplexed imaging, quantitative spatial analysis, and machine learning to create 

high-definition maps of lung tumors from a Kras/Trp53-mutant mouse model and human 

resections. Networks of interacting lymphocytes (‘lymphonets’) emerged as a distinctive feature 

of the anti-cancer immune response. Lymphonets nucleated from small T cell clusters and 

incorporated B cells with increasing size. CXCR3-mediated trafficking modulated lymphonet 

size and number, but T cell antigen expression directed intratumoral localization. Lymphonets 

preferentially harbored TCF1+ PD-1+ progenitor CD8+ T cells involved in responses to immune 

checkpoint blockade (ICB) therapy. Upon treatment of mice with ICB or an antigen-targeted 

vaccine, lymphonets retained progenitor and gained cytotoxic CD8+ T cell populations, likely 

via progenitor differentiation. These data show that lymphonets create a spatial environment 

supportive of CD8+ T cell anti-tumor responses.

eTOC Blurb

Gaglia et al. find striking changes in the spatial arrangement of immune cells in response to 

tumor antigens. T and B cells are recruited in lymphocyte networks (‘lymphonets’), which 

contain progenitor T cells. After immunotherapy, lymphonets gain cytotoxic T cells, likely due 

to progenitor cell differentiation and activation in this distinct immune environment.

Graphical Abstract
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INTRODUCTION

During cancer progression, immune cells proliferate, migrate, and adapt in an attempt to 

impede tumor spread1,2. Tumor cells respond by inducing programs that suppress immune 

cell function3. Detailed characterization of the functional states of immune cells and their 

spatial organization relative to tumor cells is therefore needed to identify the features of 

anti-tumor immunity4,5. One way to accomplish this is using highly multiplexed spatial 

profiling, a set of analytical methods and computational approaches that provide quantitative 

descriptions of the i) identities and molecular characteristics of immune, tumor, and stromal 

cells, ii) physical and chemical factors that influence the spatial organization of these cell 

types, and iii) changes in spatial features of over time and space that constitute tumor 

responses to therapy6–8.

The Kras/Trp53-mutant (KP) lung adenocarcinoma model, which includes several variants, 

is prototypical of genetically engineered mouse models (GEMMs) of cancer having many 

of the features of human tumors. In this model, tumorigenesis is synchronously initiated 

in multiple cells by intratracheal delivery of lentivirus-encoded Cre recombinase into 

KrasLSL-G12D/+; Trp53fl/fl animals9,10. This gives rise to ~10–15 tumor nodules per 2-

dimensional lung cross-section and progression from hyperplasia to adenocarcinoma occurs 

over the course of 1–5 months. Because these tumors have low rates of somatic mutations, 

they are not highly immunogenic11. To overcome this, T cell antigens are introduced by 

way of the tumor-initiating lentiviruses. In the LucOS variant of the KP model, two model 

Gaglia et al. Page 3

Cancer Cell. Author manuscript; available in PMC 2023 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CD8+ T cell antigens, the SIINFEKL (SIIN) epitope from chicken ovalbumin and the 

synthetic peptide SIYRYYGL (SIY), are expressed as a fusion to luciferase in tumor cells12. 

Conventional single-marker immunohistochemistry (IHC) analysis of tumor-bearing lung 

tissue from KP-LucOS versus control (KP-Cre) mice has shown that expression of tumor-

specific LucOS antigens substantially increases the number of CD8+ T cells infiltrating 

tumors. However, despite this engagement of immunosurveillance mechanisms, tumor 

growth rebounds within weeks with a concomitant decline in the CD8+ T cell response12.

While dissociative single-cell methods like scRNA-seq, CYTOF, and FACS can provide 

deep insight into tumorigenesis and immunosurveillance in GEMMs13, these methods 

lack information on cell-cell interactions and locations of cell populations. Conventional 

histology and IHC provide positional information, however, they do not supply the detailed 

molecular information needed to identify and phenotype cells precisely.

Here, we used multiplexed tissue imaging to characterize spatial features of tumor-immune 

interactions in KP-LucOS lung tumors, including when chemokine-mediated trafficking 

was modulated, and after treatment with antigen-targeted vaccine or immune checkpoint 

blockade (ICB). This study establishes generally useful methods for spatial analysis 

of GEMMs and identifies lymphocyte networks (lymphonets) which harbor stem-like 

progenitor CD8 T cells as components of functional T cell responses in early tumor lesions 

and following immunotherapy.

RESULTS

Spatial analysis of KP GEMM tumor-immune microenvironment by multimodal data 
integration

To generate high-content spatial maps of tumor and immune-cell interactions in KP-lung 

tumors under multiple biologically informative conditions, KP mice were exposed to 

different tumor-initiating lentiviruses via intratracheal delivery and treated with immune 

therapies (Fig. 1A). Six to nine weeks after tumor initiation, H&E staining, mRNA in situ 
hybridization (ISH) and 24-plex CyCIF14 (Table S1) were performed on serial whole-slide 

sections (~1cm2) of formalin-fixed, paraffin-embedded (FFPE) tissue containing 2 or 3 lung 

lobes. Histopathological annotation of H&E images provided data on the position of tumor 

nodules and normal anatomic structures, including medium-large airways and blood vessels 

(Fig. S1A). RNA in situ hybridization (ISH) provided information on critical chemokines 

(e.g., Cxcl9, Cxcl10) that are difficult to image in tissues using antibodies. For CyCIF, a 

24-plex antibody panel was developed that included lineage-specific transcription factors 

such as NKX2–1 (TTF-1) and intermediate filament protein pan-cytokeratin (Pan-CK), both 

markers of epithelial/tumor cells, and vimentin (VIM), a marker of mesenchymal cells, as 

well as markers expressed on specific lymphoid and myeloid cells (CD45, CD3e, B220, 

NKp46, CD11b, CD11c, Ly6G, CD103) (Figs. 1B–1D, S1B). These immune markers made 

it possible to delineate cell types with increasing depth, separating lymphoid and myeloid 

lineages, and subdividing them into T cell, B cell, natural killer (NK) cell, neutrophil, 

CD103+ dendritic cell (DC), alveolar macrophage, and tumor-associated macrophage (TAM) 

populations (Fig. 1D; see Fig. S1C for cell-type classification dendrogram). Additional 

markers (CD4, CD8, FOXP3) made it possible to distinguish T helper (Th), T cytotoxic 
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(Tc), and T regulatory (Treg) cell populations, and functional markers were used to define 

the states of these cells with respect to Ki67 positivity (proliferation), cytotoxicity markers 

(granzyme B, GZMB; perforin, PRF), the presence of immune inhibitory receptors PD-1 and 

TIM-3, and expression of the T cell transcription factor (TCF1), a key regulator of T cell 

function and differentiation (Figs. 1C–1D, S1C).

The resulting data were analyzed using several computational approaches. For CyCIF, 

images were stitched and registered and then segmented to identify single cells (typically 

~1–5×105 cells per sample/mouse) and staining intensities quantified at a single-cell level; 

for mRNA ISH, foci were identified, their densities quantified, and data registered to 

CyCIF images from serial sections. Distance metrics were used to characterize cell positions 

relative to boundaries between tumor nodules and non-neoplastic lung tissue (‘tumor edge’) 

and blood vessels (Fig. 1B). Single cell positions were used to identify interacting cells in 

physical proximity and to create ‘graphs’ of interacting cell “networks” (Fig. 1B).

Tumor-antigen expression reorganizes the immune landscape in KP-lung cancer

We first profiled immune responses triggered by the LucOS CD8+ T cell antigens 8 weeks 

after lentiviral infection, a timepoint that represents a transition between a functional 

and dysfunctional CD8+ T cell response12,15,16. The tumor burden in LucOS mice was 

significantly lower than Cre mice (Fig. 2A, Table S2), however, the presence in LucOS mice 

of immunogenic SIIN and SIY CD8+ T cell antigens resulted in only modest differences 

in immune cell composition when lung tissue was examined as a whole (both tumor and 

non-tumor compartments together). For example, the numbers of neutrophils and B cells 

were slightly higher in LucOS whole lungs as compared to Cre lungs, and Treg cells and 

CD103+ DCs were slightly lower, but these differences did not reach statistical significance 

(Figs. 2B–2D, S2A–S2C).

By contrast, when tumor areas were examined separately from non-neoplastic areas, the 

density of all lymphocyte subsets (Tc, Th, Treg, B cells) was significantly higher in 

LucOS tumors as compared to Cre tumors, increasing 3.3 to 8-fold (Figs. 2B–2D, S2A–

S2C). Increased infiltration in LucOS tumors was observed even for Treg cells that were 

less abundant in LucOS as compared to Cre lung as a whole (>3-fold higher in LucOS 

versus Cre tumors) (Fig. 2D). Both NK (myeloid lineage marker-defined, see Fig. S1C) 

and CD103+ DCs were also significantly increased within LucOS tumors but not in 

whole-lung tissues (Figs. 2C–2D,S2D). Notably, the ratio of Tc cells to Treg cells was 

significantly increased in LucOS tumors (5.8-fold; this was also true, to a lesser extent in 

non-tumor tissue) (Fig. S2E); a higher ratio is a hallmark of a more immune-permissive 

tumor microenvironment (TME)17. Additionally, Tc cells inside tumors were enriched for 

expression of the cytotoxicity-associated marker Prf and the inhibitory receptors PD-1 

and TIM-3, suggestive of a greater functional antitumor response moving toward T cell 

exhaustion (Fig. 2E). Flow cytometry analysis of T cell populations from dissociated 

tumor-bearing lung lobes from the same mice was consistent with the whole-lung area 

analysis rather than the tumor-area analysis; no significant changes in Tc, Th or Treg 

populations were observed, though trends toward increased Tc cells and decreased Treg cells 

resulted in an increased Tc/Treg ratio (Fig. S2F). Thus, enumeration of T cell populations 
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by dissociative techniques does not fully capture the tumor-specific changes evident by 

high-plex tissue imaging.

To investigate the effects of LucOS-antigen expression on the spatial distribution of 

immune cells relative to blood vessels and the tumor margin, we combined CyCIF with 

anatomical annotations from H&E images (Figs. 2F, S1A). In both Cre and LucOS samples, 

we observed immune cell accumulation near blood vessels. LucOS mice had a greater 

accumulation of B cells, Tc cells and neutrophils whereas Cre tumors had more Treg cells, 

CD103+ DCs and alveolar macrophages (Figs. 2G, S2G). Lymphocytes in Cre animals 

were excluded from tumors, whereas in LucOS animals, the lymphocytes breached the 

tumor boundary and infiltrated into the tumor (Figs. 2B, 2G–2H). Moreover, the degree 

of infiltration by different types of lymphocytes (B, CD4+ Th, CD8+ Tc, Treg cells) was 

highly positively correlated in individual tumor nodules (Fig. 2I), suggesting coordinated 

infiltration into tumors. By contrast, most types of myeloid cells were evenly distributed in 

the normal lung tissue, without evidence of perivascular accumulation. Myeloid cells were 

more abundant at the tumor margin but did not infiltrate into tumors in either Cre or LucOS 

mice with the exception of dendritic cells, which readily infiltrated the tumor in the LucOS 

model with spatial patterns similar to those of lymphocytes (Figs. 2D, 2H–2I). Tumor 

exclusion was particularly evident in the case of neutrophils, which were substantially more 

abundant in LucOS than Cre lungs (Fig. 2H).

Antigen expression is associated with intratumoral localization of lymphocyte networks 
(‘lymphonets’)

The co-occurrence of different types of lymphocytes in LucOS tumors (Fig. 2I) prompted 

us to look for evidence of cell-cell interactions among lymphocytes. We applied the 

Visinity method recently developed by our group18 to interactively identify and quantify 

spatial arrangements among cells in whole-slide tissue images (see STAR Methods). This 

method organizes cells into a 2-dimensional embedding based on the cell types within a 

neighborhood of defined diameter (50μm); cells close to each other in this representation 

are surrounded by similar cell types (Fig. 3A). When applied to the ~2.6 million cells 

in the combined datasets from Cre and LucOS mouse lungs, the shared embedding space 

revealed a clear separation of neighborhood composition in both normal lung and tumor 

(Figs. S3A–S3C). The lymphoid population accumulated in two areas of the plot (clusters), 

at the intersection of normal and tumor neighborhoods and encompassed both B and T cells 

(Figs. 3B, S3A–S3C), quantitatively demonstrating the spatial coordination of lymphocytes 

within cellular neighborhoods.

To characterize these T and B cell clusters, we generated graphs of cell-cell interactions 

by performing Delaunay Triangulation19,20 on each specimen individually (Figs. 3C–3D); 

Delaunay Triangulation identifies networks of cells that directly contact each other. We 

identified lymphocyte cell-cell networks that ranged from small clusters of <10 lymphocytes 

to >100 lymphocytes that were in direct contact (Figs. 3C–3D; Fig. 3D shows examples of 

lymphonets ranging in size from 8 to 204 cells). Across Cre and LucOS mice, a minority of 

lymphocytes were organized into lymphonets using as a cutoff ≥6 lymphocytes connected by 

direct cell-cell contacts (mean 15.5±6.8%sd of total lymphocytes present in lymphonets, Fig. 
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S3D). We detected an average of ~77 lymphonets per mouse lung lobe with an average of 

17 cells/network. Analysis of lymphonet composition showed that Th and B cells were the 

most common structural elements; >50% of individual lymphonets had a majority of either 

Th or B cells (31 and 23%, respectively) in contrast to 2% of lymphonets comprised of a 

majority of Tc cells or 8% of majority Treg cells (Fig. S3E). The fraction of B and T cells 

was strongly correlated with lymphonet size; small lymphonets were enriched in T cells and 

large lymphonets in B cells (Fig. 3E). Notably, lymphonets having <16 cells were almost 

exclusively composed of T cells and the frequency of B cells increased linearly after this 

threshold (Fig. 3F). This relationship between network size and cell composition suggests 

that lymphonets nucleate from a core of T cells and subsequently grow by recruiting B cells.

The overall number and size of lymphonets increased in a tumor-dependent manner (P Cre/

LucOS vs KP Cre), but did not change substantially with LucOS antigen expression (KP 

Cre vs KP LucOS) across the lung tissues (Figs. 3G–3H, S3F–S3G). Lymphonet number 

(but not size) was correlated with tumor burden in Cre mice, but not LucOS mice (Figs. 

S3H–S3I). This suggests that tumors and lymphonets develop in concert in the absence 

of tumor-antigen expression. The composition of lymphonets in LucOS versus Cre mice 

differed substantially, with LucOS lymphonets containing significantly more Tc cells and 

significantly fewer Tregs as compared to lymphonets in Cre lungs (Fig. 3I). Analysis of 

myeloid populations showed that CD103+ DCs were more proximal to lymphonets and 

interacted more frequently with lymphonets than other myeloid subtypes in both LucOS and 

Cre mice (Figs. S3J–S3K). Thus, CD103+ DCs may play a role in lymphonet formation or 

maintenance, likely through their function as antigen presenting cells. In addition, LucOS 

antigen expression dramatically relocalized lymphonets relative to histopathological features 

(Fig. 3J): in LucOS lungs, the majority of lymphonets were located inside tumors whereas 

in Cre mice most lymphonets were located outside of tumors, with a substantial fraction 

residing within 20 μm of a major blood vessel (Fig. 3J). These findings reveal a strong 

correlation between T cell antigen expression and lymphonet formation inside tumors.

To investigate temporal control over lymphonet composition, we compared lymphonets from 

6-week and 9-week LucOS mice. We found that lymphonet size increased significantly 

over time and there was also a trend toward increased number (Fig. S3L). Interestingly, 

the composition of lymphonets was largely unchanged, with similar proportions of Th, 

Treg, and B cells at both timepoints (Figs. S3M–S3N). As observed previously (Figs. 3E–

3F) small lymphonets were predominantly composed of Th cells and large lymphonets 

were predominantly composed of B cells (Fig. S3N). Notably, the proportion of Tc cells 

decreased significantly from 6 to 9 weeks (Figs. S3M–S3N), which may reflect contraction 

of the Tc compartment that occurs between these timepoints12,15,16. Altogether, our findings 

suggest lymphonet composition in LucOS mice is determined by lymphonet size rather than 

tumor size or tumor age.

CXCR3 ligands modulate lymphonet formation and size but not intratumoral localization

The recruitment of activated Th and Tc cells to the TME is mediated in part by binding of 

the CXCL9 and CXCL10 chemokines (and also CXCL11 in human) to CXCR3 receptors on 

T cells21,22. Given that small lymphonets predominantly contained T cells (Figs. 3E–3F), we 
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hypothesized that CXCR3-mediated recruitment of T cells might contribute to lymphonet 

nucleation. Because Cxcl9 and Cxcl10 levels are tightly controlled at a transcriptional 

level23, and antibodies suitable for imaging these cytokines in tissue are unavailable, we 

measured cytokine distribution using RNA ISH (Figs. 1A–1B, 4A). In total, the levels of 

Cxcl9 and Cxcl10 mRNA in lung tissue were modestly increased in LucOS compared 

with Cre mice (changes were not statistically significant; Fig. 4B). Cxcl9 and Cxcl10 were 

expressed across multiple cell types in both LucOS and Cre samples and were expressed 

in a higher proportion of T cells, CD103+ DCs, TAMs and epithelial cells in LucOS 

mice (Figs. S4A–S4B). In LucOS (but not Cre) mice, Cxcl9 expression was strongly 

localized within tumors (Fig. S4C–S4D). Compared with Cre mice, B and T cells were 

localized closer to the Cxcl9 and Cxcl10-positive cells in LucOS mice (Fig. 4C) and these 

immune populations were predominantly present within lymphonets (Fig. 4D). Overall, 

the likelihood of lymphocytes belonging to lymphonets was negatively correlated with the 

distance to the closest Cxcl9 or Cxcl10-positive cell (i.e., lymphocytes are more likely to be 

networked when they are closer to Cxcl9/10-expressing cells) (Fig. 4E). Thus, lymphonets 

are spatially correlated with chemokine expression in LucOS mice.

To test whether CXCR3 ligands promote lymphonet formation, we used CRISPR-activation 

to ectopically express Cxcl10 in KP-Cre tumors (Fig. 4F), resulting in a 38-fold induction of 

Cxcl10 mRNA levels (Figs. 4G–4H). Concomitantly lymphonet number and size increased 

significantly (Figs. 4I–4J) and involved recruitment of B cells and all T cell subsets (Fig. 

4K). Lymphonets were more proximal to blood vessels in mice over-expressing Cxcl10 
compared to control mice but remained excluded from the inside of tumors (Fig. S4E). 

These data show that expression of Cxcl10 in the TME can promote formation and growth 

of lymphonets but that additional antigen-dependent mechanisms are required for lymphonet 

localization to tumors.

Spatial analysis reveals dynamic shifts in Tc cell states with immunotherapy treatments

To investigate the role of lymphonets in anti-tumor Tc responses, we first assayed Tc 

differentiation states and functional potential using markers associated with cytotoxicity 

(GZMB, PRF) and proliferation (Ki67), inhibitory receptors (PD-1, TIM-3), and the 

transcription factor TCF1. LucOS mice were exposed to one of two immunotherapy 

regimens previously shown to improve the anti-tumor functionality of the Tc response15: 

(i) therapeutic vaccination (Vax) against SIIN and SIY antigens, and (ii) antibody-mediated 

PD-1/CTLA-4 immune checkpoint blockade (ICB) (Fig. S5A). For vaccination, LucOS 

mice were injected subcutaneously with SIIN and SIY 30-mer peptides and cyclic-di-GMP 

as an adjuvant 6 weeks post-tumor initiation followed by a booster at 8 weeks; mice were 

sacrificed at 9 weeks for analysis. Vax treatment resulted in a significant reduction of tumor 

burden (Fig. S5B;15). For ICB therapy, a mixture of anti-PD-1 and anti-CTLA-4 antibodies 

or isotype controls were administered by intraperitoneal injection starting 8-weeks post-

tumor initiation (three doses spaced 3-days apart: day 0, 3, 6) and mice were then sacrificed, 

also 9 weeks after tumor initiation. Anti-PD-1 and anti-CTLA-4 ICB treatment is not known 

to result in a significant reduction in tumor burden in this model (Fig. S5C), but has been 

shown to increase tumor-specific effector Tc activity and synergize with chemotherapy15,24.
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The resulting data were analyzed using Palantir, an algorithm that uses multidimensional 

expression data to align single cells along differentiation trajectories, thereby capturing 

continuity in cell states and stochasticity in cell-fate determination25. Three predominant 

CD8 T cell states (S1 to S3, Figs. 5A, S5D) were identified in both Vax and ICB mice 

and gated using a supervised approach typical of FACS data analysis (see STAR Methods). 

Phenotypic markers used here do not empirically demonstrate cell functionality but are 

suggestive of differentiation state and potential activity of Tc cell subsets. State S1 had high 

levels of TCF1 expression and no expression of markers of activation/exhaustion (PD-1, 

TIM-3) or cytotoxicity (GZMB, PRF) and therefore corresponded to a naïve T cell state 

(Figs. 5B, S5E). S2 had high expression of GZMB and/or PRF and the proliferation marker 

Ki67, indicative of a proliferative, cytotoxic T cell state. S3 had low expression of GZMB, 

PRF, and Ki67 and high expression of inhibitory receptors PD-1 and TIM-3, denoting an 

exhausted T cell state. The three discrete states we identified were interconnected by cells 

– about one-third of the total – having transitional phenotypes (T1, T2, T3) in which the 

expression of multiple markers was graded and mixed (Figs. 5A–5B, S5D–S5E).

Using this division of cell types and states, we examined shifts in Tc phenotype induced by 

the two immunotherapy regimens. In the untreated LucOS cohorts, the majority of Tc cells 

were naïve (S1), but Vax and ICB protocols shifted cells into cytotoxic (S2) and exhausted 

(S3) states (Figs. 5C, S5F). In the Vax cohort, the cytotoxic (S2) population split into two 

groups distinguished by levels of PD-1 and TIM-3 expression (S2A and S2B in Figs. 5A–

5C): the S2A state had low PD-1/TIM-3 expression and appeared to have greater cytotoxic 

potential, expressing high levels of both GZMB and PRF whereas cells in the S2B state 

expressed high levels of PD-1/TIM-3 cells and lower levels of GZMB. In the phenotypic 

landscape, cells in the S2B state were adjacent to the exhausted (S3) population, suggesting 

S2B may represent a cell state directly preceding exhaustion/dysfunction. In the ICB cohort, 

the S2 state did not split and resembled the PD-1/TIM-3high GZMBlow state of S2B Vax 

cells (Figs. S5D–S5F). These data suggest that Vax is substantially more effective than ICB 

in generating cytotoxic and proliferative effector T cell states.

Functionally distinct Tc cell states are spatially segregated in the tumor microenvironment

To characterize the spatial distribution of Tc states relative to tumor cells, we split the 

Palantir phenotypic landscape depending on whether immune cells (i) resided inside tumors, 

(ii) were proximal to the edge of tumors (<50μm of an edge), or (iii) were distal to 

tumors (>50μm away from edges) (Figs. 5D–5E, S5G–S5I). Strikingly, we found that the 

proliferative/cytotoxic S2A state, which was unique to Vax mice, was found distal to tumors 

(Figs. 5D–5E), whereas the cytotoxic/early-exhausted S2B (Vax) and S2 (ICB) states were 

enriched inside tumors (Figs. 5D–5E, S5G–S5H). We therefore posit that cells in the distal 

S2A state are poised to enter tumors at which point they differentiate to an S2B state. The 

exhausted S3 population in both Vax and ICB mice was found proximal to tumor edges 

and more frequently outside of tumors compared to S2B suggesting the S3 cell state is 

associated with progressive exclusion from tumors (Figs. 5D–5F, S5H–S5I). This finding 

suggests that Tc cells exit tumors upon upregulating suppressive inhibitory receptors and 

downregulating cytotoxic activity.
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Neither the Vax nor ICB protocols significantly changed the fraction (~30%) of CD8+ T 

cells that displayed transitional phenotypes (T1-T3; Figs. 5C, S5F). This may be due to 

flux through transitional states as Tc cells differentiate from naïve S1 to effector S2 and 

exhausted S3 states. In Vax, T2 cells were spatially enriched inside tumors (Fig. 5E) and 

were substantially enriched for cells co-expressing TCF1 and PD-1 (an 8- and 200- fold 

increase was observed relative to other T cell states, Fig. 5G); this enrichment was also 

observed in T1 and T2 states in ICB (Fig. S5J). TCF1+ PD-1+ CD8+ T cells have recently 

been shown to play a critical role in driving therapeutic responses to ICB in both mice 

and humans26–29. Such cells are thought to be in a progenitor-like state and induced to 

differentiate into cells with cytotoxic function in response to treatment28,29. Our data suggest 

that TCF1+ PD-1+ progenitor CD8+ T cells are enriched in specific transitional states that 

efficiently traffic into tumors and can establish residence within the tumor bed.

One limitation of multiplexed imaging methods in characterizing T cell phenotypes is 

the inability to detect tumor antigen-specific T cell populations in fixed tissue. Thus, to 

determine whether the Tc phenotypes we observed in tumors were tumor-antigen specific, 

we performed a flow cytometric analysis of SIIN and SIY-specific Tc cells in dissociated 

lung samples from the Vax- and ICB-treated mice using peptide-MHC tetramers. We found 

that the majority of TIM-3+ and PD-1+ TIM-3+ cells, which resembled the exhausted S3 

state, were specific to LucOS antigens in control mice and this association increased with 

ICB and Vax to >70% of this population (Figs. S5K–S5L). In contrast, the majority of 

TCF1+ cells resembling the naïve S1 state were not tumor-antigen specific; however, TCF1+ 

PD-1+ (T2) cells were more enriched for Tetramer+ cells. Most Tc cells with a proliferative 

(Ki67+) and/or cytotoxic (GZMB+) phenotype resembling the S2 state were also not tumor 

antigen-specific in control mice but both treatments significantly expanded the Tetramer+ 

cell proportions, with Vax increasing the proportion of Tetramer+ cells to >50% (Figs. 

S5K–S5L). Interestingly, increases in T cell populations induced by Vax were restricted 

to the Tetramer+ cell fraction whereas ICB increased both Tetramer+ and Tetramer− cells. 

These findings indicate that vaccination against SIIN and SIY specifically targets SIIN- and 

SIY-specific T cells whereas ICB additionally acts on other Tc populations. These additional 

Tc populations may be responding to tumor-associated antigens in the model30 or may be 

“bystander” T cells specific to non-tumor antigens31.

TCF1+ PD-1+ progenitor CD8+ T cells reside within intratumoral lymphonets

We next used data from Vax-treated LucOS mice to investigate how changes in lymphonets 

are related with changes in Tc cell phenotypes. While Vax did not substantially change 

the overall size, number, or localization of lymphonets (Figs. S6A–S6B), it did increase 

association of Tc cells but not other T cell subsets across most lymphonets (Figs. 6A–6B, 

S6C–S6E). Remarkably, the TCF1+ PD-1+ progenitor Tc state was the most highly and 

significantly enriched state in lymphonets (Fig. 6C, KS p-value=10−3). Moreover, across 

the Vax cohort the total number of Tc cells in lymphonets was linearly correlated with 

the number of TCF1+ PD-1+ cells (Fig. 6D). The Tc compartment of lymphonets was also 

predominantly comprised of the transitional T2 state containing TCF1+ PD-1+ progenitor 

cells (Figs. 6E–6F, S6F); this was true of lymphonets both inside and outside of tumors, 

however, cells in the T2 state were mostly found within tumors (Fig. 5E). Lymphonets were 
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similarly enriched for transitional phenotypes containing TCF1+ PD-1+ cells in the ICB 

cohort (i.e., T1 and T2, Figs. 6G–6H, S6G). Notably, the only Tc state that increased in 

lymphonets following Vax or ICB treatment was the cytotoxic S2 state (S2B for Vax and 

S2 for ICB, Figs. 6E–6H). Thus, after either Vax or ICB treatment, cells with cytotoxic 

potential colocalized with TCF1+ PD-1+ progenitor cells in lymphonets. Given that TCF1+ 

PD-1+ progenitor cells give rise to cytotoxic Tc cells in tumors29, these data suggest that 

lymphonets are the site of differentiation of progenitor cells into cytotoxic cells in response 

to immunotherapy.

Taken together, our data support a model wherein Tc cells migrate into intratumoral 

lymphonets upon differentiation from an TCF1+ S1 state into a T2 TCF1+ PD-1+ state 

(Fig. 6I). ICB and Vax immunotherapies promote differentiation of TCF1+ PD-1+ cells to 

a cytotoxic S2B state within tumors, and these cells then progress to a tumor-excluded 

exhausted S3 state upon upregulation of inhibitory receptors and downregulation of 

cytotoxic activity.

Lymphonets enriched for TCF1+ PD-1+ progenitor CD8+ T cells are abundant in early-stage 
human lung adenocarcinoma

To begin to investigate the relevance of these findings to human disease we used a panel 

of CyCIF-qualified antibodies to characterize the features of lymphonets in whole slide 

sections of early-stage human lung adenocarcinoma from 14 patients (Table S3); these 

early-stage human tumors are likely analogous to the early-stage tumors we studied in 

the KP-LucOS GEMM. We performed sequential clustering of ~7.8 million cells from 

these images and identified tumor and stromal cells (Fig. 7A, Lv1) and immune cells 

(~3.4 million cells) for further cell-type calling (Fig. 7A, Lv2-Lv4). Human specimens 

had highly variable fractions of tumor, stromal, and lymphocyte subtypes (Fig. 7B). In 

histopathologically-annotated tumor areas, we identified many lymphonets per sample, and 

they varied substantially in size. Similar to lymphonets in mice, the vast majority of these 

networks in human tumors were small (Figs. 7C–7D, S7A–S7C), and the fraction of B 

cells was positively correlated to lymphonet size (Fig. 7E). We found that the number of 

lymphonets with >500 cells matched the number of TLS as scored by pathology review 

(linear regression coefficient=0.99, R2=0.74, Figs. S7A–S7B, Table S4). These findings 

suggest that anti-cancer immune responses in both early-stage human and mouse lung 

cancer is characterized by a preponderance of small lymphocyte networks.

As in KP-mouse tumors, smaller lymphonets in human tumors were composed of T cells, 

with the B cell fraction increasing with lymphonet size (Fig. 7E). Uniquely to human 

samples, the CD8 T cell fraction decreased as lymphonets increased in size, being replaced 

by CD4 Th cells (Fig. 7E). A positive spatial correlation (i.e., increased probability of spatial 

proximity) between major histocompatibility class I (MHC I) expression on non-lymphoid 

cells in tumors and lymphonets was observed (Fig. 7F), suggesting lymphonet organization 

in early-stage human lung cancer may be regulated by CD8+ T cell antigen presentation. 

A negative spatial correlation (i.e., increased probability of being spatially distant) was 

observed between non-lymphoid cells in tumors expressing PD-L1 and lymphonets (Fig. 

7F), which implies that PD-L1 may promote their distancing from lymphonets. Subsets 
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of myeloid cells exhibited similar negative spatial correlation (Fig. S7D) perhaps due 

to high expression of PD-L1 on myeloid cells such as TAMs (Fig. S7E). MHC II was 

expressed in many cell types, including B cells, TAMs, and epithelial cells (Fig. S7E), 

as previously reported for lung tissue32; however, no correlation was observed between 

lymphonet formation and MHC II expression on non-lymphoid cells in tumors or myeloid 

cells (Figs. 7F, S7D). When we profiled Tc cells with markers of functional potential and 

used Palantir to identify the TCF1 and PD-1 co-expressing population of progenitor CD8+ 

T cells we found that Tc cells were present both outside and inside of lymphonets, but 

TCF1+ PD-1+ progenitor cells were largely restricted to lymphonets (Fig. 7G) and became 

increasingly enriched as lymphonet size increased (Fig. 7G–H). Altogether, these findings 

reveal that lymphonets as identified in the KP-GEMM model are found in abundance 

in human lung adenocarcinomas where they may have a similar function in supporting 

progenitor CD8+ T cell maturation.

DISCUSSION

Multiplexed imaging of the KP GEMM of lung cancer revealed striking changes in the 

spatial arrangements of lymphocytes and dendritic cells following expression of tumor 

antigens (in the KP-LucOS model) and consequent induction of T cell mediated anti-tumor 

immunity. Both T and B cells were recruited to tumors when tumor antigens were expressed 

with lymphocytes forming networks of cells that directly contacted each other. We termed 

these networks of 6 to several hundred interacting cells ‘lymphonets.’ The smallest primarily 

contained T cells, but the proportion of B cells increased as networks enlarged. A key 

feature of lymphonets is that they contain TCF1+ PD-1+ CD8+ T cell progenitors and 

gain cytotoxic CD8+ T cells following treatment with ICB or antigen-targeted vaccines, 

most likely due to differentiation and activation of the progenitor cells. We speculate that 

paracrine and juxtacrine signaling among cells in lymphonets promotes or coordinates this 

critical aspect of induced anti-tumor immunity.

Compartmentalized and structured rather than mixed organization of lymphocytes with 

respect to tumors has previously been correlated with tumor control33, particularly with 

respect to TLS formation across multiple cancer types34,35. TLS are aggregates of immune 

cells with cellular composition and organization resembling secondary lymphoid organs. 

Fully mature TLS generally contain B and T cell zones and germinal centers, containing 

follicular dendritic cells. The presence of TLS is predictive of better patient survival and 

response to ICB and vaccine immunotherapies across multiple cancer types36,37. However, it 

remains unclear whether TLS directly facilitate anti-tumor immune responses or are merely 

evidence of a prior immune response with potential for reinvigoration by immunotherapy. 

Characterization of dynamic changes within TLS over time or with therapy is difficult to 

investigate in humans and studies in mice have been limited due to the absence of TLS 

formation in most transplantable tumor models38.

In the KP-LucOS model, we previously described the formation of mature TLS 

peritumorally around 20 weeks post-tumor initiation39, a time-point correlated with loss of 

functional anti-tumor CD8+ T cell immunity and lack of response to anti-PD-1/anti-CTLA-4 

ICB therapy12,15,16. In comparison to TLS, the lymphonets we describe here (at 9-weeks 
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post-tumor initiation) are coincident across conditions with functional Tc responses in 

tumors and are less structured, lacking distinct T and B cell zones; however, we did find 

a significant association between lymphonets and cross-presenting CD103+ dendritic cells. 

It is possible that some lymphonets represent precursors to the TLS observed later during 

tumor progression. Additional spatial profiling of the TME longitudinally between 9- and 

20-weeks post-tumor initiation is needed to investigate the connection between and TLS and 

lymphonets, to identify factors that support anti-tumor Tc immunity in lymphonets, and to 

distinguish bystander and immunosuppressive functions.

Multiparametric analysis of key functional Tc cell markers in LucOS tumors defined three 

major Tc cell states, naïve (S1), cytotoxic (S2), and dysfunctional/exhausted (S3), and 

characterized the flux through these states and connecting transitional phenotypes (T1-T3) 

in response to immunotherapies. Tumor antigen-targeted vaccination (Vax) and anti-PD-1/

anti-CTLA-4 ICB shifted Tc cells from the naïve S1 state to the S2 and S3 states. Parallel 

flow cytometry analysis of SIIN and SIY antigen-specific Tc cells in dissociated lung 

tissue showed that the majority of S3 cells were tumor-specific as were many S2 cells, 

especially post-treatment. These differentiated functional states were phenotypically related 

to cells exhibiting intermediate transitional phenotypes (T1-T3). TCF1+ PD-1+ cells that 

have been described as giving rise to cytotoxic and exhausted CD8+ T cell populations in 

response to ICB therapy40 occupied intratumoral transition states and were tightly associated 

with lymphonets both before and after immunotherapy treatment. After therapy, S2 cells 

colocalized with TCF1+ PD-1+ cells in lymphonets, consistent with progenitor cells seeding 

the S2 population. Notably, vaccination resulted in two S2 populations (cytotoxic S2A T 

cells marked by Ki67 and high expression of GZMB, and cytotoxic/early-exhausted S2B 

T cells marked by low expression of inhibitory receptors) that were spatially segregated; 

only the S2B population localized to tumors and lymphonets while the S2A population was 

present outside of tumors. The exhausted/dysfunctional T cells (S3) were largely excluded 

to just outside of the tumor margin. We hypothesize that in contrast to the S2B (and ICB 

S2 populations), S2A cells are not derived from intratumoral TCF1+ PD-1+ cells and instead 

seed directly from the periphery. Upon entering tumors, S2A cells may pass through the 

S2B state before they become terminally exhausted (S3). Consistent with this, we previously 

reported that vaccination acutely promotes substantial peripheral Tc expansion rather than 

expanding the existing Tc populations in the lung by flow cytometric analysis15. In contrast 

to Vax, ICB induced only the intratumoral S2B-like S2 state associated with TCF1+ PD-1+ 

progenitor cells, and this may help to explain the central role of progenitor cells in driving 

ICB response in mice and humans.

Consistent with our observation in mice that intratumoral lymphonets harbor TCF1+ 

PD-1+ progenitor CD8+ T cells, we found that TCF1+ PD-1+ cells were also localized 

to lymphonets in human lung cancer resections. Localization of stem-like cells (defined 

as CXCR5+ TCF1+) to intratumoral lymphocyte ‘niches’ has been previously reported 

in human renal cell carcinoma, where the ‘niches’ were proposed to support generation 

of cytotoxic T cells41. These niches were not mature TLS and instead were defined by 

lymphocyte aggregation around MHC II-expressing cells, presumably marking regions rich 

in antigen presenting cells. Interestingly, we did not find a correlation between MHC 

II expression and lymphonets of any size in human lung cancer, but we did observe a 
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significant association between CD103+ DCs (also expressing MHC II) and lymphonets in 

mice. The expression of MHC II on multiple cell populations and the lack of DC-specific 

markers in the human antibody panel prevented us from validating this CD103+ DC 

phenotype in human lung tumors. However, MHC I expression level was correlated with 

lymphonets in human tumors, and this may suggest that antigen presentation to CD8+ T cells 

is necessary for lymphonet formation and/or that lymphonets promote MHC I upregulation 

(perhaps through T cell secretion of IFNγ). Consistent with this observation, lymphonets in 

the mouse were found intratumorally only following expression of LucOS T cell antigens 

and these lymphonets were significantly associated with cells expressing IFNγv-induced 

chemokines (Cxcl9, Cxcl10). We also observed that ectopic expression of Cxcl10 was 

able to increase the size and number of lymphonets in Cre mice lacking LucOS antigen 

expression. Pelka et al.4 recently reported a significant association between formation of 

“immune hubs” enriched in T lymphocytes (similar to the lymphonets reported here) and 

expression of CXCR3 ligands during a productive anti-tumor immune response to mismatch 

repair deficient (MMRd) human colorectal cancer. Our findings provide mechanistic 

evidence that CXCR3 ligands such as CXCL9 and CXCL10 actively promote the formation 

of lymphocyte niches correlated with productive anti-tumor immunity; however, localization 

of these cell networks inside tumors depends on antigen expression or associated factors.

Lymphonets in KP-LucOS mice were predominantly composed of Th and B cells, with the 

B cell fraction increasing with lymphonet size in both mouse and human. An association 

of B cell gene signatures with better patient survival and response to ICB therapy has 

been found across many cancer types38. Interestingly, however, B cells in cancer have been 

demonstrated to have both pro- and anti-tumorigenic functions. For example, B regulatory 

cells contribute to tumor-promoting inflammation and suppression of anti-tumor T cell 

responses, while antibody-producing plasma cells (frequently associated with TLS) are more 

commonly associated with tumor control38. Future imaging studies with additional markers 

of B cell states paired with spatial transcriptomics in KP GEMM could clarify the function 

of B cells and Th cells in lymphonets and how they might support TCF1+ PD-1+ progenitor 

CD8+ T cell function. Given that antigen is necessary for nucleation of lymphonets inside 

KP-lung tumors and MHC I expression is associated with lymphonets in human lung cancer, 

one hypothesis is that B cells regulate CD8+ T cells and support Th cell function through 

their role as antigen presenting cells42.

Limitations of the Study

Antibody panels focused on effector T cell states; additional antibodies are required to fully 

characterize other T cell populations and myeloid cells43. Analysis of dendritic cells (DCs) 

was also limited to cross-presenting CD103+ DCs analyzed in mouse studies and MHC 

II-expressing cells in human. Immunogenic model antigens were expressed throughout 

tumors, which may not represent situations of limited antigen availability. Multiparametric 

measurements used here permit inference of dynamic properties, but not direct visualization 

of transitions over time.
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STAR METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Sandro Santagata 

(ssantagata@bics.bwh.harvard.edu).

Materials Availability—As described in the Key Resources Table, cell lines are available 

upon request, mouse models are available from Jackson Laboratories or upon request, and 

plasmids are available from Addgene.

Data and code availability

Data:  The imaging data reported in this study cannot be deposited in a public repository 

because a repository for imaging data is not yet available. To request access, contact the 

lead contact. Multiplexed images of a mouse lung specimen (KP LucOS can be viewed in 

Minerva Story 44,45 an interpretive guide for interacting with multiplexed tissue imaging 

data) are available at Zenodo. Summary statistics describing processed datasets derived from 

these data have been deposited at Synapse.org repository (doi.org/10.7303/syn30715952) 

and are publicly available as of the date of publication. Accession numbers are listed in the 

key resources table.

Code:  All original code has been deposited at Zenodo and is publicly available as of the 

date of publication. DOIs are listed in the key resources table. Any additional information 

required to reanalyze the data reported in this paper is available from the lead contact upon 

request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Tissue—Formalin fixed paraffin embedded (FFPE) tissue samples of human 

lung adenocarcinoma were retrieved from the archives of the Brigham and Women’s 

Hospital Department of Pathology following approval of the research study by the Partners 

Healthcare Institutional Review Board at Brigham Health, Boston, MA, USA (Excess tissue, 

discarded tissue protocol number 2018P001627). All appropriate ethical guidelines were 

followed for this study.

Mice—Lung adenocarcinomas were initiated in KrasLSL-G12D/+; Trp53fl/fl (KP) on a 

C57BL/6 background through intratracheal installation of lentiviruses expressing Cre 
recombinase12. KP mice crossed to Rosa26LSL-Cas9-GFP-Csy4 46 and the Rosa26LSL-tdTomato 

were used for CRISPR-Cas9-mediated gene activation of Cxcl10. Mice were between 8 and 

14 weeks of age at the time of lentiviral infection. Males and females were used equally 

across all experimental arms. All studies were performed under an animal protocol approved 

by the Massachusetts Institute of Technology (MIT) Committee on Animal Care. Mice were 

assessed for morbidity according to guidelines set by the MIT Division of Comparative 

Medicine and were humanely sacrificed prior to natural expiration. Information about each 

mouse experiment is provided in Table S2.
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METHOD DETAILS

Lentiviral Tumor Induction—To initiate lung tumors, KP mice were injected 

intratracheally (i.t.) with 2.5 × 104 PFU of lentivirus containing Cre recombinase and model 

CD8 T cell antigens as previously described9,12. Details of the lentivirus production can be 

found below. Mice were randomized post-infection for immunotherapy trials.

Lentiviral Constructs—Lentiviral constructs containing Cre recombinase with or without 

LucOS antigens (Lenti-Cre and Lenti-LucOS) were previously described12. The Lenti-

Cre design was modified by Gibson cloning to create Lenti-SAM-Cre for CRISPR/Cas9-

mediated gene activation. A U6 promoter and an activator guide RNA cloning cassette 

were added upstream and inverted from the Pgk promoter driving Cre. The cloning cassette 

contains BsmBI restriction sites for the addition of a 15-nucleotide “dead” guide RNA 

(dRNA) to mediate gene activation rather than cutting by catalytically active Cas947. The 

cassette appends the dRNA with stem-loops containing MS2-binding aptamers as previously 

described48. “SAM” transcriptional activation components from p65 (NFkB) and Hsf1 were 

fused with the MS2 RNA binding protein47,48 and cloned in tandem with Cre, separated 

by a P2A self-cleaving peptide. For in vitro validation of dRNA activity, Lenti-SAM-Cre 

was modified to replace Cre with a Puromycin selection gene (Lenti-SAM-Puro). In the 

LucOS LucOS variant of the KP model, two model CD8 T cell antigens, the SIINFEKL 

(SIIN) epitope from chicken ovalbumin and the synthetic peptide SIYRYYGL (SIY), are 

expressed as a fusion to luciferase in tumor cells12. Immunogenic neoantigens isolated from 

MCA-induced sarcomas (i.e., mutant Alg8 and mutant Lama4)49 expressed in KP lung and 

pancreatic tumors15,50 have been shown to generate T cell responses of similar magnitude 

and functionality to the SIIN-specific response in both models (the more immunogenic 

between SIIN and SIY).

Cxcl10 Dead Guide RNA Screening—Short guide RNA (sgRNA) sequences targeting 

the promoter region of Cxcl10 (up to 200 nucleotides upstream of the TSS) were selected 

using the Feng Zhang lab (Broad Institute of MIT and Harvard) online SAM Cas9 activator 

design tool (no longer operational). The 20 nucleotide sgRNA sequences were shortened 

to 15-nucleotide dead RNAs (dRNAs) to recruit Cas9 to the promoter region but prevent 

DNA cleavage by Cas9. The first nucleotide was amended to a G if it did not occur 

naturally to optimize expression from the U6 promoter. The dRNAs were screened for their 

relative ability to activate Cxcl10 expression in the 1233 KP lung adenocarcinoma cell line. 

Briefly, oligonucleotides were generated with BsmBI restriction site overhangs (see Key 

Resources Table) and annealed to create the double-stranded dRNAs for cloning into Lenti-

SAM-Puro. 293FS* viral packaging cells were transfected in a 6-well plate format with the 

dRNA-containing Lenti-SAM-Puro constructs (1.5 μg) and psPAX2 (0.75 μg) and VSV-G 

(0.25 μg) helper plasmids to generate lentivirus. The lentiviral supernatant was collected 

through a 0.45 μm filter 48 hrs post-transfection and added 1:1 to 1233 KP Cas9 cells plated 

at 25,000 cells/well the day before. Polybrene was added to improve transduction efficiency 

at 4 μg/ml. Puromycin was added 48 hrs later to select for cells expressing the construct. 

Cells were expanded (under Puromycin selection) and plated in triplicate in 12-well plates 

at 200,000 cells/well to generate supernatant containing secreted Cxcl10. The supernatant 

was collected 72 hrs later and Cxcl10 protein was quantified using a Cxcl10 ELISA (R&D 
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systems) according to the manufacturer’s protocol. The dRNA that resulted in the greatest 

production of Cxcl10 (GACAAGCAATGCCCT) was cloned into Lenti-SAM-Cre and used 

to generate large-scale lentivirus for in vivo studies. A non-targeting dRNA shortened from 

an sgRNA targeting tdTomato (CGAGTTCGAGATCGA;51 was used a negative control. 

dRNA sequences and oligonucleotides are listed in the key resources table.

Lentivirus Production for In Vivo Instillation—Lentivirus was produced by 

transfection of 293FS* viral packaging cells in 15 cm plates with lentiviral constructs (10 

μg), VSV-G (2.5 μg) and psPAX2 (7.5 μg) viral packaging plasmids, and Mirus TransIT 

LT1 (MirusBio; 60 μl). Lentiviral supernatant was harvested, passed through a 0.45 um 

filter, and concentrated by ultracentrifugation at 25,000 rpm for 2 hrs at 4°C 48- and 

72-hrs post-transfection. Viral titers were determined by measuring Cre activation of GFP 

expression in GreenGo 3TZ cells as previously described 51.

Anti-PD-1/Anti-CTLA-4 Therapy—KP LucOS mice were treated for one week starting 

at 8 wks post-tumor initiation with InvivomAb anti-PD-1 (29F.1A12; BioXCell) and 

InvivomAb anti-CTLA-4 (9H10; BioXCell) or isotype controls (Rag IgG2a, 2A3; Syrian 

Hamster, polyclonal; BioXCell). Mice received 200 μg of each antibody i.p. at day 0, 

followed by 200 μg anti-PD-1 and 100 μg anti-CTLA-4 (or isotype controls at the same 

concentrations) on days 3 and 6. Mice were sacrificed for endpoint analysis on day 7.

Antigen-targeted Vaccination—KP LucOS mice were vaccinated s.c. at the tail-

base with 30 amino acid long peptides containing SIINFEKL and SIYRYYGL (10 

nmol; New England Peptide) and cyclic-di-GMP adjuvant (0.25 mg/ml; Invitrogen) 

at 6 wks post-tumor initiation. An equivalent booster dose was given 2 wks later, 

and the mice were sacrificed at 9 wks post-tumor initiation for endpoint analysis. 

All doses were delivered in two 50 μL boluses and control mice received PBS. The 

long peptide sequences used were: SMLVLLPDEVSGLEQLESIINFEKLTEWTS and 

GRCVGSEQLESIYRYYGLLLKERSEQKLIS (New England Peptide).

Mouse Lung Tissue Processing for Flow Cytometry—Lung tissue-resident immune 

cells were distinguished from circulating immune cells by retroorbital injection of 

a fluorescently-conjugated CD45 antibody (AlexaFluor780; 30-F11; BD Bioscience) 3 

minutes prior to euthanasia52. Only tissue-resident cells were included in downstream 

analyses. Lung tissue was collected into RPMI 1640 media with 1% heat-inactivated 

fetal bovine serum, minced with spring scissors and incubated in 125 U/mL collagenase 

IV (Worthington Biochemical) and 40 U/mL DNase I (Sigma-Aldrich) for 30 minutes at 

37°C. The tissue was then dissociated using the m_lung_2.0.1 protocol on a gentleMACS 

Dissociator using gentleMACS C tubes (Miltenyi Biotec) and filtered with a 70 μm cell 

strainer. Cell suspensions were centrifuged at 1200 rpm for 5 minutes and red blood cell 

lysis was performed using 1X RBC Lysis Buffer (eBioscience) per the manufacturer’s 

protocol. Cells were then stained with a fixable viability dye to exclude dead cells (20 

minutes on ice; Zombie Dye; Invitrogen; Tonbo Ghost Dye; Tonbo Biosciences) and 

resuspended in FACS buffer (1% heat-inactivated FBS in PBS) and stained with the 

following surface antibodies for 15–30 minutes on ice: CD3e (145–2C11), CD8ɑ (53–
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6.7), CD4 (RM4–5), CD44 (IM7), PD-1 (RMP1–30), TIM-3 (RMT3–23), purchased from 

ThermoFisher Scientific, BD Biosciences or Biolegend (see Key Resources Table). In 

some cases, the cells were simultaneously stained with H-2Kb peptide-MHC tetramers 

specific to SIINFEKL and SIYRYYGL (monomer, NIH Tetramer Core Facility; PE and 

APC streptavidin, Invitrogen). For intracellular staining, cells were fixed for 1 hour 

at room temperature using the eBioscience Fixation/Permeabilization Kit (ThermoFisher 

Scientific). Cells were then stained overnight at 4°C with the following antibodies: TCF1/

TCF7 (C63D9), Granzyme B (GB11), Ki67 (B56), Foxp3 (FJK-16s) purchased from Cell 

Signaling Technology, ThermoFisher Scientific, BD Biosciences (see Key Resources Table). 

Samples were analyzed on a BD Biosciences LSR Fortessa.

Mouse Lung Tissue Processing for Histology and H&E Staining—Tumor-bearing 

lung lobes were collected into 4% paraformaldehyde in PBS and incubated overnight 

with shaking at 4°C. Tissue was transferred into 70% ethanol and subsequently paraffin 

embedded and sectioned (4 μm) onto Fisherbrand Superfrost Plus Microscope Slides 

(ThermoFisher Scientific). After drying, slides for RNAScope™ were stored at 4°C until 

use. Hematoxylin and eosin (H&E) stain was performed with a standard method by the 

Hope Babette Tang Histology Facility at the Koch Institute at MIT.

Pathology Annotation of Mouse and Human H&E-Stained Sections—H&E and 

CyCIF images were reviewed and annotated by a board-certified anatomic pathologist 

(S.C.), blind to the underlying genotype and diagnosis (e.g., KP Cre vs. KP LucOS). 

For KP Cre and KP LucOS mouse tissues, all identifiable anatomic structures were 

delineated, including medium-large caliber airways (bronchioles, bronchi; ~50–300 μm in 

diameter) and medium-large caliber vascular structures (~20–300 μm in diameter). Vascular 

structures were further grouped into arterial (arterioles and arteries) and venous (venules 

and veins) categories based on typical histologic features. Smaller capillary structures were 

not discretely annotated. Large branches of the pulmonary artery and vein were noted 

when present. All tumors were identified and delineated according to morphologic features 

(nuclear atypia, architectural disorganization, hypercellularity, etc.). Regions of epithelial 

cytologic atypia that did not form discrete invasive tumors were also annotated. For human 

tissues, all tumors, regions of atypia, and lymphoid aggregates were annotated. In human 

tumor specimens, all aggregates of lymphoid cells were identified and delineated in each 

tissue section according to typical morphologic features. Tertiary lymphoid structures (TLS) 

were further defined by identifying aggregates of lymphoid cells associated with germinal 

center formation on H&E, or the presence of discrete aggregates of B cells (PAX5+) 

with surrounding T cell (CD3, CD4, and/or CD8 positive) populations on CyCIF imaging. 

Annotation was crosschecked between H&E and CyCIF images for all tissue sections.

Tissue-Based Cyclic Immunofluorescence (t-CyCIF) Staining and Imaging—
FFPE sections were prepared and stained with a 24-plex antibody panel according to the 

previously described t-CyCIF protocols14,15,53 (see Table S1). This CyCIF panel has been 

validated across many different sample types in accordance with standards defined by our 

group54. The number of mice, number of lobes, and number of tumor nodules analyzed 
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from whole slide CyCIF imaging are indicated in Table S2. As noted in Table S2, all tumor 

nodules were analyzed from two or three lung lobes per mouse for each experiment

Baking and Dewaxing: To prepare samples for antibody staining, slides were automatically 

baked at 60°C for 30 min, dewaxed at 72°C in BOND Dewax Solution, and antigen retrieval 

was performed at 100°C for 20 min in BOND Epitope Retrieval Solution 2 (ER2) by the 

Leica Bond RX machine.

Pre-Staining Background Reduction: After slides were baked and dewaxed, they were 

photobleached by immersing them in bleaching solution (4.5% H2O2, 20 mM NaOH in 

PBS) with LED light exposure for 2 × 45 min to reduce autofluorescence.

To mitigate non-specific antibody binding, slides were washed for 3 × 5 min with 1X 

PBS and then incubated overnight with secondary antibodies (anti-rat, anti-mouse, and 

anti-rabbit) diluted in 150 μL of Odyssey Blocking Buffer (1:1000) at 4°C in the dark. Slides 

were subsequently washed 3x with 1X PBS before photobleaching them again for 2 × 45 

min.

Antibody Staining, Slide Mounting, and Imaging: For each round of t-CyCIF, samples 

were incubated overnight at 4°C in the dark with Hoechst 33342 (Dilution: 1:10,000; 

Thermo Fisher Scientific, cat# 62249) for nuclear staining along with either primary 

conjugated antibodies or primary unconjugated antibodies diluted (see Table S1 for antibody 

information) in 150 μL of Odyssey Blocking Buffer (LI-Cor, Cat# P/N 927–40003). 

Incubation with primary unconjugated antibodies was followed by secondary antibody 

incubation at room temperature for 2 hrs in the dark. For CyCIF antibodies that were 

only available from vendors as primary unconjugated antibodies, custom conjugates were 

requested from Cell Signaling Technology or we performed in-house conjugation of 

antibodies formulated without BSA and sodium azide using Invitrogen Alexa Fluor™ 

Antibody Labeling Kits in accordance with the manufacture’s guidelines. 100μg of antibody 

was labelled at a 1mg/mL dilution in an appropriate buffer (i.e., Phosphate Buffer Saline). 

Custom ordered antibodies from Cell Signaling Technology were generated for CD8a CST 

[D4W2Z], Cat# 98941 (AF 647); CD11c CST [D1V9Y] Cat# 97585 (AF 555); CD3e CST 

[D4V8L] Cat# 99940 (AF 555); PD-L1 [D5V3B] Cat# 64988 (AF 488); Granzyme B 

[E5V2L] Cat# 44153 (AF 488); Perforin [E3W4] Cat# 31647 (AF 555); TIM-3 [D3M9R] 

Cat# 83882 (AF 488); F4/80 [D2S9R] Cat# 70076 (AF 555). The remaining antibody was 

conjugated ‘in-house’: CD103 R&D [Polyclonal], Cat# AF1990 (AF 488). Key Resources 

Table lists all antibodies used.

Post staining, slides were washed for 3 × 5 min, mounted with 24 × 50 mm coverslips using 

200 μL of 70% glycerol, and then dried. Once coverslipped, slides were manually imaged 

on the IN Cell Analyzer 6000 or automatically on the RareCyte Cytefinder II HT using 

the following channels: UV, cy3, cy5, and cy7 (Binning: 1 × 1; Objective: 20x; Numerical 

Aperture: 0.75; Resolution: 0.325 μm/pixel). Image exposures were optimized for each 

channel to avoid signal saturation and kept constant for each sample.
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To demount, slides were placed in containers of 1X PBS and heated in a water bath for 1 

hr. Before additional antibody staining, slides are photobleached for 2 × 45 min to deactivate 

the fluorophores and washed 3 × 5 min in 1X PBS.

RNA In Situ Hybridization: RNAScope™ was performed as per manufacture’s suggested 

protocol (Advanced Cell Diagnostics, Inc.) using the LS Multiplex Reagent Kit (cat# 

322800) and probes RNAscope® 2.5 LS Probe- Mm-Cxcl9 (cat #: 489348) and RNAscope® 

2.5 LS Probe- Mm-Cxcl10-C3 (cat #: 408928-C3).

QUANTIFICATION AND STATISTICAL ANALYSIS

STATISTICAL ANALYSIS—Information on the sample size (Table S2) and the statistics 

are included in the figure legends. Statistical tests used are Pearson correlation, two-sided t-

test, and non-parametric Kolmogorov–Smirnov (KS) two-sided test as specified in the figure 

legends and are performed with MATLAB built-in functions. Significance was defined as a 

p-value of less than 0.05. For figures where mice are represented as individual data points, 

the data represents the average of all tumor nodules for each mouse. For figures where 

data is shown for groups rather than individual mice (e.g., LucOS versus Cre, Vax versus 

Ctrl), the average was calculated for all tumor nodules from each individual mouse prior to 

averaging the data from all mice in each group. In this way, we avoided skewing the data 

toward mice with a greater number of tumors analyzed.

QUANTIFICATION

Image Processing and Single-Cell Quantification: The image processing of tissue cyclic 

immunofluorescence was organized in the following steps, each of which is described in 

detail below:

• the software ASHLAR is used to stitch, register, and correct for image 

acquisition artifacts (using the BaSiC algorithm). The output of ASHLAR is 

a single pyramid ome.tiff file for each region imaged;

• the ome.tiff file is re-cut into tiles (typically 5000 × 5000 pixels) containing only 

the highest resolution image for all channels. One random cropped image (250 × 

250 pixels) per tile is outputted for segmentation training (using Fiji);

• the ilastik software is trained on the cropped images to label, nuclear, 

cytoplasmic, and background areas. The output of the Ilastik processing is a 

3-color RGB image with label probabilities;

• the RBG probability images are thresholded and watershed in MATLAB to 

segment the nuclear area. The cytoplasmic measurements are derived by dilating 

the nuclear mask;

• single-cell measurements are extracted for each channel (cell pixel median 

and mean for both nuclear and cytoplasmic area) as well as morphological 

measurements of area, solidity, and cell coordinates location.

BaSiC: The BaSiC ImageJ plugin tool was used to perform background and shading 

correction of the original images55. The BaSiC algorithm calculates the flatfield, the change 
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in effective illumination across an image, and the darkfield, which captures the camera offset 

and thermal noise. The dark field correction image is subtracted from the original image, and 

the result is divided by the flatfield image correction to obtain the final image.

ASHLAR: Alignment by Simultaneous Harmonization of Layer/Adjacency Registration 

(ASHLAR) is used to stitch together image tiles and register image tiles in subsequent layers 

to those in the first layer56. For the first image layer, neighboring image tiles are aligned to 

one another via a phase correlation algorithm that corrected for local state positioning error. 

A similar method is applied for subsequent layers to align tiles to their corresponding tile in 

the first layer. ASHLAR outputs an OME-TIFF file containing a multi-channel mosaic of the 

full image across all imaging cycles. Full codes available at: https://github.com/labsyspharm/

ashlar.

ilastik: ilastik is a machine learning based bioimage analysis tool that is used to obtain 

nuclear and cytoplasmic segmentation masks from OME-TIFF files57. For increased 

processing speed, randomly selected 250 × 250 pixel regions from the original OME-TIFF 

are used as training data. ilastik’s interactive user interface allows the user to provide 

training annotations on the cropped regions. Users are presented with a subset of the 

channels stacked images and label pixels as either nuclear area, cytoplasmic area, or 

background area. The annotations are used to train non-linear classifiers that are applied 

to the entire image to obtain probability masks describing the probabilities of each pixel 

belonging to the nuclear, cytoplasmic, or background area. A MATLAB (version 2018a) 

script uses these masks to construct binary masks for nuclear and cytoplasmic area.

Single Cell Segmentation and Quantification: Using ilastik’s Pixel Classification 
workflow, a random forest classifier is trained for each experimental dataset based 

on manual annotations of nuclear, cytoplasmic, and background regions within the 

CroppedData. Batch processing is subsequently performed by the classifier on the 

FullStacks, generating .tif probability maps for nuclei, background, and cytoplasm.

Cell nuclei are segmented through thresholding maps based on nuclear, cytoplasm, 

and background probabilities and performing water shedding on them using MATLAB. 

Cytoplasmic segmentation masks are produced by dilating nuclear segmentation masks 

radially by 3 pixels and then excluding the segmented nuclear area.

Median nuclear and cytoplasmic marker expression, centroid coordinates, area (nuclear 

and cytoplasmic), and solidity are quantified for each segmented cell using MATLAB’s 

regionprops function and outputted as a single “Results.mat” file for each FFPE slide. 

All MATLAB scripts used for segmentation and quantification can be found here: https://

github.com/santagatalab.

Data analysis workflow—The data analysis is divided in a set of pre-processing steps in 

which data from different tissues is i) log2-transformed and aggregated together, ii) filtered 

for image analysis errors, and iii) normalized on a channel-by-channel basis across the entire 

data from a single experiment. All the steps are performed in MATLAB.
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Data aggregation: The image processing workflow outputs one ome.tiff image and one 

data file (.mat) for each tissue area imaged. The data matrices from each .mat file 

are concatenated into a single matrix for each metric measured (median/mean, nuclear/

cytoplasmic) into a single structure (“AggrResults”). The morphological data (i.e., area, 

solidity, and centroid coordinates) is concatenated into a single structure (“MorpResults”), 

which also contains the indexing vector to keep track of the tissue of origin within the 

dataset.

Data filtering: Single cells are filtered to identify and potentially exclude from subsequent 

analysis errors in segmentation and cells lost through the rounds of imaging. Two types of 

criteria are used to filter cells: morphological criteria based on cell object segmented area, 

which are applied to all the rounds for the cell object, and DAPI-based criteria which are 

applied to the DAPI measurement for each imaging round. The latter corrects for cell loss 

during cycling and computational misalignment, which are both round specific.

Morphological filtering criteria are:

• nuclear area within a user-input range;

• cytoplasmic area within a user-input range;

• nuclear object solidity above a user-input threshold.

DAPI-based criteria are:

• nuclear DAPI measurement above a user-input threshold;

• ratio between nuclear and cytoplasmic DAPI measurement above a user-input 

threshold;

The filter information for the criteria is allocated to a logical (0–1) structure ‘Filter’, which 

is used to select the cells to analyze in the further analysis by indexing. The threshold 

selection is dataset dependent and is performed by data inspection. The values used in each 

dataset are available with the codes used for data analysis in the Synapse.org repository 

syn30715952.

Data normalization: Each channel distribution is normalized by probability density 

function (pdf) centering and rescaling. The aim is to center the distribution of the log2 

fluorescent signal at 0 and rescale the width of the distribution to be able to compare 

across channels. The data is first log-transformed (base 2). The standard normalization is 

performed using a 2-component Gaussian mixture model, each model capturing the negative 

and the positive cell population. If the 2-component model fails to approximate the channel 

distribution, two other strategies are attempted: i) a 3-component model is used assuming 

the components with the two highest means are the negative and positive distribution (i.e., 

discarding the lowest component) or ii) the user selects a percentage ‘x’ of assumed positive 

cells and a single Gaussian distribution fit is performed on the remainder of the data 

to capture the negative distribution. The single Gaussian fit is then used as the lower 

component in a 2-component model to estimate the distribution of the positive population. 
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The strategy chosen for each channel in each dataset is available in the code section of the 

Synapse.org repository syn30715952.

The “add_coeff” is defined as the intersection of the negative and positive distributions. The 

“mult_coeff” is defined as the difference between the mean of the negative and positive 

distributions. The full distribution is normalized by subtracting the add_coeff and dividing 

by the mult_coeff. The normalization is performed on the nuclear and cytoplasmic single-

cell, single-channel distributions individually.

The data preprocessing workflow is performed on all datasets. The individual analyses used 

in the paper are performed only in selected datasets as follows.

Cell type classification: Cell type classification is performed hierarchically on the filtered, 

normalized expression data. Each cell is evaluated based on marker expression and then 

assigned to cell types in a layered fashion according to the dendrogram schematic in Figure 

S1C, with each successive layer being more specific than the previous one. A cell is 

considered to be positive for a marker if its median expression is above 0. Cell types 

are defined in the dendrogram by the presence or exclusion of multiple markers using 

“&&” and “||” operators representing “AND” and “OR” logic respectively. If multiple 

marker conditions must be met to assign a cell type, these marker conditions are grouped 

using parentheses. If a cell is “positive” for two markers that are expected to be mutually 

exclusive, the marker that is expressed at a higher value takes precedence as long as the 

difference in expression surpasses a user-defined threshold.

Multimodal Data Integration: H&E, RNAScope™ and CyCIF images are rescale 

and registered using the open-source software elastix58 using non-shearing global 

transformation. The CyCIF images are used as the fixed images in elastix. To integrate 

the CyCIF and histological data, H&Es are annotated for tumors, blood vessels, and airways 

by a trained pathologist. The elastix registration is used to overlay the pathology annotation 

onto the CyCIF single cell coordinates and then to calculate the distance from tumor 

boundaries and blood vessels.

RNAscope foci detection: Custom spot detection scripts (https://github.com/Yu-AnChen/

wsi-fish) are used to identify RNAScope™ foci and quantify their intensity. Each 

RNAScope™ dot is assigned as belonging to the closest cell based on the segmented area. A 

cell is considered Cxcl positive if it is assigned at least two RNA foci and if the cumulative 

RNAScope™ dot intensity of all the dots assigned to the cell exceed a preset threshold 

(based on the positive tail of the single cell distribution).

Lymphonet definition: The single cell centroids are tessellated using the Delaunay 

Triangulation using a custom script in MATLAB (https://github.com/santagatalab) to 

obtain a 2D graph, setting a maximum edge length of 16.25 microns (50 pixels). Using 

conventional graph operations, the graph edges are then filtered to include only connection 

between lymphocytes (Lv3 of cell type dendogram), after which connected subgraphs of 

length greater than 5 are than defined as “lymphonets”.
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Palantir algorithm and CD8 T cell state definition: The algorithm Palantir25 was adapted 

to CyCIF data by bypassing the initial dimensionality reduction applied to single-cell RNA-

seq data and using the CyCIF channel information as the dimensionality reduction output. 

The Python Jupiter Notebooks used to run the Palantir analyses can be found at https://

github.com/santagatalab. The CD8 T cell phenotypic states S1-S3 and T1-T3 were obtained 

using a flow cytometry manual gating approach combining Palantir point density and marker 

intensity. The gating was performed in MATLAB using the “Flow Cytometry GUI for 

Matlab” by Nitai Steinberg (2022) available at https://www.mathworks.com/matlabcentral/

fileexchange/38080-flow-cytometry-gui-for-matlab, MATLAB Central File Exchange.

Spatial and Phenotypic Correlation Analysis: Spatial correlations Cxy(r) were computed 

as the Pearson correlation between two groups of spatially defined objects; (1) a cell of 

group X and (2) its kth nearest neighbor of group Y, for their respective variables x and 

y. A value of Cxy (r) is computed for each k up to 100, and a distance r was assigned to 

each k as the average distance between kth nearest neighbors. More detail can be found 

in Gaglia et al.53. In Figure 7F and S7D, spatial correlation between direct neighbors k 

= 2 was calculated between the likelihood of lymphocytes belonging to lymphonets and 

non-lymphocyte cells’ likelihood of being positive for the indicated markers. Hence in the 

Cxy formula above: X = lymphocytes, x = {0 not part of a lymphonet, or 1 part of a 

lymphonet}, Y=non-lymphocyte cell, y = {0 negative or, 1 positive for marker}. For each 

marker the analysis is repeated within each of 14 human lung cancer tissues independently. 

The phenotypic correlation (in Figure 7H) is calculated by comparing the 2D probability 

density function in Palantir space, by correlating the likelihood of CD8 Tc belonging to 

a lymphonet (binned by size) and the likelihood of CD8 Tc being TCF1+ PD-1+ double 

positive.

Visinity - Visual Spatial Neighborhood Analysis—To visually explore the spatial 

neighborhoods within these data, we use the Visinity18, a scalable system for visual 

analysis in whole-slide multiplexed tissue imaging data. This system supports the analysis 

of recurrent cellular spatial neighborhoods across cohorts of specimens. Visinity is 

an open-source project (https://github.com/labsyspharm/visinity), with a JavaScript client 

for browser-based visualization and a Python server for efficient and scalable backend 

computation.

Quantifying Cellular Neighborhoods: Visinity quantifies the spatial neighborhood for 

each cell in terms of the types of cells that surround it (for Visinity the information 

contained in level 4 (Lv4) was used as the cell type information). More specifically, this 

process is as follows:

A ball-tree index structure is constructed using nuclei centroids of each segmented cell in a 

specimen, which allows for O(n + k) range queries, where n is the number of cells and k is 

the number of points within this range. We use the scikit-learn59 implementation of this data 

structure.

With the ball-tree, we identify neighboring cells within a 50 μm radius of each cell.
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We create feature vectors representing the neighborhood of each cell. Vectors are 1 × n, 

where n is the number of cell types. Columns in this vector correspond to the presence of a 

specific cell type. We linearly weight each cell in a neighborhood by its distance from the 

center so that cells just at the edge of the neighborhood radius contribute the least and sum 

these weights by cell type.

We repeat this process for every cell across all specimens, L1 normalizing the vectors. 

Each vector, which represents the neighborhood of an individual cell, is a row in a matrix 

representing all cells across all specimens.

We create a 2D embedding of this matrix using UMAP60 with the parameters n_neighbors 
= 50, min_dist = 0.1. Points close to each other in this embedding space represent cells with 

similar spatial neighborhoods

We display this embedding as an interactive scatterplot. Selecting regions in this embedding 

highlights the corresponding cells within the tissue image and we visualize the cell types 

that compose the selected neighborhood with a parallel coordinates plot.

Visinity supports both confirmatory and exploratory analysis, allowing users to detect spatial 

neighborhood patterns in a semi-automated manner and visually query across specimens for 

specific cellular neighborhoods. This workflow and the system as a whole are described in 

detail in ref 18.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Interacting networks of lymphocytes (lymphonets) from in the KP GEMM of 

lung cancer

• Small lymphonets have mostly T cells, and B cell fraction rises as networks 

enlarge

• A key feature of lymphonets is that they contain TCF1+PD-1+CD8+ T cell 

progenitors

• Lymphonets gain cytotoxic CD8+ T cells after immunotherapy
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Figure 1. Spatial analysis of KP GEMM tumor-immune microenvironment by multimodal data 
integration
(A) Schematic: KP lung cancer GEMM, treatments, and multi-modality data integration. 

(B) Images acquired from KP-LucOS GEMM tumor nodule (expressing CD8+ T cell 

antigens): H&E, multiplexed CyCIF image of immune/tumor markers (DNA, blue), Cxcl9, 

Cxcl10 RNAScope™ (DNA, blue) (serial sections), map showing distance of cells from 

tumor edge, cell-type annotation map, and ‘graph’ map of physically interacting cells 

(Delaunay Triangulation). (C) Gallery of lineage, cell-state, and functional markers from 

CyCIF images of KP LucOS. Scalebar: 1μm. (D) Sequential clustering of CyCIF data 
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using marker combinations in Figure S1C for immune, epithelial/tumor, stromal populations 

(rows=individual cells). See also Figure S1 and Table S1.
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Figure 2. Tumor antigen expression reorganizes KP lung cancer immune landscape
(A-B) H&E, CyCIF images (taken from whole-slide images) of KP-Cre versus KP-LucOS 

(antigen-expressing) tumors and quantification of normal and tumor-cell number (n=5 

mice/group, bar=mean). (C) Log2 fold ratio of cell-type densities between LucOS and 

Cre in whole-lung and tumor areas (n=5 mice/group, color: p-value). (D) Cell-density 

measurements for indicated immune cell types in whole-lung and tumor areas (n=5 mice/

group, bar=mean). (E) Log2 ratio between LucOS and Cre density of CD8+ T cells positive 

for indicated single phenotypic markers (right, inside tumor; left, outside tumor, n=5 mice/

group). (F) Representative pathology annotation of H&E. (G-H) T cell spatial frequency 

relative to vessels and tumor boundaries (G); (H) frequency of indicated cell types from 

tumor boundaries (Cre and LucOS, n=5 mice/group, mean±SEM). (I) Tumor-by-tumor 

correlation values within LucOS-tumor nodules for indicated cell types (n=29 tumors). In 

all mouse experiments in this manuscript, all tumor nodules were analyzed from 2–3 lung 

lobes/mouse for each experiment. p-values, two-tailed t-test on mean of n=5 mice/group. See 

also Figure S1 and S2, and Table S2.
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Figure 3. Antigen expression is associated with intratumoral localization of lymphonets
(A) Schematic of Visinity neighborhood quantification. Each cell is assigned to a unique 

neighborhood (all cells within a specified radius to the reference cell). Feature vectors are 

calculated representing weighted presence of each cell type within a neighborhood. Similar 

neighborhood vectors correspond to spatial patterns. (B) Visinity embedding of Cre and 

LucOS; arrows indicate immune neighborhoods enriched in normal (green) and tumor areas 

(black). (C) CyCIF images and corresponding graphic maps of interacting cell populations 

(Delaunay Triangulation) in LucOS. (D) Example lymphonets. (E) Lymphonet composition 
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across network sizes. Left, B, T cells; right, T cell subtypes (mean±25th percentile). (F) 

Number of B cells/network versus lymphonet size (mean). (G) Number of lymphonets 

identified/mouse of indicated size in Cre- and LucOS-lung tissue. (H) Fraction of B and T 

lymphocytes and (I) T cell subsets in lymphonets in Cre versus LucOS (n=5 mice/group, 

bar=mean, two-tailed t-test). (J) Left, density plots of lymphonets by distance from closest 

blood vessel (y-axis) and tumor (x-axis) in Cre and LucOS. Dot size represents lymphonet 

size (n=5 mice/group). See also Figure S3 and Table S2.
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Figure 4. CXCR3 ligands modulate lymphonet formation and size but not intratumoral 
localization
(A) CyCIF and RNAScope™ images from LucOS tumor (serial sections); cell type/state 

calls indicated. (B) %total cells expressing Cxcl9 and Cxcl10 mRNA in Cre- versus LucOS-

lung tissue (n=4 mice/group, bar=mean). (C-D) Probability density functions of distance of 

(C) indicated immune-cell populations or (D) T and B cells in or out of lymphonets from 

Cxcl9 and Cxcl10 mRNA-expressing cells in Cre and LucOS. (E) Correlation between 

likelihood of lymphocytes belonging to lymphonets and their distance to the closest 

Cxcl9 or Cxcl10 mRNA-expressing cells in Cre (blue) and LucOS (red) (n=4 mice/group, 

bar=mean). (F) Schematic: lentiviral system to deliver dRNAs and HSF1/p65 activation 

complex for CRISPR-a Cxcl10 in KP Cas9 mice. (G) Images of Cxcl9 and Cxcl10 mRNAs 

using RNAscope™ in KP-Cre versus KP Cxcl10-activated tumor nodules. (H) %total 

cells expressing Cxcl9 and Cxcl10 mRNA in KP-Cre versus KP-Cxcl10 (n=4 mice/group, 

bar=mean). (I) Number of lymphonets/mouse in KP-Cre, KP-LucOS, and KP-Cxcl10 (n=5 

mice/group, bar=mean). (J) Histogram of mean number of lymphonets/mouse of indicated 

size in KP-Cre and KP-Cxcl10 (n=5 mice/group, two-tailed KS test). (K) Plots of fraction 
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of lymphocyte populations within lymphonets in KP-Cre and KP-Cxcl10 (n=5 mice/group, 

bar=mean,). All p-value are from two-tailed t-test unless specified. See also Figure S4 and 

Table S2.
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Figure 5. Spatial analysis reveals dynamic shifts in Tc cell states and localization with 
immunotherapy
(A) Palantir projection of CD8+ Tc populations in KP-LucOS mice treated with SIINFEKL 

(SIIN) and SIYRYYGL (SIY) long-peptide vaccine (Vax) or PBS/Ctrl (n=104 cells sampled 

from n=8 and 7 mice/treatment). Expression levels of indicated markers are color mapped 

(normalized between 0.1 and 99thpercentile). Tc states (S1, S2A, S2B, S3) defined 

by multiparameter measurements indicated at extremes of representation, connected by 

transitional phenotypes (T1-T3); schematic, right. (B) Normalized fluorescence units for 

markers in indicated Tc cell states and transitions (mean±25th percentile); summary of Tc 

states and transitions; table, right. (C) Heat map of Tc cell densities in Palantir projections 

for Ctrl and Vax groups (n=104 cells/treatment). Right, stacked-bar graph of Tc cell fractions 

in each state and transition. (D) Heat map of Tc densities in Palantir projections for LucOS 

following Vax by indicated distance from tumor boundary and (E) their spatial frequency 

from tumor boundary (Vax). (F) Enrichment of S3 versus S2B relative to boundary. (G) %Tc 

cells that are TCF1+ PD-1+ in Tc cell states/transitions. See also Figure S5 and Table S2.
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Figure 6. TCF1+ PD-1+ progenitor CD8+ T cells reside within intratumoral lymphonets
(A) Proportion of T cell subtypes in lymphonets (Ctrl n=7, Vax n=8 mice, mean+SD, 

same LucOS cohort in Figure 5). (B) Number of T cell subtypes present in lymphonets 

(bar=mean, two-tailed t-test). (C) Pairwise enrichment analysis of marker co-expression in 

Tc cells in Ctrl and Vax groups (KS p-value *p<0.05,**p<0.01,***p<10−3,****p<10−4). 

(D) Plot of Tc cells present in lymphonets versus TCF1+ PD-1+ cells in Ctrl and Vax 

per mouse (dotted line, linear regression, R2=0.81). (E) Heat map of cell densities of tumor-

localized Tc cells present outside and inside lymphonets in Palantir projections for Vax-

treated cohort (n=3,736 and 806 cells, respectively). (F) Enrichment of tumor-localized Tc 

cells in lymphonets for Ctrl and Vax mice. (G) Heat map of cell densities of tumor-localized 

Tc cells present outside and inside lymphonets in Palantir projections for anti-PD-1 and 

anti-CTLA-4 treated (ICB) cohort (n=6 mice/group, n=4,276 and 1,041 cells, respectively). 

(H) Enrichment of tumor-localized Tc cells in lymphonets for Ctrl and ICB mice (n=6 

mice/group). (I) Schematic of data interpretation from Figures 5 and 6. See also Figure S6 

and Table S2.
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Figure 7. Lymphonets enriched for TCF1+ PD-1+ progenitor CD8 T cells are abundant in 
early-stage human lung adenocarcinoma
(A) Sequential clustering of immune, epithelial/tumor, stromal and ‘other’ cell populations 

(Lv1); immune cells were further clustered into lymphoid and myeloid (Lv2) and immune 

subsets (Lv3, Lv4). Rows=individual cells. 7.8 × 106 cells plotted from n=14 human lung 

adenocarcinomas. Immune clusters shown in heat map (right). (B) Horizontal-stacked bar 

graphs of cell-type fractions (Lv1–2) and lymphocyte-subtype fractions (Lv3-Lv4). (C) 

H&E, CyCIF representative images; map indicates lymphonet size. Top: tumor with small 

lymphonets (n<64 cells). Bottom: tumor with large lymphonets (n>64 cells). Scalebar: 

1mm. (D) Histogram: average number of lymphonets/sample (n=14) by lymphonet size. (E) 

Composition of lymphonets by lymphocyte type across different network sizes (mean±25th 

percentile). (F) Spatial correlation of lymphocytes’ likelihood of belonging to a lymphonet 

and the likelihood of non-lymphoid cells expressing the indicated markers (n=14 samples, 

bar=mean, Pearson correlation and p-values). (G) Heat map of density of total Tc in and 

out of lymphonets of different sizes; density of TCF1+ PD-1+ CD8+ T cells in Palantir 

projection from 14 human lung adenocarcinomas (n=21*103 cells sampled from n=14 

samples). (H) Phenotypic correlation of Palantir distributions of TCF1+ PD-1+ CD8+ Tc 

cells and lymphonets binned by lymphonet size (correlation of likelihood of CD8+ Tc 

belonging to a lymphonet (binned by size) and the likelihood of CD8+ Tc being TCF1+ 

PD-1+); gray lines represent data from individual tumors (n=14, n=3000 cells/sample); black 
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line=mean±SD; Pearson correlation and two-tailed t-test. See also Figure S7, Tables S3 and 

S4.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

InVivoMAb PD1 BioXCell Clone 29F.1A12; Cat# BE0273; RRID: 
AB_2687796

InVivoMAb CTLA4 BioXCell Clone 9H10; Cat# BE0131; RRID: 
AB_10950184

InVivoMAb rat IgG2a BioXCell Clone 2A3; Cat# BE0089; RRID: 
AB1107769

InVivoMAb polyclonal Syrian Hamster IgG BioXCell Cat# BE0087; RRID: AB_1107782

t-CyCIF: anti-human and mouse TTF1 Abcam Clone EPR5955(2); Cat# ab206726; 
RRID: AB_2857980

t-CyCIF: anti-mouse B220 (CD45R) ThermoFisher 
Scientific

Clone RA3–6B2; Cat# 41–0452-80; 
RRID: AB_2573598

t-CyCIF: anti-mouse CD45 BioLegend Clone 30-F11; Cat# 103123; RRID: 
AB_493534

t-CyCIF: anti-mouse FOXP3 ThermoFisher 
Scientific

Clone FJK-16s; Cat# 11–5773-82; RRID: 
AB_465243

t-CyCIF: anti-mouse CD4 ThermoFisher 
Scientific

Clone 4SM95; Cat# 41-9766–82; RRID: 
AB_2573637

t-CyCIF: anti-mouse CD8α Cell Signaling 
Technology

Clone D4W2Z; Cat# 98941; RRID: 
AB_2756376

t-CyCIF: anti-mouse CD103 R&D Systems Clone Polyclonal; Cat# AF1990; RRID: 
AB_2128618

t-CyCIF: anti-mouse CD11c Cell Signaling 
Technology

Clone D1V9Y; Cat# 97585; RRID: 
AB_2800282

t-CyCIF: anti-human and mouse CD11b Abcam Clone EPR1344; Cat# ab204471; RRID: 
AB_2650514

t-CyCIF: anti-mouse Nkp46 R&D Systems Clone Polyclonal; Cat# FAB2225F-025; 
RRID: AB_2149149

t-CyCIF: anti-mouse CD3e Cell Signaling 
Technology

Clone D4V8L; Cat# 99940; RRID: 
AB_2755035

t-CyCIF: anti-human and mouse Ki-67 Cell Signaling 
Technology

Clone D3B5; Cat# 12075; RRID: 
AB_2728830

t-CyCIF: anti-mouse PD-L1 Cell Signaling 
Technology

Clone D5V3B; Cat# 64988s; RRID: 
AB_2799672

t-CyCIF: anti-mouse PD-1 Cell Signaling 
Technology

Clone D7D5W; Cat# 61237; RRID: 
AB_2799604

t-CyCIF: anti-mouse Granzyme B Cell Signaling 
Technology

Clone E5V2L; Cat# 44153; RRID: 
AB_2857976

t-CyCIF: anti-mouse Perforin Cell Signaling 
Technology

Clone E3W4I; Cat# 31647; RRID: 
AB_2857978

t-CyCIF: anti-mouse TIM3 Cell Signaling 
Technology

Clone D3M9R; Cat# 83882; RRID: 
AB_2800033

t-CyCIF: anti-mouse Ly6G eBioscience Clone 1A8-Ly6G; Cat#: 12–9668-82; 
RRID: AB_2572720

t-CyCIF: anti-human and mouse TCF1 Cell Signaling 
Technology

Clone C63D9; Cat# 6709; RRID: 
AB_2797631

t-CyCIF: anti-human and mouse Vimentin Cell Signaling 
Technology

Clone D21H3; Cat# 9854; RRID: 
AB_10829352
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REAGENT or RESOURCE SOURCE IDENTIFIER

t-CyCIF: anti-human and mouse αSMA Cell Signaling 
Technology

Clone D4K9N; Cat# 76113; RRID:

t-CyCIF: anti-mouse F4/80 Cell Signaling 
Technology

Clone D2S9R; Cat# 70076; RRID: 
AB_2799771

t-CyCIF: anti-human and mouse Pan-Keratin ThermoFisher 
Scientific

Clone AE1/AE3; Cat# 53–9003-82; 
RRID: AB_1834350

t-CyCIF: anti-human and mouse PCNA Abcam Clone PC10; Cat# ab201674; RRID: 
AB_2857977

t-CyCIF: anti-human CD4 R&D Clone Polyclonal; Cat# FAB8165G; 
RRID: AB_2728839

t-CyCIF: anti-human CCR6 Abcam Clone EPR22259; Cat# ab243852; RRID: 
AB_2860033

t-CyCIF: anti-human Granzyme B Agilent Dako Clone GrB-7; Cat# M7235; RRID: 
AB_2114697

t-CyCIF: anti-human and mouse TCF1 Cell Signaling 
Technology

Clone C63D9; Cat# 6444; RRID: 
AB_2797627

t-CyCIF: anti-human FOXP3 eBioscience Clone 236A/E7; Cat# 41–4777-82; RRID: 
AB_2573609

t-CyCIF: anti-human CD8α eBioscience Clone AMC908; Cat# 50–0008-82; RRID: 
AB_2574149

t-CyCIF: anti-human and mouse TTF1 Abcam Clone EPR5955(2); Cat# ab206726; 
RRID: AB_2857980

t-CyCIF: anti-human PD-L1 Cell Signaling 
Technology

Clone E1L3N; Cat# 14123; RRID: 
AB_2798397

t-CyCIF: anti-human CD20 eBioscience Clone L26; Cat# 50– 0202-82; RRID: 
AB_11150959

t-CyCIF: anti-human TIM-3 Cell Signaling 
Technology

Clone D5D5R; Cat# 54669; RRID: 
AB_2799468

t-CyCIF: anti-human CD45 BioLegend Clone HI30; Cat# 304008; RRID: 
AB_314396

t-CyCIF: anti-human PD-1 Abcam Clone EPR4877(2); Cat# ab201825; 
RRID: AB_2728811

t-CyCIF: anti-human CD163 Abcam Clone EPR14643–36; Cat# ab218293; 
RRID: AB_2889155

t-CyCIF: anti-human CD68 Cell Signaling 
Technology

Clone D4B9C; Cat# 79594; RRID: 
AB_2799935

t-CyCIF: anti-human and mouse Ki-67 Cell Signaling 
Technology

Clone D3B5; Cat# 12075; RRID: 
AB_2728830

t-CyCIF: anti-human HLA-DPB1 Abcam Clone EPR11226; Cat# ab201527; RRID: 
AB_2890211

t-CyCIF: anti-human CD3D Abcam Clone EP4426; Cat# ab208514; RRID: 
AB_2728789

t-CyCIF: anti-human HLA A Abcam Clone EP1395Y; Cat# ab199837; RRID: 
AB_2728798

t-CyCIF: anti-human and mouse PCNA Cell Signaling 
Technology

Clone PC10; Cat# 8580; RRID: 
AB_11178664

t-CyCIF: anti-human αSMA Abcam Clone EPR5368; Cat# ab202509; RRID: 
AB_2868435

t-CyCIF: anti-human and mouse Vimentin Cell Signaling 
Technology

Clone D21H3; Cat# 9856; RRID: 
AB_10834530
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REAGENT or RESOURCE SOURCE IDENTIFIER

t-CyCIF: anti-human CD16 Santa Cruz Clone DJ130c; Cat# sc-20052 AF488; 
RRID: AB_2890161

t-CyCIF: anti-human and mouse Pan-Keratin eBioscience Clone AE1/AE3; Cat# 41–9003-82; 
RRID: AB_11218704

t-CyCIF: anti-human CD14 Abcam Clone EPR3653; Cat# ab196169; RRID: 
AB_2890135

t-CyCIF: anti-human CD19 Abcam Clone EPR5906; Cat# ab196468; RRID: 
AB_2889156

t-CyCIF: anti-human CD103 Abcam Clone EPR4166(2); Cat# ab225153; 
RRID: AB_2884945

FC: anti-mouse CD3e BD Biosciences Clone 145–2C11; Cat# 565922; RRID: 
AB_2738278

FC: anti-mouse CD8ɑ BD Biosciences Clone 53–6.7; Cat# 563786, 612759; 
RRID: AB_2732919, AB_2870090

FC: anti-mouse CD4 ThermoFisher Clone: RM4–5; Cat# 46–0042-82; RRID: 
AB_1834431

FC: anti-mouse Foxp3 ThermoFisher Clone FJK-16s; Cat# 48–5773-82; RRID 
AB_1518812

FC: anti-mouse CD44 BD Biosciences Clone IM7; Cat# 563736; RRID: 
AB_2738395

FC: anti-mouse CD45 ThermoFisher Clone 30-F11; Cat# 47– 0451-80; RRID: 
AB_1548790

FC: anti-human Granzyme B BD Biosciences Clone GB11; Cat# 515408, 562462; 
RRID: AB_2562196, AB_2737618

FC: anti-human Ki67 BD Biosciences Clone B56; Cat# 561277; RRID: 
AB_10611571

FC: anti-mouse PD1 (CD279) BioLegend Clone RMP1–30; Cat# 109120; RRID: 
AB_2566641

FC: TCF1/TCF7 Cell Signaling 
Technology

Clone C63D9; Cat# 6444; RRID: 
AB_2797627

FC: TIM3 BioLegend Clone RMT3–23; Cat# 119721; RRID: 
AB_2616907

FC: H-2Kb SIINFEKL monomer NIH Tetramer Core 
Facility

Custom

FC: H-2Kb SIYRYYGL monomer NIH Tetramer Core 
Facility

Custom

Bacterial and virus strains

Biological samples

Human formalin fixed paraffin embedded tissue samples from lung 
adenocarcinoma cases

Partners Healthcare 
Institutional Review 
Board at Brigham 

Excess tissue, discarded tissue protocol 
number 2018P001627
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REAGENT or RESOURCE SOURCE IDENTIFIER

Health, Boston, MA, 
USA

Chemicals, peptides, and recombinant proteins

SMLVLLPDEVSGLEQLESIINYEKLTEWTS New England Peptide Custom

SMLVLLPDEVSGLEQLESIINFEKLTEWTS peptide New England Peptide Custom

Cyclic-di-GMP Invitrogen Cat# tlrl-nacdg

Mirus TransIT LT1 Mirus Bio Cat# MIR 2300

Polybrene Infection Reagent Millipore Cat# TR-1003-G

Collagenase IV Worthington 
Biochemical

Cat# LS004189

DNase I Sigma-Aldrich Cat# 10104159001

Streptavidin, allophycocyanin conjugate Invitrogen Cat# S32362

Mirus TransIT LT1 Mirus Bio Cat# MIR 2300

Zombie Fixable Viability Kit BioLegend Cat# 423102

Critical commercial assays

Mouse CXCL10/IP-10/CRG-2 DuoSet ELISA R&D Systems Cat# DY466–05

Fisherbrand Superfrost Plus Microscope Slides ThermoFisher 
Scientific

Cat# 12–550-15

Intracellular Fixation & Permeabilization Buffer Set Kit ThermoFisher 
Scientific

Cat# 88–8824-00

Deposited data

Processed imaging data Synapse.org doi.org/10.7303/syn30715952

Experimental models: Cell lines

293FS* viral packaging cell line This paper N/A

GreenGo 3TZ for lentiviral titering This paper N/A

1233 KP lung adenocarcinoma This paper N/A

Experimental models: Organisms/strains

Mouse: B6.129S4-Krastm4Tyj/J Jackson Laboratories Jackson Laboratories Stock No: 008179

Mouse: B6.129P2-Trp53tm1Brn/J Jackson Laboratories Jackson Laboratories Stock No: 008462

Mouse: Rosa26LSL-Cas9-GFP-Csy4 Ng et al., 2020 N/A

Oligonucleotides

Cxcl10 dRNA Oligo 1: CACCGACAAGCAATGCCCT Sigma-Aldrich N/A

Cxcl10 dRNA Oligo 2: AAACAGGGCATTGCTTGTC Sigma-Aldrich N/A
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REAGENT or RESOURCE SOURCE IDENTIFIER

Tomato dRNA Oligo 1: CACCCGAGTTCGAGATCGA Sigma-Aldrich N/A

Tomato dRNA Oligo 2: AAACTCGATCTCGAACTCG Sigma-Aldrich N/A

Recombinant DNA

Plasmid: Lenti-Cre DuPage et al., 2011 Addgene Cat# 198712

Plasmid: Lenti-LucOS DuPage et al., 2011 Addgene Cat# 22777

Plasmid: Lenti-SAM-Puro This paper Addgene Cat# 198713

Plasmid: Lenti-SAM-Cre This paper Addgene Cat# 198714

Software and algorithms

Aperio ImageScope Leica Biosystems Version 12 https://
www.leicabiosystems.com

ImageJ NIH https://imagej.nih.gov/ij/

ImageJ BaSiC Plugin Peng et al., 2017 https://www.helmholtz-muenchen.de/icb/
research/groups/marr-lab/software/basic/
index.html

ASHLAR The Python Package 
Index; Muhlich et al. 
2021

https://pypi.org/project/ashlar/

ilastik Berg et al., 2019 https://www.ilastik.org/download.html

Visinity Warchol et al. 2022 https://github.com/labsyspharm/visinity.

Code doi.org/10.5281/zenodo.7670911

Other
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