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ABSTRACT: Distributions of methane emission rates originating
from oil and gas production facilities are highly skewed and span
6−8 orders of magnitude. Traditional leak detection and repair
programs have relied on surveys with handheld detectors at
intervals of 2 to 4 times a year to find and fix emissions; however,
this approach may lead unintended emissions to be active for the
same interval independently of their magnitude. In addition,
manual surveys are labor intensive. Novel methane detection
technologies offer opportunities to further reduce emissions by
quickly detecting the high-emitters, which account for a dispropor-
tionate fraction of total emissions. In this work, combinations of
methane detection technologies with a focus of targeting high-
emitting sources were simulated in a tiered approach for facilities
representative of the Permian Basin, a region with skewed emission rates where emissions above 100 kg/h account for 40−80% of
production site-wide total emissions, which include sensors on satellites, aircraft, continuous monitors, and optical gas imaging
(OGI) cameras, with variations on survey frequency, detection thresholds, and repair times. Results show that strategies that quickly
detect and fix high-emitting sources while decreasing the frequency of OGI inspections, which find the smaller emissions, achieve
higher reductions than quarterly OGI and, in some cases, reduce emissions further than monthly OGI.
KEYWORDS: leak detection and repair, methane emissions, greenhouse gas emissions, oil and gas, super-emitter

■ INTRODUCTION
Methane is a potent greenhouse gas which exerts the second
largest climate forcing after carbon dioxide.1 Rapid reductions
on methane emissions are needed to limit global warming to 1.5
°C. As such, in 2021, nations around the globe signed the Global
Methane Pledge, committing to reduce their collective methane
emissions 30% from 2020 levels by 2030.2 Atmospheric
methane has multiple natural and anthropogenic origins, with
activities from coal mining and oil and natural gas systems
accounting for ∼18% of global emissions for the year 2017.3

Emissions from oil and natural gas systems are seen as the sector
that can account for the majority of emission reductions by
2030, and many companies have set targets for emission
reduction.4

Multiple studies performed over the last decade have
improved the knowledge of emissions occurring along oil and
gas supply chains and have shown that emission distributions are
highly skewed,5,6 with a few number of sources accounting for a
large fraction of emissions (high-emitters). The variation of
emission rates can be significant with emission rates spanning 6
to 8 orders of magnitude (Figure 1a).7,8 Emission rates reported
from these studies are snapshots; however, absolute emissions
are given by the time an emission is active and by its emission

rate. One strategy to reduce emissions from oil and gas activities
is through mitigation of unintended emissions in leak detection
and repair (LDAR) programs, which shorten their active time.

The highest methane emission rate reported by Allen et al.,7 in
a study that sampled production sites in multiple basins with
optical gas imaging (OGI) cameras, was 5.5 kg/h (Figure 1a). If
this leak was active for 91 days (half of the time between two
times a year LDAR inspections), it would release the same
amount of methane that the highest emission rate from a study
surveying the Permian Basin using aircraft-based measure-
ments8 would if it was active for less than an hour (Figure 1b).
Thus, high emission rates active for a relatively short amount of
time can have a significant impact on total emissions, so they
should be detected and fixed quickly.
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Traditionally, LDAR programs have relied on OGI or method
21 with inspections 2 or 4 times a year, depending on the type of
facility, as currently allowed by federal regulations.9 Under this
approach, the time between surveys has been independent of the
size of leaks, leading to leaks with high emission rates to
potentially be active for large amounts of time before they are
found. However, in recent years, there have been rapid
advancements in technologies to detect methane with sensor
platforms, including aircraft, satellites, drones, trucks, and fixed
monitors or cameras on pads, offering opportunities for LDAR
programs that achieve greater emission reductions and that are
less labor intensive than conventional approaches.10

In order to compare the reduction in emissions between
LDAR programs, computational models such as the fugitive
emissions abatement simulation toolkit (FEAST)11 or LDAR-
Sim12 have been developed. With these models, it has been
demonstrated that novel technologies can achieve at least the
same reduction as 2 or 4 times a year OGI13 and that OGI
inspections are still needed in follow-up repairs from the novel
technologies to locate the detected emissions and verifying their
presence in addition to finding the smallest leaks. However,
studies that employ these models have not evaluated
combinations of multiple technologies besides aerial + OGI,
nor continuous monitors. In addition, these studies have
simulated facilities with the same equipment and components,
while the types of equipment can vary depending on their
vintage and throughput.

Multiple studies have shown that emissions from oil and gas
activities are larger than reported emissions, and the discrepancy
is attributed to large unintended emissions.14,6 There is a need to
achieve emission reductions in a way that is effective and safe as
frequent inspections using manual OGI cameras require
extensive driving between facilities. This work will assess
whether targeting high-emitting sources quickly achieves higher
reduction than conventional programs at intervals of months by
layering methane detection technologies with different
detection thresholds and survey frequencies. The facilities
simulated are heterogeneous to understand the effect of having
certain LDAR programs with more frequent surveys present
only at facilities with larger potential to emit. The effect of
varying repair times for large emissions is also evaluated. The
emission distributions are representative of the Permian Basin,

an oil and gas production basin with large contribution from
emissions above 100 kg/h (40−80% of production site-wide
total emissions).8,15−17

■ METHODOLOGY
This work uses a model based on the leak module of the
methane emission estimation tool (MEET)18,19 with the
inclusion of LDAR programs. The resulting model is similar in
operation to other open source LDAR models11,12 but has some
differences that are detailed in the following sections. The
simulation is stochastic, and each LDAR scenario was ran in a
Monte Carlo approach 50 times to estimate the 95% confidence
interval on the mean reduction. The temporal resolution of the
simulation was 1 day and was ran for a period of 5 years.
Facilities. The facilities simulated here consist of tank

batteries taken from Stokes et al.20 (priority sites) in addition to
wellhead-only sites (non-priority sites). Tank batteries include
small tank batteries, based on the number of tanks, which are
representative of older facilities and typically include one or a
few wellheads, separation equipment, and tanks on the same
pad. Tank batteries also include centralized tank batteries which
have larger numbers of tanks and typically do not have wellheads
on the pad, rather they process output from multiple wellhead-
only sites located at pads in close proximity. The types of
facilities here simulated are the first difference compared to
previous simulations.11,12 Details on equipment and component
counts at each facility are described in the Supporting
Information (SI) Section S1.
Emission Measurements. One of the most important

parameters in LDAR models is the emission distribution, which
needs to be representative of the conditions in the field, for
example by including high-emitters. Here, the approach was not
to fit a distribution to the data and rather sample from
measurements as done in Zavala-Araiza et al.14 and Allen et al.21

Only non-routine (unintended) emissions were simulated as the
objective was to estimate emission reduction; these emissions
constitute part of the total emissions at oil and gas facilities
which also include sources that occur by design.

Here, two different sources of emissions based on field data
were combined to have a representative emission distribution of
the Permian Basin. The first data set came from studies using
close-range inspections (OGI cameras or method 21) from

Figure 1. (a) Emission distributions from oil and gas infrastructure and (b) same total emissions for various emission rates and durations. The
detection threshold of OGI cameras used in Allen et al.7 is ∼0.001−0.01 kg/h, the detection threshold of Bridger is ∼1−3 kg/h, and the detection
threshold of the flyovers from Cusworth et al.8 is ∼10−20 kg/h.
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Allen et al.,7 Bell et al.,22 and Kuo et al.23 as described by Kemp
and Ravikumar13 with the addition of data from Pacsi et al.24

These studies were chosen as they have information of the
equipment where each emission originated from, which was
used to randomly assign emissions in this study from that
equipment category, for example a component at a separator will
sample from the emissions originating from separators from the
combined data sets. The second data set was from Permian
Basin flyovers from Bridger Photonics, whose distribution is
shown in Figure 1 and was also disaggregated by equipment.
This data set includes measurements that are higher than 100
kg/h, which is the definition of a super-emitter (high-emitter)
event proposed by the Environmental Protection Agency
(EPA).25 Bridger Photonics uses a continuous wave LiDAR
measurements and has been described and evaluated by Johnson
et al.26 and Conrad et al.27 Only the emissions where operators
confirmed that the source was non-routine, after following-up,
were included in the distribution except for flares whose
emission rates were taken directly from measurements while
their fraction with unintended emissions was taken from third
party data (see below). The term non-routine is used
interchangeably with leak in the text. Sensitivity analysis S0
was performed by adding to the distribution of close-range
inspections data from Eastern Research Group (ERG)28 and
Ravikumar et al.,29 as described by Kemp and Ravikumar13 and
assigning emissions randomly from a combined distribution,
independently of which equipment the data came from, except
for tanks and flares where the data come from the flyover
distribution.

Emissions from the studies using close-range inspections were
added to the flyover data set, which had 1251 site surveys, to
account for emissions below the detection threshold of the aerial
flyovers and within the partial detection range of the aerial
flyovers (see SI Section S2 for details). The first step to integrate
these measurements was to average the percentage of sites with
emissions in each close-range study, weighting the average based
on the number of sites surveyed in each study. The weighted
average resulted in 71% of sites having leaks from the close-range
inspection data sets. This value carries uncertainty as it
aggregates field studies performed in different locations with
different types of facilities and at different times and, thus, this
value was varied in sensitivity analyses S1 and S2 to be 91 and
51%, respectively, to assess the effect of this parameter on the
emission reduction results. For additional details of combining
the close-range inspection emissions with the flyover data set,
see SI Section S2.
Leak Generation Rates. Transitions between leaking and

non-leaking states were simulated with the same equations (eqs
1−3) as in the MEET model.18,19 Non-routine emissions from
tanks and flares were also simulated with these equations, and
they were modeled at the equipment level, whereas emissions
from the other equipment were modeled at the component level.

= *t t MTBF

Ln(1 random number)

next leak starts previous leak stops

(1)

= *t t MTTR

Ln(1 random number)

leak stops,no LDAR leak start

(2)

i
k
jjjjj

y
{
zzzzz= *MTTR

pLeak
1 pLeak

MTBF
(3)

where pLeak is the fraction of a particular component or
equipment that are observed to be emitting in a given point in
time based on field studies. Mean time between failures (MTBF)
is the average time it takes for a new leak to emerge and is
estimated based on field data; this variable is referred to as leak
generation rate in FEAST and LDAR-Sim. Mean time to repair
(MTTR) represents the time that leaks stop emitting outside
LDAR inspections and is a parameter referred to as null repair
rate in FEAST and LDAR-Sim.11,12 The random number is
drawn from a uniform distribution between 0 and 1. MTTR is
included in these types of models as it keeps the number of leaks
relatively steady at the value of pLeak, when averaged over a long
period of time and over multiple simulations, in scenarios that
do not have LDAR programs.

From the variables in eqs 1−3, pLeak can be directly obtained
from surveys, MTBF is typically estimated based on surveys, and
MTTR is then estimated based on eq 3. The way that MTBF is
typically estimated is to count the number of components of a
particular kind that are leaking on a given LDAR survey and then
divide the total time those components were operating in
between LDAR surveys by the number of leaks to arrive at the
average time to leak.12 The MTTR and MTBF parameters for
component type of leaks were taken directly from the MEET
model, while MTTR and MTBF for emissions from tanks and
flares were estimated using the same approach as components
based on the time between the first Bridger flyover and the
second one. Because some sites had OGI inspections in between
the aerial surveys, if a site had detected emissions during an OGI
inspection (some tanks were found to be emitting), those
findings were also counted in the number of emissions in the
time frame as they were repaired before the second Bridger
flyover. The pLeak value used for tanks was from the first aerial
surveys as this is the baseline. For flares, the pLeak was taken
from aerial surveys from the Environmental Defense Fund’s
PermianMap,30 which reports that 10% of flares in the Permian
are malfunctioning, including half of the malfunctioning as unlit.
At the beginning of the simulation, the pLeak number of each
component or equipment was assigned to determine which
components and equipment were emitting initially. Table 1

shows the values of pLeak, MTBF, and MTTR used for the base
case simulations which are default values from the MEET model
for components.18,19 MTBF and MTTR are mean values that
will lead to temporal variability of individual leaks based on eqs 1
and 2. Figure S4 shows a distribution of times for leak onset and
times before leaks stop in the absence of LDAR to illustrate the
temporal variation.

Leak generation rates and null repair rates (MTBF and
MTTR) are among the parameters with the most uncertainty
and also ones that affect outcomes the most.12,13 To account for

Table 1. Parameters Used in Base Case Scenarios for
Transition between Leaking and Non-leaking States

component/equipment pLeak MTBF [days] MTTR [days]

valves 0.00191 191,132 366
connectors 0.000665 548,968 365
open ended lines 0.00646 56,536 368
pressure relief valves 0.0272 13,398 375
flanges 0.000665 548,968 365
other 0.000665 548,968 365
tanks 0.046 1515 73
flares 0.1 1435 159
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the uncertainty in their values, Fox et al.12 suggest performing
sensitivity analyses varying these parameters. In this work,
sensitivity analyses were constructed based on empirical data on
duration of emissions from Cusworth et al.,8 which surveyed
facilities multiple times in the Permian in 2019 for a month and a
half period to assess persistency of high-emitters. To be able to
use eqs 1−3, the traditional approach is to get pLeak from
surveys, estimate MTBF from survey data, and calculate MTTR
using eq 3. Here, the approach was to first estimate MTTR
values based on empirical data on emission duration from
Cusworth et al.8 followed by calculation of MTBF values using
eq 3 and the pLeak values from surveys. A description of how
these parameters were derived is detailed in SI Section S3, and
the values varied across the sensitivity analyses are shown in
Table 2. Each leaking event is assumed to be independent of
each other at a given source and has the same recurrence rate
(i.e., same MTBF) independently of how many times it has been
repaired after being observed in LDAR surveys, which means
that absolute reductions shown in the results section represent a
lower bound.
LDAR Scenarios. In this work, multiple combinations of

technologies with various levels of detection thresholds were
used. Initially, the simulations were performed using the base
case parameters. In addition, all scenarios were performed again
for the various sensitivity analyses (S0−S5).

The first scenario was no LDAR, that serves as a baseline to
which the LDAR scenarios were compared to, in order to
estimate reduction; the first year of each simulation was not
included when estimating reduction, only years 2−5 were
included. Scenarios with only OGI surveys were included with
frequencies of 1× (one time a year), 2×, 4×, 6×, and 12× with a
detection threshold taken from Zimmerle et al.31 assuming high
experience of operators. The 4× OGI scenario corresponds to
the survey frequency proposed by EPA for new regulations, for
facilities with more than one piece of equipment on site besides
wellheads,32 and was used as reference.

Aerial scenarios were simulated in combination with OGI by
having in a given year one scheduled OGI inspection at all
facilities plus 1×−11× aerial surveys. For example, 1× aerial +
1× OGI means two inspections a year that are 6 months apart
from each other, one using aerial and one using OGI. The
detection thresholds simulated for aerial were: 2, 5, 10, and 25
kg/h. Scenarios with combinations of satellite + aerial + OGI

were included by having the same scenarios described for aerial
+ OGI, plus the satellite coverage. For satellites, two survey
frequencies that cover all facilities were included, daily revisit
and weekly revisit; while these revisit frequencies might not be
currently available, multiple satellite constellations are being
planned which will enable them.33,34 The two satellite detection
thresholds included were 50 and 100 kg/h, which are within the
range of what Jacob et al.33 described as the capabilities of point
source monitoring satellites. Scenarios with satellites + 1× OGI
and no aircraft were also included. Satellite detection of
emissions is diminished by cloud cover, and details of how its
effect was implemented in the model are described in SI Section
S4.

Continuous monitoring sensors were included using networks
of sensors: one or less than one sensor per site combined with
OGI 1×. Based on simulated data from Chen et al.,35 it was
assumed that these networks of sensors were able to detect
emissions of 5 and 10 kg/h within 1 week of emission onset
(uniform distribution, sample randomly the number of days to
detection). Additional scenarios were included that add satellite
detection in parallel with the networks of continuous monitors +
OGI.

Continuous monitors were also simulated as being present on
a site basis combined with OGI 1×. It was assumed that all sites
had sensors and emissions were detected within 1 day of onset.
The detection thresholds simulated were 0.2, 2, 5, and 10 kg/h.
Additional scenarios were included that add satellite detection
on top of the continuous monitors + OGI.

Finally, a prioritized approach was used with site level
continuous monitors present only on tank batteries (priority
sites), which have tanks and/or flares, since they are the most
common sources of high-emitters, while wellhead-only sites
(non-priority sites) were not assigned continuous monitors. The
priority sites had continuous monitors + 1× OGI, while the non-
priority sites had scenarios of 1× OGI, and 1−5× aerial + 1×
OGI. Scenarios with satellites in parallel with the described
sensors were also included. Table S2 shows in detail the
scenarios simulated.
Repair Times. Once leaks were found by the detection

technologies, they were scheduled for repair. For OGI
inspections, repair times were selected at random from a
uniform distribution between 1 and 30 days after inspections.
For aerial inspections, repair times were randomly selected

Table 2. Parameters Varied in Sensitivity Analyses and Base Case Simulations

set of
simulations

close-range inspection data sets, which are
then combined with the flyover data set

fraction of sites with emissions from close-range inspections when
combining close-range and flyover data sets at each Monte Carlo

iteration pLeaka MTBF [days]a
MTTR
[days]a

base case Allen et al.,7 Bell et al.,22 Kuo et al.,23 and
Pacsi et al.24b

0.71 tanks = 0.046;
flares = 0.1

tanks = 1515;
flares = 1435

tanks = 73;
flares = 159

sensitivity
analysis S0

Allen et al.,7 Bell et al.,22 Kuo et al.,23 Pacsi
et al.,24 ERG,28 and Ravikumar et al.29c

0.71 tanks = 0.046;
flares = 0.1

anks = 1515;
flares = 1435

tanks = 73;
flares = 159

sensitivity
analysis S1

Allen et al.,7 Bell et al.,22 Kuo et al.,23 and
Pacsi et al.24b

0.91 tanks = 0.046;
flares = 0.1

anks = 1515;
flares = 1435

tanks = 73;
flares = 159

sensitivity
analysis S2

Allen et al.,7 Bell et al.,22 Kuo et al.,23 and
Pacsi et al.24b

0.51 tanks = 0.046;
flares = 0.1

anks = 1515;
flares = 1435

tanks = 73;
flares = 159

sensitivity
analysis S3

Allen et al.,7 Bell et al.,22 Kuo et al.,23 and
Pacsi et al.24b

0.71 tanks = 0.046;
flares = 0.1

tanks = 103.7;
flares = 45

tanks & flares
= 5

sensitivity
analysis S4

Allen et al.,7 Bell et al.,22 Kuo et al.,23 and
Pacsi et al.24b

0.71 tanks = 0.046;
flares = 0.1

tanks = 207.4;
flares = 90

tanks & flares
= 10

sensitivity
analysis S5

Allen et al.,7 Bell et al.,22 Kuo et al.,23 and
Pacsi et al.24b

0.71 tanks = 0.046;
flares = 0.1

tanks = 622.2;
flares = 270

tanks & flares
= 30

aAll sets of simulations use the pLeak, MTBF, and MTTR parameters specified in Table 1 for: valves, connectors, open ended lines, pressure relief
valves, flanges, and other components. bEmissions assigned based on equipment type from measurements for all sources. cEmissions assigned
independently of equipment type from measurements except for tanks and flares.

Environmental Science & Technology pubs.acs.org/est Article

https://doi.org/10.1021/acs.est.2c08582
Environ. Sci. Technol. 2023, 57, 7382−7390

7385

https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c08582/suppl_file/es2c08582_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c08582/suppl_file/es2c08582_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c08582/suppl_file/es2c08582_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.est.2c08582/suppl_file/es2c08582_si_001.pdf
pubs.acs.org/est?ref=pdf
https://doi.org/10.1021/acs.est.2c08582?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


between 1 and 30 days after follow-up to the sites was done,
which was assumed to be 1−14 days after the site’s flyover. Leaks
found with satellites were assumed to be repaired within 2 days.
Leaks detected with continuous monitors and greater than 10
kg/h were assumed to be repaired within 7 days, while those
equal to or below this threshold within 30 days. When surveys
from different technologies coincided on the same day (e.g.,
satellite and aircraft) and if the leak was found by more than one
technology, the lowest repair time was chosen. Additional
scenarios included having leaks detected by satellites and
continuous monitors, repaired within 30 days, as opposed to
sooner, to compare the effect of varying repair times on the
emission reduction.

In total, based on the permutations of detection threshold and
repair times, 566 simulations were ran for the base case in
addition to 566 for each of the sensitivity analysis S0−S5 (see
Tables 2 and S2 for details of simulations ran). Technologies
such as aerial, continuous monitors, and satellites need a follow-
up to find the exact cause of the leak and repair it, and while
being at the site operators might survey parts or the entire facility
to find additional potential leaks. Here, it was assumed that only
the emissions found in the original surveys were repaired as a
conservative approach. Reduction is estimated by comparing
emissions of a given LDAR program to a simulation without
LDAR; if the time that a leak is active is not decreased, due to an
LDAR program, from the time that it would have stopped
emitting based on its MTTR, there is no reduction gain.

■ LDAR SIMULATION RESULTS
The following sub-sections focus on comparing emission
reductions of particular combinations of technologies with
respect to OGI, starting with episodic surveys (satellite, aerial,
and OGI), followed by combinations with continuous monitors.

SI Section S6 analyzes the effect on emission reduction of
including vs not including emissions from flares; and given that
there is no significant difference on a relative or absolute basis,
results including emissions from flares are reported in following
sub-sections. SI Section S7 assesses the change in reduction of
the sensitivity analyses compared to the base case simulations,
and it shows that the most sensitive parameters are the leak
generation and null repair rates. Results reported in following
sub-sections include base case and sensitivity analysis S3
simulations to contrast results since they have the longest and
shortest duration of high-emitters, respectively.
Combinations of Satellite, Aerial, and OGI Sensors.

The emission reduction of aerial surveys under various detection
thresholds with yearly OGI is shown in Figure 2. As has been
reported previously, emissions decrease with increasing
frequency of inspections; however, the benefit of additional
inspections has diminishing returns.13 Ravikumar36 estimated
that LDAR programs consisting of 6× aerial with yearly OGI,
having detection thresholds of 1 and 11.6 kg/h for aerial
technologies, achieve higher reductions than OGI 4× in
scenarios with high-emitters of long duration in line with the
results shown here. Per Figure 2, having a lower detection
threshold helps aerial technologies to achieve higher reductions,
particularly in scenarios of long-duration of high-emitters
(Figure 2a) as the number of flyovers per year increases. By
contrast, in scenarios with short duration of high-emitters
(Figure 2b), the detection threshold of aerial technologies is not
very sensitive.

Figure 2 also includes a tiered approach with daily satellite
revisits having a detection threshold of 50 kg/h plus the aerial
and OGI surveys. The addition of satellite-based detection leads
to substantial reductions in emissions as all scenarios that
include satellite surveys achieve more reductions than even

Figure 2. Emission reduction of LDAR scenarios with aerial + OGI and satellite + aerial + OGI for (a) base case (long duration of high-emitters) and
(b) sensitivity analysis S3 (short duration of high-emitters) scenarios. The color represents the detection threshold of the aerial technology. Horizontal
black lines indicate the reduction of OGI-only LDAR programs. The horizontal axis represents the frequency of aerial and OGI; OGI is used only once
a year in all scenarios, so the variation on frequency is due to the aerial surveys.
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monthly OGI. This reduction occurs because of the skewness in
the emission distribution where high-emitters account for a
disproportionate share of total emissions and by having a
strategy to prioritize detection and repair of the high-emitters. In
summary, significantly higher reductions can be achieved with
tiered approaches that include frequent inspections of satellites
in parallel to the aerial + OGI surveys as opposed to more
frequent aerial surveys with a lower detection threshold plus
OGI. The effect of repair times is discussed in SI Section S9.
Effect of Satellite Frequency and Detection Threshold.

Figure 3 shows the emission reductions of LDAR programs that
include satellite, aerial, and OGI technologies with variation in
satellite survey frequency and detection threshold. In scenarios
with long duration of high-emitters (Figure 3a), all combina-
tions perform better than 4× OGI and some scenarios better
than 12× OGI, particularly as the frequency of aerial surveys
increases. In scenarios of short duration of high-emitters (Figure
3b), all combinations that include a satellite perform better than
12× OGI although the reduction is significantly higher for those
with daily revisits compared to those with weekly revisits,
suggesting that satellite survey frequency is the most important
parameter followed by detection threshold.
Combinations of Continuous Monitors with Satellite

and OGI Sensors. All types of LDAR scenarios with
continuous monitoring, whether present at all sites, present
only on tank batteries (higher potential to emit) or as networks
of sensors (fewer sensors per site and longer detection times)

achieve a higher reduction than 12× OGI (Figure 4),
independently of the duration of high-emitters. In scenarios of
long durations of high-emitters, the differences between the
various scenarios of continuous monitors are relatively small;
however, the difference becomes larger as the duration of short-
emitters decreases. Here, scenarios that include a layer of
satellite detection with daily revisits achieve higher reduction
than those with only the continuous monitors and OGI as it is
assumed that emissions detected with satellites are fixed within
1−2 days, while those detected with continuous monitors and
above 10 kg/h are fixed within 7 days (LDAR types B vs A and D
vs C of Figure 4). Thus, the time to repair high-emitting sources
can also play an important role in further decreasing emissions
(see SI Section S9 for more details). Higher reductions can be
achieved as the detection threshold of continuous monitors
decreases although the difference is relatively small (LDAR
types C and D of Figure 4), suggesting that LDAR strategies that
focus on quickly finding and fixing emissions larger than 10 kg/h
are effective, due to the skewness in the emission distributions,
and emissions below this threshold can be detected in the yearly
OGI.

Scenarios with site level continuous monitoring sensors across
all sites result in larger reductions on emissions than networks of
sensors in scenarios of short duration of high-emitters (LDAR
types C vs A and D vs B, on Figure 4b). However, reductions
achieved by having only continuous monitoring on priority sites
are comparable to those having them across all sites (LDAR

Figure 3. Emission reduction of LDAR scenarios with satellite + aerial + OGI for (a) base case (long duration of high-emitters) and (b) sensitivity
analysis S3 (short duration of high-emitters) simulations. Scenario A is no satellite. Scenario B is satellite with 50 kg/h and daily revisit times. Scenario
C is satellite with 100 kg/h and daily revisit times. Scenario D is satellite with 50 kg/h and weekly revisit times. Scenario E is satellite with 100 kg/h and
weekly revisit times. Horizontal black lines indicate the reduction of OGI-only LDAR programs. The horizontal axis represents the frequency of aerial
and OGI; OGI is used only once a year in all scenarios, so the variation on frequency is due to the aerial surveys.

Figure 4. Emission reduction of LDAR scenarios with continuous monitoring + OGI with/without satellite for (a) base case (long duration of high-
emitters) and (b) sensitivity analysis S3 simulations (short duration of high-emitters). LDAR type A is networks of sensors + 1× OGI. LDAR type B is
networks of sensors + satellite with 50 kg/h detection threshold and daily revisits + 1× OGI. LDAR type C is continuous monitors at all sites + 1× OGI.
LDAR type D is continuous monitors at all sites + satellite with 50 kg/h detection threshold + 1× OGI. LDAR type E is continuous monitors only at
tank batteries + satellite with 50 kg/h and daily revisits at all facilities + 1× OGI at all facilities. Horizontal black lines indicate the reduction of OGI-only
LDAR programs. The color indicates detection thresholds of the continuous monitoring sensors.
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types D vs E on Figure 4) and, thus, strategies that have
continuous monitoring sensors located only at facilities with
equipment prone to be high-emitting are equally effective.
Overall, given that emissions can be found on a continuous basis,
the time that larger leaks are emitting is decreased significantly
and higher reductions than OGI 12× can be achieved.

■ NUMBER OF LDAR HOURS REQUIRED
In addition to evaluating emission reduction, the time needed to
carry out the LDAR programs was considered in the analysis,
including ground inspection, administrative, and driving hours.
The approach is similar to the one described by Sridharan et al.37

and is detailed in SI Section S10. Figure 5 shows the number of
hours required in each LDAR program normalized by the hours
needed in the OGI 4× program (also shown in Figures S14 and
S15 in separate sub-plots for each LDAR type for more clarity).
All simulations in the base case scenarios (Figure 5a) using
advanced detection technologies lead to less time needed than
OGI 2×, suggesting that many LDAR programs can achieve high
emission reductions and be less labor intensive. However, when
the duration of high-emitters is short, the number of site visits
can increase significantly (Figure 5b). For sensitivity analysis S3,
all scenarios of LDAR with aerial + OGI or satellite + aerial +
OGI require less hours than 4× OGI, while those that
incorporate continuous monitoring require more hours than
OGI 4×. The detection threshold of continuous monitors is
inversely proportional to the LDAR hours required as those with
lower detection threshold require more time (Figure S12).
Figure S13 shows the number of site visits required for
sensitivity analysis S4 and S5 scenarios. The duration of high-
emitters is a sensitive parameter for both the LDAR required
hours and for emission reduction (Figures 5 and S13).

■ IMPLICATIONS AND MODEL LIMITATIONS
LDAR models like the one used in this work can effectively
compare LDAR programs on a relative basis and have large
uncertainty on predicting absolute emission reductions given
the uncertainty in certain parameters. However, after varying key
parameters in sensitivity analyses, consistent results evidence
that LDAR strategies that combine detection technologies with
a focus on finding and fixing the largest emissions quickly while

having less frequent OGI inspections lead to greater reductions
than strategies with only OGI surveys at intervals of months.
Multiple combinations of technologies achieve larger reductions
than OGI 4× or even OGI 12×, giving operators multiple
options to choose from. These results are specific for oil and gas
production basins where the contribution of emissions above
100 kg/h is 40−80% of production site-wide total emissions and
could differ in basins with lower contribution from emissions
above this threshold.

One assumption of LDAR models is that the leak generation
rates are constant throughout the simulation due to limited data
on leak recurrence, in particular for high-emitters. Variations in
times of leak recurrence or absence of leak recurrence might
occur due to equipment upgrades, replacements, or preventive
maintenance. These practices were not implemented in this
work; however, they would lead to further emission reductions
than those reported here (see SI Section S11). In addition,
operational changes such as reducing routine flaring would lead
to higher reductions. While these practices were not
implemented in the simulations, recent empirical studies suggest
that effective reductions can be achieved by LDAR in the oil and
gas production sector29,38−40 and that methane emission
intensity has been decreasing in the Permian Basin as a
whole41 and for some operators.42 There is also lack of data on
the temporal characteristics of high-emitters, which is a very
sensitive parameter. Future work should focus on obtaining
information on duration of high-emitters and on root-cause
analysis, which will be particularly relevant when doing LDAR
modeling coupled with a process-based simulator (like the
MEET model) that includes routine emissions and with a finer
simulation temporal resolution. Including routine emissions in
the simulation might impact reduction as longer times might be
needed to distinguish routine vs non-routine sources and might
lead to more LDAR hours required in case operators are
dispatched to sites due to routine sources. Emissions from
gathering pipelines were not included in this work since this
model does simulations for individual facilities and not over a
particular geographic area coupled with atmospheric dispersion
models. Recent evidence suggests that this source can be
significant in some regions8,43 and novel technologies, in
particular remote sensing platforms, are helpful to detecting

Figure 5. Number of hours required by LDAR programs normalized by the hours required by OGI 4× vs their emission reduction for (a) base case
(long duration of high-emitters) and (b) sensitivity analysis S3 (short duration of high-emitters) simulations. The data points are colored by LDAR
category: “A” = OGI, “B” = aerial + OGI, “C” = satellite + aerial + OGI, “D” = satellite + OGI, “E” = continuous + OGI, “F” = satellite + continuous +
OGI, “G” = satellite + continuous at priority sites + OGI, and “H” = satellite + continuous at priority sites + aerial at non-priority sites + OGI.
Horizontal black lines indicate the number of visits of OGI-only LDAR programs. The vertical black line indicates the reduction of OGI 4×. Each data
point corresponds to one scenario in a particular LDAR category, with differences in detection threshold, frequency of inspections, and repair times.
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these emissions. Recent studies show larger emissions than the
distribution from non-routine emissions in the Permian here
used but do not distinguish if they are leaks or routine short-
duration emissions;8,16 if some of these larger emissions were
unintended, the distribution would be more skewed, leading to
even more reductions with the combinations of advanced
technologies.
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