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ABSTRACT
Differentially methylated regions (DMRs) are genomic regions with methylation patterns across 
multiple CpG sites that are associated with a phenotype. In this study, we proposed a Principal 
Component (PC) based DMR analysis method for use with data generated using the Illumina 
Infinium MethylationEPIC BeadChip (EPIC) array. We obtained methylation residuals by regressing 
the M-values of CpGs within a region on covariates, extracted PCs of the residuals, and then 
combined association information across PCs to obtain regional significance. Simulation-based 
genome-wide false positive (GFP) rates and true positive rates were estimated under a variety of 
conditions before determining the final version of our method, which we have named DMRPC. 
Then, DMRPC and another DMR method, coMethDMR, were used to perform epigenome-wide 
analyses of several phenotypes known to have multiple associated methylation loci (age, sex, and 
smoking) in a discovery and a replication cohort. Among regions that were analysed by both 
methods, DMRPC identified 50% more genome-wide significant age-associated DMRs than 
coMethDMR. The replication rate for the loci that were identified by only DMRPC was higher 
than the rate for those that were identified by only coMethDMR (90% for DMRPC vs. 76% for 
coMethDMR). Furthermore, DMRPC identified replicable associations in regions of moderate 
between-CpG correlation which are typically not analysed by coMethDMR. For the analyses of 
sex and smoking, the advantage of DMRPC was less clear. In conclusion, DMRPC is a new powerful 
DMR discovery tool that retains power in genomic regions with moderate correlation across CpGs.
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1. Introduction

DNA methylation is an epigenetic (not encoded in 
the DNA sequence) mechanism involving the 
addition of a methyl group to a DNA molecule, 
usually at CpG sites in mammalian genomes [1]. 
In humans, DNA methylation has been implicated 
in multiple diseases, such as cancer [2] and 
Alzheimer’s disease [3,4]. Relatively inexpensive 
array-based methods for assessing genome-wide 
methylation have contributed to the proliferation 
of epigenome-wide association studies (EWASs). 
The Illumina Infinium MethylationEPIC 
BeadChip (EPIC) array [5,6] measures methyla
tion at approximately 850,000 sites throughout 
the genome. This replaced the discontinued 
Infinium HumanMethylation450 BeadChip. 

Differentially methylated regions (DMRs) are 
genomic regions with methylation patterns across 
multiple CpG sites that associate with a phenotype, 
which are often performed as follow-up analyses 
after EWASs evaluating individual CpG associa
tions. Methylation at nearby sites tends to be cor
related, therefore it may be more powerful to study 
sets of sites to detect methylation differences [7–9].

Many statistical methods have been developed to 
identify DMRs. In an earlier study [10], we compared 
and evaluated five commonly used DMR-analysis 
methods developed for use with methylation-array 
data: comb-p [11], Bumphunter [12], DMRcate [13], 
mCSEA [14], and coMethDMR [15]. This 2022 study 
emphasized the importance of assessing genome-wide 
false positive (GFP) rates using genome-wide null 
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simulations, as many of the methods had elevated false 
positive rates when examining genome-wide data 
using the parameter settings as recommended by 
their developers. When analysing EPIC data, 
coMethDMR was the only method that maintained 
appropriate GFP rates, although a normalizing trans
formation was suggested for skewed-continuous phe
notypes. This led us to conclude that additional 
reliable methods for DMR analysis are warranted.

The current study proposes a novel Principal 
Component Analysis (PCA [16]; based DMR method 
(DMRPC), which we developed for the analysis of data 
generated using EPIC chips. It is an unsupervised 
analysis method, i.e., the genomic regions analysed 
were defined by grouping CpGs based on array anno
tations rather than by grouping CpGs based on the 
results of an analysis with a particular phenotype [17]. 
PCA is a popular tool that summarizes the dominant 
patterns of data and generates principal components 
(PCs) for further analyses. PCs are denoted and 
ordered by the percentages of the total amount of 
variation they explain, where the first PC (PC1) cap
tures the most variation in the data and the second PC 
(PC2) explains the next greatest amount of varia
tion, etc.

Several studies have examined PCA methods for 
summarizing variation in methylation data on 
a genome-wide level. In a study conducted by Farre 
et al., the authors adapted PCA to visualize and com
pare genome-wide patterns of DNA methylation in 
brain tissue and whole blood [18]. They found that 
PCA robustly identified DNA methylation patterns 
associated with certain biological factors such as age. 
PCA can also be implemented to summarize the cor
relation structure of methylation data within 
a genomic region. In particular, Zhang et al. [9] com
pared the performance of several DMR analysis meth
ods based on PCA of a CpG set. They evaluated both 
a PCA analysis method which generated PCs using all 
available CpG sites in a set, and a method they dub 
Supervised Principal Component Analysis (SPCA [19;  
20]; which used PCA to summarize methylation pat
terns for CpGs that were strongly correlated with the 
outcome. When analysing all CpGs in a region. Zhang 
et al. used the first k PCs of that captured at least 80% 
of the total variance in the methylation data in the 
region and applied a k-df likelihood-ratio test to 

compute the significance of the CpG set. Both their 
PCA and SPCA methods had well-controlled type 
I error rates, while SPCA was recommended when 
the correlation among CpG sites was strong. While the 
Zhang et al. study had several limitations, and the 
authors did not provide an implementation that 
could be used at scale for EWAS studies, their study 
demonstrated the feasibility of using PC-based meth
ods to represent the correlation structure of DNA 
methylation data in a region for the purposes of testing 
association between a set of CpGs and a phenotype.

In this study, we propose a novel unsupervised 
DMR method based on PCA. First, we evaluated 
two alternative methods of combining information 
from multiple PCs: a multivariate regression 
method and a meta-analysis method, which we 
dub MultiPC and MetaPC respectively. We con
ducted genome-wide null simulations to evaluate 
GFP rate, and also performed power simulations 
to evaluate true positive (TP) rates using 
coMethDMR as a comparison. We did not evalu
ate many other methods for DMR analysis of 
methylation array data, based on our study we 
noted above indicating that most had inadequate 
GFP rate control [10]. We chose the best perform
ing of our two PC-based methods as the final 
implemented method, denoted as DMRPC. 
Additionally, the ability of DMRPC to identify 
replicable DMRs was evaluated in analyses of age, 
sex, and smoking using two ‘real-world’ datasets, 
with the performance of coMethDMR as 
a benchmark.

2. Methods

2.1. Definition of regions

Our method begins by separating autosomal CpGs 
into regions using the same database of EPIC chip 
genomic positions as coMethDMR. Raw genomic 
regions are defined using the combination of two 
approaches: clustering CpG sites by region type and 
by distance. Like coMethDMR, we first grouped 
CpG sites into genic (annotated to genes) and inter
genic sets which are analysed separately, and CpG 
sites within these sets are clustered by distance. 
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Neighboring CpG sites with no more than 200 bp 
between them are grouped into a region, and only 
regions with at least three CpG sites are retained.

2.2. Computing PCs of methylation residuals

Assume we have a sample of n subjects. For the ith 

genomic region, let CpG1, CpG2, . . . , CpGp denote the 
n� 1 vectors of M-values for n subjects of p CpG sites 
in the region, where p can vary for different regions. 
Both M-values and beta-values can be used to measure 
methylation levels. The beta-values are indicative of 
the proportion of methylated DNA at a particular site 
on the genome ranging from 0 to 1. M-values are logit 
transformed beta-values using a logarithm base of 2. 
M-values have been suggested to conduct differential 
methylation analysis, while beta-values are robust to 
the type of methylation quantification and have 
a straightforward biological interpretation [21,22]. 
For our method, we first remove the effects of the 
covariates by regressing the M-value of each probe on 
covariate sets (M-values ~ covariates) using linear 
regression models:

dCpG1 ¼ α̂1 þ bβ
0

1X 

dCpG2 ¼ α̂2 þ bβ
0

2X 

. . .

dCpGp ¼ α̂p þ bβ
0

pX 

where X ¼ X1; . . . ;Xmð Þ denotes the sets 
of m covariates for n subjects and X1 denotes the 
1st covariate, etc. Then we compute methylation 
residuals as CpGj � dCpGj, where j ¼ 1; . . . ; p, 
which are then standardized (mean of 0 and 
a standard deviation [SD] of 1). For numerical 
stability, if there is no variance of M-values at 
a CpG site, we add a small amount of noise 
using R [23] function jitter(). PCA is applied to 
standardized methylation residuals to extract p 
uncorrelated methylation features. In the present 
study, the R function prcomp() was used to per
form PCA.

2.3. Analysis of PCs

We proposed two methods to compute the sig
nificance of the region by combining informa
tion across PCs: multivariate regression 
(MultiPC) and meta-analysis (MetaPC). These 
are described in detail below. When analysing 
multiple regions, false discovery rate (FDR) 
adjusted p-values (PFDR), also called q-values, 
were calculated to account for multiple test
ing [24].

MultiPC:
Assume the top k PCs can explain the pre- 

specified cumulative amount of site variation in 
a specific region. In the MultiPC method, we 
regress the phenotype on the top k PCs in 
a single modelðPhenotype~PC1 þ . . .þ PCk). 
Linear regression models are used for analysis of 
continuous phenotypes, and generalized linear 
models with a logit link function are used for 
analysing dichotomous phenotypes. Regional sig
nificance is determined by comparing the nested 
model to the full model: that is, comparing the 
naive intercept-only model to the model including 
k PCs. To be specific, we used an F-test for the 
linear regression models and a Chi-squared test for 
the generalized linear model with a logit link 
function.

MetaPC:
In the MetaPC method, we first linearly regress 

each of the top k PCs on the phenotype individu
ally (PC1 ~Phenotype; . . . ; PCk ~Phenotype). Then, 
those p-values are then meta-analysed, and the 
combined p-value is then reported as the regional 
significance. Two commonly used meta-analysis 
approaches to combine p-values were evaluated: 
Fisher’s method [25] and Stouffer’s method [26] 
as implemented in the R package metap [27]. If 
only PC1 remains in a region after filtering PCs 
with the pre-specified variation cut-off (k = 1), the 
p-value of regressing PC1 on phenotype is taken as 
the regional significance without applying a meta- 
analysis.

2.4. An existing DMR method: coMethdmr

CoMethDMR is an unsupervised DMR analysis 
method originally designed for continuous 
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phenotypes. As noted above, coMethDMR starts 
with the same sets of genic and intergenic 
regions as we are using in MetaPC and 
MultiPC and similar criteria for distance 
between probes in its region definition. 
However, coMethDMR further divides these 
regions into subsets of correlated CpG sites 
using a minimal requirement of leave-one-out 
correlation statistics, denoted as rDrop, and fil
ters out CpGs with rDrop less than a pre- 
specified threshold. In this study, when evaluat
ing coMethDMR performance, we use an rDrop 
threshold of 0.4 as recommended by the 
coMethDMR authors. Thus, coMethDMR may 
divide regions into multiple smaller subregions 
or completely drop them from consideration if 
not enough CpGs pass the rDrop threshold. 
Then, coMethDMR uses a random coefficient 
mixed model to test groups of CpGs against 
a continuous phenotype and reports FDR- 
corrected p-values to account for multiple test
ing. The coMethDMR method is implemented 
in the R package CoMethDMR [28].

Though the grouping of CpGs into regions is 
similar for our method and coMethDMR, our 
PC-based methods do not then further drop indi
vidual probes within regions based on correlation 
patterns. Because PCs have the ability to sum
marize patterns in correlated data and prioritize 
the most relevant features, we hypothesized that 
there would be no need to drop less-correlated 
probes. Distinct clusters of correlated probes 
would presumably be represented by the indivi
dual PCs and hence the association between the 
probes and the phenotype would still be 
observed, as long as the method for combining 
the information across multiple PCs was efficient. 
However, we still required some minimal level of 
correlation to be represented in a region, if even 
just between two probes. Therefore, we have 
implemented a threshold for analysis based on 
the maximum absolute pairwise correlation 
(MAC). Regions with low MACs are not included 
in the DMR analysis as, without even a single pair 
of weakly correlated CpGs within those regions, 
individual-CpG analysis is likely the best method 
for testing association.

3. Evaluation methods

3.1. Study populations and covariates

In this study, two data sets were used: a Discovery 
and a Replication cohort. The Discovery cohort was 
the Translational Research Center for TBI and Stress 
Disorders (TRACTS) cohort. TRACTS followed 
a PTSD-consortium pipeline for quality control 
[29,30]. A detailed description of TRACTS methyla
tion data pre-processing and QC can be found in 
[10]. Briefly, whole-blood methylation was assessed 
for 541 TRACTS cohort participants using EPIC 
chips. 801,812 autosomal CpG sites passed QC fil
ters. There were 13 subjects dropped due to missing 
covariates and/or genotype data, which left 528 sub
jects for analysis. The TRACTS genotype data QC 
has been described in detail elsewhere [31], and was 
used here to compute ancestry PCs used as covari
ates. The Replication cohort was the National Center 
for PTSD (NCPTSD) cohort, which included n = 654 
veterans and their intimate partners. The same con
sortium pipeline was used for QC [29,30]. 
Methylation was measured from whole blood using 
EPIC chips, and 802,682 autosomal CpG sites passed 
QC filters. Details of the generation of Replication 
cohort genotype data (used in ancestry PC calcula
tion) are presented in [32]. Seven subjects were 
dropped due to missing covariates and/or genotype 
data, which left 647 subjects for analysis.

The Discovery cohort was used in simulations to 
examine GFP rates for our PC-based methods. To 
maintain the correlation among covariates and 
among CpG sites, we used simulated phenotypes 
and real methylation array and covariate data. This 
Discovery cohort was also used in power simulations 
to compute true positive (TP) rates using selected 
genomic regions. In the ‘real data’ evaluation, we 
used both the Discovery and Replication data sets 
and observed (not simulated) phenotypes.

In the Discovery and Replication cohorts, 
M-values for each probe were residualized for 
age, sex, three ancestry principal components 
(ancestry PC1-ancestry PC3), estimated whole 
blood cell proportions (CD4+ and CD8+ T cells, 
natural killer cells, B cells, monocytes), and smok
ing scores. In both cohorts, the blood cell propor
tions were estimated from the methylation data 
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using the R package minfi [33,34]. Smoking scores 
were generated based on the top 39 probes from 
a smoking EWAS [35] as described in [36].

3.2. Simulation studies

We performed several simulation studies to 
compare the performance of MultiPC and 
MetaPC using different parameter settings: 1) 
a modest sample size null simulation (n =  
100), 2) a large sample null simulation (n =  
528), and 3) a ‘power’ simulation to evaluate 
the detection rates for simulated true loci using 
coMethDMR performance as a benchmark. The 
best-performing method based on these simula
tion results was implemented as DMRPC.

3.3. Parameters examined in simulation studies

We examined the effect of varying the threshold 
used to determine the number of PCs analysed. In 
particular, we analysed the top k PCs that 
explained at least 99%, 95%, 90%, and 80% of 
the variance in the region’s CpGs. We set k to 
be no bigger than 10 to prevent overfitting and 
numerical instability. Additionally, we evaluated 
the performance of analysing only the first PC 
(k ¼ 1) in MetaPC (denoted as MetaPC1) and in 
MultiPC (denoted as MultiPC1). In the null simu
lations, we also examined the impact of varying 
the threshold on the minimal level of correlation 
required for analysis, varying the MAC threshold 
from 0 to 0.5 by increments of 0.1.

3.4. Simulation Study 1 – measuring GFP rates in 
a sample of n = 100 subjects

For each of 1000 replicates, we randomly selected 100 
subjects from the Discovery cohort. For these subjects, 
we randomly (without respect to the sample) simu
lated each of four phenotypes: 1) a continuous phe
notype from the standard normal distribution 
(normal phenotype); 2) a skewed continuous pheno
type from a Chi-squared one degree of freedom dis
tribution; 3) a dichotomous phenotype with 50% 
cases; and 4) a dichotomous phenotype with 25% 
cases. For a corresponding examination of the GFP 
rates of coMethDMR, see our prior publication [10]. 

Example genome-wide null simulation code is avail
able on GitHub (https://github.com/ggzheng/DMR_ 
NullSimulations).

3.5. Simulation Study 2 – measuring GFP rates in 
a large sample of n = 528 subjects

In the second simulation study, we used all avail
able subjects in the Discovery cohort (n = 528). We 
simulated 1000 replicates of the same four types of 
phenotypes as in Simulation Study 1. In 
Simulation Study 2, PCs of methylation residuals 
were computed once and remained the same 
across the 1000 replicates for each simulated 
phenotype.

3.6. Simulation Study 3 – evaluation of power by 
measuring true positive rates

To evaluate the MetaPC’s and MultiPC’s ability 
to identify true signals across multiple methyla
tion correlation patterns, we picked eight repre
sentative regions for simulations, denoted as 
Regions 1–8. Four regions were chosen with 
high MAC (~0.95 and 0.99) and four with low 
MAC (~0.30 and 0.31) with a variable number 
of probes and lengths (Table 1). To generate 
region-specific known ‘true’ signals, we first 
computed the PCs for each region. To test the 
performance of detecting a trait that was asso
ciated with the largest portion of variability for 
a region, we generated a true positive signal 
associated with PC1 by defining our phenotype 
as the M-value for the probe with the highest 
absolute PC1 loading, which we call the ‘causal’ 
locus, plus random normal noise which varied 
by simulation replicate. We called this simu
lated continuous phenotype CTSPC1. To test 
performance when the phenotype was asso
ciated with one of the other primary sources 
of variation in the region, we created a similar 
phenotype from the probe with the highest fac
tor loading from PC2 plus some random nor
mal noise and denoted this random continuous 
phenotype CTSPC2. To examine algorithm per
formance when applied to a diffuse signal, we 
generated another continuous phenotype 
(denoted CTSPC1+PC2) by taking the mean of 
standardized (mean 0, SD 1) CTSPC1 and 
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CTSPC2. In addition, we generated simulated 
dichotomous phenotypes from CTSPC1, 
CTSPC2, and CTSPC1+PC2 using a median cut- 
off, which we denoted as DTSPC1, DTSPC2 and 
DTSPC1+PC2. In each simulation, each of these 
six simulated variables were tested using each 
of the PC-based methods and parameter com
bination. An observed uncorrected p-value less 
than 0.05 was considered a TP.

Note, in order to ensure that there was varia
bility in the results, so that each region was not 
detectable at 100% frequency or 0% frequency 
across methods, the standard deviation of the ran
dom normal noise added to generate CTSPC1, 
CTSPC2, and CTSPC1+PC2 was varied for the differ
ent region/phenotype combinations (See Table 1 
for details). The variability added in each case was 
substantial so that the correlations between the 
resulting phenotypes and the ‘true’ causal loci 
were modest. The median correlations were 0.13– 
0.16 between CTSPC1 and the PC1 causal locus 
across regions, 0.090–0.15 between CTSPC2 and 
the PC2 causal locus across regions, and 0.11– 
0.19 for CTSPC1+PC2 and the mean of the PC1 
and PC2 causal loci across regions. However, one 
consequence of allowing the standard deviation of 
the random noise to vary across phenotype and 
region is that the results can only be interpreted 
within each phenotype/region. That is, these dif
ferent analyses can only be used to determine 
whether the relative performance of the methods 
is consistent across multiple different generating 
conditions and cannot be used to determine which 
kind of phenotype is easiest to detect overall.

For comparison, we also applied coMethDMR 
to the power simulation data. While the same 
regions are used as the starting point for the 
coMethDMR analysis, coMethDMR additionally 
drops less-correlated probes, which can either 
cause regions as analysed by MetaPC/MultiPC to 
be split into subregions or excluded from calcula
tion entirely. No probes were dropped by 
coMethDMR in regions 3 and 4. Regions 2 and 
5–8 did not fulfill coMethDMR’s criterion and 
were not analysed by coMethDMR. The 
coMethDMR analysis divided region 1 into 3 sub
regions with 4, 12, and 11 probes respectively. 
When calculating the coMethDMR TP rate for 
region 1, a nominally significant association in 
one or more of the subregions was counted 
as a TP.

To illustrate how the simulation variables were 
generated, we have included Figure 1 which repre
sents the correlation in Region 1 as well as the 
absolute PC1/PC2 loadings on each CpG in that 
region. The two loci with the highest loadings for 
PC1 and PC2 were cg03343571 and cg22184136 
respectively, and hence these two loci are the cau
sal loci for the simulated variables. The probes 
corresponding to the three subregions as evaluated 
by coMethDMR are also represented.

3.7. Application to real data

The best-performing PC-based method based on 
GFP and TP rates in the simulations was selected 
as the final proposed method, denoted as 
DMRPC. We then compared the results of 

Table 1. Summary of Representative Genomic Regions Used in Power Simulation.

Region 
ID Listed Region

Length 
in bp # Probes AAC MAC

% Variance 
Explained

Probe with highest absolute PC 
loading (causal probe) SD added SD added

PC1 PC2 PC1 PC2 PC1 PC2

1 Chr6:30038712–30039600 888 33 0.62 0.98 68.21% 5.08% cg03343571 cg22184136 7.5 2
2 Chr6:31125920–31126373 453 17 0.054 0.31 10.48% 8.19% cg01190171 cg15724113 2 4.5
3 Chr7:27183133–27184737 1604 36 0.75 0.95 77.77% 3.03% cg17569124 cg03744763 4.5 2.5
4 Chr1:248100585–248100614 29 4 0.96 0.99 96.85% 1.88% cg20507276 cg00785941 15 12
5 Chr19:8117875–8117966 91 3 0.45 0.95 67.30% 30.93% cg11245297 cg21743830 5 1.5
6 Chr10:8095121–8096372 1251 31 0.085 0.31 10.81% 4.76% cg09728012 cg23943136 4 3
7 Chr16:67312928–67313043 115 7 0.094 0.30 23.64% 15.38% cg06297958 cg07498606 1.5 7
8 Chr15:72104228–72104417 189 4 0.13 0.30 30.06% 27.21% cg06546820 cg13703253 2 5

Note: *MAC: maximum absolute pairwise correlation; AAC: average absolute pairwise correlation; SD added: the standard deviation of the random 
noise added to the methylation (M-value) at the ‘causal’ probe. 
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DMRPC and coMethDMR by applying both 
methods to real phenotypes using the Discovery 
cohort (n = 528) and the Replication cohort (n =  
647). Age, sex, and smoking were chosen for 
examination as these are well-known to be asso
ciated with methylation at many loci [37–39]. In 
the Replication cohort, participants who reported 
never smoking, prior smokers, and current smo
kers were analysed as a continuous phenotype 
with values of 0, 1, and 2 respectively based on 
the reversion of methylation at many smoking- 
associated loci after cessation (see e.g [35]). In 
the Discovery cohort, smoking was analysed as 

a dichotomous phenotype indicating current 
smoking status (yes/no), as prior smoking beha
viour was not assessed in this cohort. The num
ber of subjects included in each DMR analysis 
varied due to missing covariate values, varying 
between 400 ~ 528 in the Discovery cohort and 
461 ~ 647 in the Replication cohort (Table 2). 
Note, that when performing DMR analyses for 
a phenotype, the phenotype was left out of the 
covariate set used to compute methylation 
residuals.

We computed the total number of regions 
analysed and DMRs reported for each 

Figure 1. Absolute Correlations between probes in Region 1.
Note: *Region 1: Chr6:30038712-30039600. 
*PC1, PC2: absolute values of PC loadings on PC1 and PC2. 
*cg03343571 and cg22184136 were the most loaded probes on PC1 and PC2, where cg22184136 was dropped out by coMethDMR. 
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phenotype. To have comparable estimates 
between coMethDMR, which often divides one 
of the DMRPC analysis regions into subregions, 
only one coMethDMR TP was counted even if 
multiple subregions were significant. To com
pare the concordance between the two methods, 
we checked DMRs among the genomic regions 
analysed in the Discovery cohort by both meth
ods, as well as only by DMRPC. We then exam
ined the replication rates for novel DMRs from 
the analysis of the Discovery cohort. By novel 
DMRs, we mean DMRs without any FDR- 
corrected genome-wide significant individual 
CpG associations in the Discovery cohort that 
were additionally only identified by one DMR 
method. The individual-CpG analyses were per
formed using the R Package limma [40] with the 
same subjects and covariate sets as in the DMR 
analyses.

In addition, we evaluated both methods in terms of 
the computational burden. We collected the cumula
tive running time and the peak memory allocation 
during the DMR analyses. All burden tests were con
ducted on the Boston University Shared Computing 
Cluster utilizing compute nodes with the same 
Ivybridge architecture and Intel Xeon E5-2650v2 
8-core processor.

3.8. DMR visualization

As part of the DMRPC development, we have 
implemented a method to visualize DMRs identi
fied by DMRPC, specifically by focusing on PCs 
exhibiting association with the trait of interest, 
and ‘high-weight’ probes with an absolute PC 
loading greater than the median probe weight 
across all probes/PCs. In our DMR plots, only 

Figure 2. The Genome-wide False Positive Rates on Genic Regions using 100 Discovery Cohort Subjects.
Note: *Genome-wide FP: genome-wide false positive rate. 
*Minimal MAC:minimal maximum absolute pairwise correlation of a genomic region 
*80%, 90%, 95%, 99%:minimal variance explained by PCs used. 
*MetaPC:meta-analysis using multiple PCs, MultiPC: multivariate regression using multiple PCs. 
*MetaPC1:meta-analysis using 1st PC only, MultiPC1: multivariate regression using 1st PC only. 
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trait-associated PCs with (nominal p-values<0.05) 
and with at least two ‘high-weight’ probes were 
plotted. Mean methylation (beta values) are pre
sented for groups as defined by the phenotype 
being analysed.

4. Results

4.1. Simulation Study 1 – measuring genome- 
wide false positive rates in a sample of n = 100 
subjects

In Simulation Study 1, analyses were based on 100 
randomly sampled subjects from the Discovery 
cohort. The genic-region results are presented in 
Figure 2 and Supplementary Tables 1A and 1B. 
MetaPC and MetaPC1 always controlled GFP 
rates around or under 0.05 (Supplementary 
Table S1A). MultiPC produced GFP rates around 
0.05 when analysing the normal phenotype but 
slight inflation for the dichotomous and skewed 

continuous phenotypes across all parameter set
tings, with GFP rates varying between 0.071 and 
0.12 for the dichotomous phenotype with 50% 
cases, between 0.10 and 0.17 for the dichotomous 
phenotype with 25% cases, and between 0.061 and 
0.11 for the skewed-continuous phenotype 
(Supplementary Table S1B). MultiPC1 had well- 
controlled GFP rates around 0.05 under most 
conditions but had slightly inflated GFP rates on 
the dichotomous with 25% cases. Intergenic- 
region results were generally very similar to 
those in genic regions (Supplementary Figure S1).

4.2. Simulation Study 2 – measuring genome- 
wide false positive rates in a large sample of n =  
528 subjects

In Simulation Study 2, we examined the genic 
regions using all available subjects from the 
Discovery cohort. All MetaPC/MetaPC1 and 

Figure 3. The Genome-wide False Positive Rates on Genic Regions using All Discovery Cohort Subjects (n = 528).
Note: *Genome-wide FP: genome-wide false positive rate. 
*Minimal MAC:minimal maximum absolute pairwise correlation of a genomic region × 80%, 90%, 95%, 99%: minimal variance 
explained by PCs used. 
*MetaPC:meta-analysis using multiple PCs, MultiPC: multivariate regression using multiple PCs. 
*MetaPC1:meta-analysis using 1st PC only, MultiPC1: multivariate regression using 1st PC only. 
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Figure 4. The True Positive Rates for Continuous Signals on Representative Regions: a.Region 1; b. Region 2; c. Region 3.
Note: Legend: *80%, 90%, 95%, 99%:minimal variance explained by PCs used. 
*MetaPC:meta-analysis using multiple PCs, MultiPC: multivariate regression using multiple PCs. 
*MetaPC1:meta-analysis using 1st PC only, MultiPC1: multivariate regression using 1st PC only. 
*CTPC1,CTPC2,CTPC1+PC2: continuous true positive signals simulated associated with PC1, PC2, and PC1+PC2. 
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MultiPC/MultiPC1 methods performed well for all 
four phenotypes with GFP rates around 0.05 
across different MAC cut-offs and the number of 
PCs included (Figure 3).

4.3. Simulation Study 3 – calculation of power 
by measuring true positive rates

Next, we evaluated the TP rates for simulated 
causal effects in eight representative regions.

Figure 4a presents the Region 1 TP rates for the 
different analysis methods and simulated continu
ous phenotypes. Unsurprisingly, MetaPC1 and 
MultiPC1, which only analyse the first PC, exhib
ited excellent performance with TP rates around 
0.94 on CTSPC1 but had poor power with low TP 
rates around 0.099 to detect associations with 
CTSPC2 compared to MetaPC and MultiPC. 
MetaPC1/MultiPC1 also performed well on 
CTSPC1+PC2 with TP rates around 0.83. MetaPC 
using Fisher’s method generally performed better 
than MetaPC using Stouffer’s method. The best TP 
rates were observed with MetaPC using Fisher’s 
and MultiPC with a minimal 80% variance cut-off 
on CTSPC1 and CTSPC1+PC2 signals (TP rates: 
0.71–0.76) or with a 90% cut-off on CTSPC2 (TP 
rates: 0.53–0.54). Next, we examined the perfor
mance of coMethDMR. The TP rates in 
coMethDMR were lower than MetaPC and 
MultiPC for CTSPC1 and CTSPC2 (TP rates: 0.17, 
0.15 respectively), but higher for CTSPC1+PC2 (TP 
rate: 0.84) when the three subregions are consid
ered jointly, although the true positive rates for 
individual subregions were lower (TP rates:
0.43–0.64).

In Region 2, the large number of probes 
required a large number of PCs to explain 
a sufficient amount of variation. All analyses 
included 10 PCs, our upper limit of the number 
of PCs analysed, which explained 69.40% of CpG 
variation. Similar to the results of Region 1, 
MetaPC1/MultiPC1 had higher detection rates 
than MetaPC and MultPC when analysing 
CTSPC1, but poorer performance when analysing 
CTSPC2 (Figure 4b). MetaPC with Fisher and 
MutiPC performance was similar (TP rates~0.25– 
0.35) and slightly higher than the performance of 
MetaPC with Stouffer’s method (TP rates 0.22– 

0.27). As previously noted, no coMethDMR results 
were generated for region 2.

In Region 3, MetaPC1/MultiPC1 performed 
well relative to the other PC-based methods 
when applied to CTSPC1 but had poorer perfor
mance when analysing CTSPC2. Apart from 
MetaPC1/MultiPC1, MetaPC using Fisher’s and 
MultiPC with an 80% variance cut-off had the 
highest TP rates (Figure 4c). Similar to the results 
in Region 1, coMethDMR had much lower TP 
rates than the PC-based methods when analysing 
CTSPC1 and CTSPC2, and a comparable TP rate 
when analysing CTSPC1+PC2. The pattern of asso
ciations were very similar in Regions 4–8 
(Supplementary Figure S2A-2E).

Results for dichotomous phenotypes were 
mixed. CoMethDMR outperformed MetaPC and 
MultiPC when analysing DTSPC1 and DTSPC1+PC2 
in Region 1 (CoMethDMR TP rates 0.66 and 0.78; 
MetaPC and MultiPC TP rates 0. 22–0.77). 
However, MetaPC using Fisher’s meta-analysis 
and MultiPC with an 80% variance had TP rates 
that were similar or higher than coMethDMR 
otherwise (MetaPC TP rates 0.30–0.86, 
coMethDMR TP rates 0.14–0.78). For a full listing 
of the TP rates for all phenotypes and regions, see 
Supplementary Table S3A-3E.

4.4. Summary of simulation results

Perhaps unsurprisingly, MetaPC1/MultiPC1, 
which focused on the first PC, were consistently 
the best-performing method when the causal locus 
was strongly weighted in the first PC, but not 
when analysing CTSPC2. Therefore, we cannot 
recommend MetaPC1/MultiPC1 for use, to avoid 
the risk of missing important signals. Apart from 
MetaPC1/MultiPC1, MetaPC using Fisher’s meta- 
analysis method with a minimal 80% variance 
explained cut-off outperformed MultiPC in terms 
of both GFP and TP rates. This best-performing 
PC-based method was chosen as our final method, 
denoted as DMRPC. When compared to the 
coMethDMR in terms of power, our chosen 
DMRPC method had a higher TP rate for the 
continuous phenotypes, except when analysing 
CTSPC1+PC2 in region 1. However, that is only 
when we combine the signal from the three 
coMethDMR subregions into a single TP rate. 
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When examining the coMethDMR results for the 
3 subregions individually, they each had a lower 
TP rate than DMRPC. We also propose using 
a MAC cut-off at 0.3 for DMRPC analysis to 
require that examined regions exhibit a certain 
minimal amount of correlation between at least 
two loci. This is a low correlation cut-off that did 
not cause any GFP inflation and also helps reduce 
the multiple-testing penalty.

4.5. Application to real data

Next, we evaluated DMRPC by examining its abil
ity to detect age, sex, and smoking-associated 
DMRs in genic regions, using coMethDMR per
formance as a baseline. Both the Discovery and 
Replication cohorts were analysed. DMRPC exam
ined 2.35 ~ 2.40 times the number of regions ana
lysed by coMethDMR (Table 2), including all of 
the regions as analysed by coMethDMR. As 
expected, given the stricter inclusion criteria used 
by coMethDMR, the median MACs of regions 
analysed by both methods were around 0.73 ~  
0.75 (interquartile rage: 0.61 ~ 0.86, Range: 0.31 ~  
1.00). For brevity’s sake, we will call these regions 
which were analysed by both coMethDMR and 
DMRPC the ‘high correlation regions.’ DMRPC 
additionally analysed a batch of regions with med
ian MAC around 0.44 ~ 0.46 (interquartile rage: 
0.36 ~ 0.57, Range: 0.30 ~ 0.99), which we will call 
the ‘moderate correlation regions.’

In the Discovery dataset, DMRPC and coMethDMR 
identified 8,961 and 2,834 age-associated DMRs 
respectively (Table 2). Among regions analysed by 
both methods (the high correlation regions), DMRPC 
identified 93.30% of the DMRs identified by 
coMethDMR and 1,608 DMRs that were not 

identified by coMethDMR, where coMethDMR cap
tured 190 DMRs that were not identified by DMRPC. 
DMRPC additionally identified 4,709 DMRs in the 
11,376 moderate correlation regions that weren’t ana
lysed by CoMethDMR. In the Replication cohort, the 
results were similar. DMRPC identified approximately 
50% more DMRs than coMethDMR in the high cor
relation regions, including over 97% of the DMRs 
identified by coMethDMR. Also in the Replication 
cohort, DMRPC identified 48.37% of the moderate 
correlation regions as age-associated DMRs compared 
to 41.39% in the Discovery dataset.

We next examined age-associated DMRs from 
the Discovery-cohort analysis for replication. We 
were particularly interested in ‘novel’ regions, 
where ‘novel’ implies DMRs that contained no 
genome-wide significant age-associated individual 
loci and were only uniquely identified by either 
DMRPC or coMethDMR in the Discovery cohort. 
The number of genome-wide significant individual 
CpGs and DMRs overlapping single-CpG hits are 
summarized in Supplementary Tables S4 and S5. 
In the high correlation regions, DMRPC identified 
58 age-associated novel DMRs (Table 3), and 
89.66% of these replicated based on genome-wide 
significant individual probe and/or DMR associa
tions observed in the Replication cohort. In com
parison, coMethDMR identified 29 age-associated 
novel DMRs and had a lower replication rate of 
75.66%. In the moderate correlation regions, 
DMRPC identified 49 novel age-related DMRs 
with a replication rate of 89.80%, nearly identical 
to the replication rate observed in the novel DMRs 
from the high-correlation regions.

Next, we performed a DMR analysis of sex. There 
were 50 (9.47%) and 237 (36.63%) female subjects in 
the Discovery and Replication cohorts respectively. 

Table 3. Replicate ‘Novel’ DMRs without EWAS Hits in the Discovery cohort that were only identified by DMRPC or coMethdmr.

Phenotype

Novel DMRs Uniquely Identify by DMRPC

Novel DMRs 
Uniquely Identify by coMethDMR

High Correlation Regions Moderate Correlation Regions High Correlation Regions

# 
All

# with 
EWAS 

Replication

# with 
DMR 

Replication

with 
EWAS/ 
DMR 

Replication # 
All

# with 
EWAS 

Replication

# with 
DMR 

Replication

with 
EWAS/ 
DMR 

Replication # 
All

# with 
EWAS 

Replication

# with 
DMR 

Replication

with 
EWAS/ 
DMR 

Replication

n % n % n %

Age 58 51 43 52 89.66 49 44 36 44 89.80 29 22 14 22 75.86
Sex 52 32 29 32 61.54 62 41 21 41 66.13 88 63 39 64 72.73
Smoking 1 0 0 0 0 2 0 0 0 0 14 1 0 1 7.14
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In the Discovery cohort, in the high correlation 
regions, DMRPC identified 1.90 times the total num
ber of sex-associated DMRs and 67.93% of the sex- 
associated DMRs reported by coMethDMR. In the 
Replication cohort, DMRPC identified 2.62 times the 
total number of sex-associated DMRs and 75.81% of 
the sex-associated DMRs reported by coMethDMR. 
In the Discovery cohort, DMRPC found 52 novel sex- 
associated DMRs with a 61.54% replication rate from 
the high-correlation regions and 62 novel DMRs 
with a 66.13% replication rate from the moderate- 
correlation regions. CoMethDMR identified 88 
novel DMRs with a with a replication rate of 72.73%.

We next examined smoking. DMRPC found 42 
and 17 smoking-associated DMRs in the 
Discovery and Replication cohorts respectively, 
and coMethDMR found 45 and 6 associated 
DMRs in the Discovery and Replication cohorts 
respectively. There were only 1 and 2 smoking- 
related novel DMRs for DMRPC from the high 
and moderate correlation regions, and 14 for 
coMethDMR from the high correlation regions. 
None of the 3 smoking-related novel DMRs 
from DMRPC were replicated, and only 1 smok
ing-associated region from the coMethDMR 
analysis was replicated. We additionally exam
ined replication using smoking EWAS results 
from an external study conducted by 
Christiansen et al. [41], which lent support for 
two more of the smoking DMRs identified by 
coMethDMR, but none of the novel DMRPC 
DMRs.

4.6. Computational burden

We compared the computational burden between 
DMRPC and coMethDMR in terms of the 

cumulative running time and the peak memory 
allocation in the analyses of age, sex, and smoking. 
In the Discovery dataset, DMRPC and used 31.69 ~  
31.93 GB of peak memory and coMethDMR used 
29.11 GB of peak memory. In terms of running 
time, DMRPC took 7.77 ~ 9.69 hours to complete 
and coMethDMR took 7.06 ~ 7.76 hours to com
plete (Table 4). Similarly, in the Replication data
set, DMRPC used 38.49 ~ 38.60 GB peak memory 
and .41 ~ 12.03 hours of cumulative running time 
and coMethDMR used 34.87 ~ 34.96 GB in peak 
memory, and 9 and 7.60 ~ 8.94 hours of cumula
tive running time.

4.7. DMR visualization

As part of the DMRPC implementation, we cre
ated a visualization tool for the display of 
DMRPC results, highlighting the methylation 
values for the probes with high weights for trait- 
associated PCs. To demonstrate this tool, we 
compared two selected age-associated DMRs in 
the Discovery cohort: Chr6:11044877–11044974 
(PFDR=3:31 � 10� 64) and Chr3:147125712– 
147127193 (PFDR=4:69� 10� 32). The Chr 6 
DMR was smaller and included 4 probes. In 
this region, two PCs were analysed, and PC1 
explained the majority of variability across the 
region (65.95%) with the same direction for of 
all its probe loadings. The mean of methylation 
levels for the two age groups differed more for 
probes with high PC1 weights than for probes 
with high PC2 weights (Figure 5a). The Chr 3 
region included 28 probes. PC1 also helped cap
ture the differential methylation patterns of this 
region (Figure 5b). Compared to using all 
probes, the difference in mean methylation levels 

Table 4. Comparison of Relative Computational Burden between DMRPC and coMethdmr.

Cohort Phenotype # Subjects

DMRPC coMethDMR

Peak Memory 
in GB

Time 
in hours

Peak Memory 
in GB

Time 
in hours

Discovery Age 528 31.93 9.69 29.11 7.76
Sex 528 31.93 9.46 29.11 7.11
Smoking (0/1) 400 31.69 7.77 29.11 7.06

Replication Age 647 38.60 12.03 34.87 8.94
Sex 647 38.60 11.99 34.87 8.55
Smoking (0,1,2) 461 38.49 9.41 34.96 7.60

Note: *Results in coMethDMR were based on two functions: CoMethAllRegions() and lmmTestAllRegions(). 
*Results should be interpreted relatively, as they may vary depending on the computer system used. The estimates of peak memory and running 

time were computed by the shared compute nodes at Boston University Shared Computing Cluster. 
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for probes with high PC1 weights differed more 
between age groups.

5. Discussion

In this study, we developed an unsupervised PC- 
based method for identifying DMRs for use with 
EPIC methylation-chip data. We proposed using 

a PC-based method due to the prior work 
demonstrating that PCs can effectively summar
ize genome-wide methylation data [18] and 
a study demonstrating that PCs can be used to 
summarize variation in a region to test associa
tion with a trait [9]. However, the optimal num
ber of PCs to be included and method of 
combining information from multiple PCs were 

Figure 5. Visualization of Two Age-related DMRs in the Discovery Cohort a.DMR: Chr6:11044877 –11,044,974 (PFDR ¼ 3:31� 10� 64). 
b.DMR: Chr3:147125712 –147,127,193 (PFDR ¼ 4:69� 10� 32).
Note: Legend: *The DMR Chr6:11044877-11044974 was the most significant age-related DMR in the Discovery cohort 
PFDR ¼ 3:31� 10� 64 with 4 probes available and a MAC of 0.77. In this region, 2 PCs were adopted in the DMRPC analysis to 
explain 86.08% total variance of methylation residuals. 
*The DMR Chr3:147125712-147127193 (PFDR ¼ 4:69� 10� 32) had 28 probes available within the region and a MAC of 0.65. In the 
region, 10 PCs were adopted in the DMRPC analysis to explain 64.85% total variance of methylation residuals. 
*Only PCs with nominal p-values<0.05 and probes (at least 2) on each PC with absolute PC loadings above the estimated 50% 
quantile were plotted. Note, weight signs (±) are arbitrary in PCA. 
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not readily apparent. Therefore, we empirically 
compared the performance of two different 
methods for analysing and combining informa
tion across multiple PCs, MetaPC and MultiPC. 
The MetaPC method requiring PCs explaining at 
least 80% variance be included in the model 
using Fisher’s method for meta-analysis had the 
best performance across all parameter settings in 
both GFP rates and TP rates. Hence, MetaPC 
was then chosen as our final proposed PC-based 
method, which we are calling DMRPC.

Based on our power simulations, the TP rate for 
DMRPC compared favourably with the perfor
mance of coMethDMR, another DMR analysis 
method. In simulation regions that were analysed 
by both DMRPC and coMethDMR, the perfor
mance of DMRPC was significantly better than 
coMethDMR when analysing simulated continu
ous phenotypes corresponding to the major 
sources of variation in the region (CTSPC1 and 
CTSPC2). That is, TP rates for coMethDMR when 
analysing these phenotypes varied from 0.034 to 
0.44 while the DMRPC TP rates over the same 
regions and phenotypes were uniformly higher 
and varied from 0.48 to 0.83 (Supplementary 
Table S3). In analyses of a third simulated contin
uous phenotype, representing a diffuse signal 
(CTSPC1+PC2), the TP rates for of coMethDMR and 
DMRPC were similar; TP rates for coMethDMR 
varied from 0.69 to 0.92, while DMRPC TP rates 
varied from 0.72 to 0.97, with DMRPC having 
higher performance in two of the three regions. 
Therefore, we can conclude that DMRPC performs 
better than coMethDMR when the trait analysed is 
continuous and corresponds to one of the major 
sources of variation in a region and has similar 
performance for continuous traits when the signal 
is diffuse. Of course, in practice, it is not possible 
to know in advance how whether a phenotype 
corresponds to one or more than one source of 
regional variation, and this may well vary from 
region to region. Overall, the comparison between 
DMRPC and coMethDMR performance when 
applied to simulated phenotypes indicated that 
DMRPC would, on-average, improve power when 
analysing continuous traits.

This was born out when we examined the 
results of a DMRPC when applied to an analysis 
of age in a Discovery and a Replication cohort. 

Among high correlation regions that were ana
lysed by both methods, DMRPC found 50% more 
DMRs than coMethDMR in both cohorts and 
identified over 90% of the DMRs found by 
coMethDMR. We also performed cross-cohort 
validation on ‘novel’ DMRs (without any genome- 
wide significant individual probes from Discovery 
cohort and only identified uniquely by one 
method). DMRPC identified more novel loci, and 
a higher proportion of the age-related novel 
DMRPC DMRs replicated.

When examining the categorical phenotypes 
and semi-categorical phenotypes (smoking in the 
replication cohort) results were mixed. We did 
not observe any consistent performance advan
tage for DMRPC relative to coMethDMR when 
applied to categorical phenotypes. In the power 
simulations, DMRPC had higher TP rates in 6 of 
the nine categorical phenotype/region combina
tions. DMRPC identified more sex-associated 
DMRs than coMethDMR in the high correlation 
regions, but had fewer novel DMRs, presumably 
due to the number of DMRPC regions which were 
included genome-wide significant individual 
CpGs. DMRPC’s replication rate for novel sex- 
associated DMRs was lower than that for 
coMethDMR. DMRPC found only 1 novel smok
ing-associated DMR, while coMethDMR identi
fied 14, but with a very low replication rate of 
7%, which indicates that low power may have 
been a complicating factor for both methods 
when applied to smoking.

All of the comparisons noted above are done on 
regions that were analysed by both DMRPC and 
coMethDMR. However, by only requiring 
a moderate level of pairwise correlation in a region, 
DMRPC analyses many more regions that aren’t 
assessed by coMethDMR, at least at the default 
DMRPC and coMethDMR settings. DMRPC identi
fied 49 age-associated DMRs in moderate correlation 
regions in the Discovery cohort that were not iden
tified by single-CpG analysis. The DMRPC replica
tion rate for these loci was virtually identical to the 
novel loci identified in high-correlation regions, 
indicating that they have similar reliability. In the 
analysis of sex, DMRPC identified 41 novel associa
tions in the moderate correlation regions, and their 
replication rate was even higher than that of the high 
correlation region sex-associated DMRs (66% vs 
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62%). Therefore, our analyses of sex and age support 
using PC-based DMR analysis in moderate correla
tion regions, as these regions can produce useful and 
reliable associations.

There are several limitations to the proposed 
work. First, we note that our performance evaluation 
was based on data that had been cleaned with 
a pipeline that accounted for chip and position 
effects. While DMRPC performed well with these 
data, we would not necessarily expect that it would 
maintain appropriate type 1 error rates in data with 
batch effects or in analysing data that had not been 
appropriately balanced when assigning samples to 
chips/positions. Sound data cleaning and batch effect 
correction is still required before analysis with 
DMRPC. We have not evaluated DMRPC on cohorts 
of less than 100 subjects due to difficulty accurately 
modelling the correlation structure within a region 
in very small cohorts. Another limitation is that the 
simulation examining power was only based on eight 
regions. However, these regions were picked to be 
representative of a large number of situations. 
Additionally, neither DMRPC nor coMethDMR was 
able to identify many smoking-related DMRs. This 
may be due to low power. We also note that our 
method was created and validated for use with EPIC 
data. However, it could be adapted to Infinium 
HumanMethylation450 BeadChip data or whole- 
genome bisulphite sequence data after careful eva
luation for GFP rate and power. Additionally, we 
only examined the performance of DMRPC as 
applied to methylation data generated from whole- 
blood samples. However, while we expect that pat
terns of methylation data would differ based on the 
tissue, we note that DMRPC performed well across 
a variety of region types, including large and small 
regions as well as regions with moderate correlation 
and high correlation, and hence, we would expect 
that the method would also perform well in other 
tissues. However, caution would suggest that gen
ome-wide null simulations are advisable to confirm 
appropriate GFP control when using DMRPC with 
new tissue/covariate set combinations. See our 
GitHub page, https://github.com/ggzheng/DMR_ 
NullSimulations, for code that can be used to imple
ment genome-wide null simulations similar to those 
performed here in Simulation 1 and 2 and our prior 
publication [10]. Another limitation is that we have 
only evaluated DMRPC’s performance on autosomal 

CpG sites. Further validation is needed to ensure that 
DMRPC performs appropriately on the sex-linked 
chromosomes. Finally, we note that when comparing 
DMRPC to coMethDMR performance, we only eval
uated coMethDMR using the parameters as sug
gested by Gomez et al. in the original paper [15]. It 
may be possible to find parameter settings that 
improve coMethDMR performance relative to what 
we see here. However, the performance of DMRPC 
across the simulated and real phenotypes as we have 
presented here supports the use of PCs to summarize 
regional DNA methylation data and as a tool for 
DMR discovery.

In summary, DMRPC is a new powerful DMR 
analysis tool for EPIC data, allowing efficient analy
sis of regions with modest between-CpG correlation. 
DMRPC takes advantage of PCA to extract PCs sum
marizing the dominant patterns in nearby correlated 
methylation loci. DMRPC is robust in controlling 
GFP rates for phenotypes with various distributions 
and had similar or better performance when analys
ing continuous phenotypes than a competing 
method, coMethDMR. Both methods were similar 
in terms of peak memory and running time, not
withstanding the fact that DMRPC examined more 
than twice the number of regions analysed by 
coMethDMR. To allow easy implementation of 
DMRPC, we have uploaded our R scripts to GitHub 
(https://github.com/ggzheng/DMRpc) Example 
code for plotting DMRs as presented in Figure 5 is 
also provided. We would recommend use of DMRPC 
for the analysis of continuous phenotype data. 
DMRPC would also be useful for the analysis of 
categorical phenotypes, although whether or not it 
has an advantage over coMethDMR on categorical 
phenotypes is less clear, and it may be beneficial to 
run both methods.
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