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Significance

Gender inequality is associated 
with worse mental health and 
academic achievement in women. 
Using a dataset of 7,876 MRI scans 
from healthy adults living in  
29 different countries, we here 
show that gender inequality is 
associated with differences 
between the brains of men and 
women: cortical thickness of the 
right hemisphere, especially in 
limbic regions such as the right 
caudal anterior cingulate and  
right medial orbitofrontal, 
 as well as the left lateral occipital, 
present thinner cortices in  
women compared to men only in 
gender-unequal countries.  
These results suggest a potential 
neural mechanism underlying  
the worse outcome of women in 
gender-unequal settings, as well as 
highlight the role of the 
environment in the brain differ-
ences between women and men.
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Gender inequality across the world has been associated with a higher risk to mental 
health problems and lower academic achievement in women compared to men. We 
also know that the brain is shaped by nurturing and adverse socio-environmental 
experiences. Therefore, unequal exposure to harsher conditions for women compared 
to men in gender-unequal countries might be reflected in differences in their brain 
structure, and this could be the neural mechanism partly explaining women’s worse 
outcomes in gender-unequal countries. We examined this through a random-effects 
meta-analysis on cortical thickness and surface area differences between adult healthy 
men and women, including a meta-regression in which country-level gender inequal-
ity acted as an explanatory variable for the observed differences. A total of 139 samples 
from 29 different countries, totaling 7,876 MRI scans, were included. Thickness of 
the right hemisphere, and particularly the right caudal anterior cingulate, right medial 
orbitofrontal, and left lateral occipital cortex, presented no differences or even thicker 
regional cortices in women compared to men in gender-equal countries, reversing to 
thinner cortices in countries with greater gender inequality. These results point to 
the potentially hazardous effect of gender inequality on women’s brains and provide 
initial evidence for neuroscience-informed policies for gender equality.

gender inequality | structural brain MRI | sex differences

Gender inequality profoundly impacts the society by creating an environment that signif-
icantly harms women. Women experience discrimination across many domains, including 
in education, the workplace, and in public office, and are disproportionately impacted by 
unpaid care work (1). However, gender inequality varies across countries as quantified 
using measures related to health, political representation, educational attainment, and 
labor market participation (2, 3). Such metrics have allowed to uncover country-level 
gender inequality associations with women’s worse mental health (4) and lower educational 
attainment (5).

Research on gender differences in brain structure could clarify possible reasons for 
gender differences in mental health problems (6). This would extend prior studies focused 
on endocrine or genetic contributions to gender differences in mental health problems 
(7, 8). Many studies find larger total intracranial volume in men, but other results are less 
consistent. This includes features of specific brain areas and findings for multiple mor-
phometric properties such as thickness or surface area (9). Other work links brain structure 
to social and environmental factors. Such factors could differentially relate to brain struc-
tures across genders, contributing to inconsistency in studies of gender differences in brain 
structure. For example, exposure to early stimulation might increase gray matter cortical 
volumes in ways that persist in adulthood (10). Similarly, adverse childhood experiences 
could influence cortical surface area, thickness, and hippocampal volumes (11). Such 
adverse experiences might include exposure to hostile environments associated with stigma 
directed toward minority groups (12) or exposure to poverty (13). Leading hypotheses 
link these associations to stress physiology (14), accelerated aging process (15, 16), levels 
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of environmental enrichment (17), and nutrition and health care 
(18). Women living in countries with high levels of gender ine-
quality experience many of these same factors that are linked in 
prior research to brain structure. These adverse experiences include 
exposure to violence (19) as well as insufficient exposure to edu-
cation and appropriate health care, both of which are considered 
indicators of gender inequality (2, 3). Therefore, it is also possible 
that brain structure is vulnerable to gender inequality: Women 
living in societies with high levels of gender inequality experience 
greater adversity, and this could negatively impact their brain 
development. Consistent with this perspective, a previous study 
based in 17 states in the United States found a trend-level associ-
ation between hippocampal volume in 10-y-old girls and views 
on gender within the state (12). An international approach with 
increased variance in gender inequality could have more power to 
examine a potential effect. Gender inequality as an aggregate of 
these adverse factors, if presenting associations with brain struc-
ture, would link an important social determinant of health to the 
brain, which in turn might help explain gender-related differences 
in psychopathology (20). Such a study might also inform public 
policy in similar ways to studies examining other social correlates 
of brain structure (21).

To examine this possibility, differences in brain structure 
between healthy adult men and women from samples obtained 
in 29 countries were entered into a random-effects meta-analysis 
including a meta-regression, in which country-level gender ine-
quality acted as an explanatory variable for the observed differ-
ences. Based on the findings from previous imaging studies on 
environmental factors, we explored associations with hemispheric 
and regional cortical thickness and surface area, as well as hip-
pocampal volume, all measured using MRI. Cortical thickness 
and surface area have been widely used in previous multicenter 
studies (22). They are genetically and developmentally distinct 
(23, 24), and arguably provide a cleaner metric than volume, 
which is a composite of the two. Moreover, they relate in different 
ways to psychopathology across age groups and distinct forms of 
diagnosis (25, 26). For our metric of gender inequality, we com-
bined the two most widely used national-level gender inequality 
metrics: the Gender Gap Index (2) and the Gender Inequality 
Index (3). We hypothesized that we would observe few structural 
differences in the brains of men and women in gender-equal coun-
tries, with differences appearing with higher levels of gender 
inequality.

Results

This study included 139 samples from 29 different countries, 
totaling 7,876 MRI scans from 4,078 women and 3,798 men 
(Figs. 1 and 2 and Dataset S1). Nearly 35.26% of the participants 
lived in low- and middle-income countries. The median mean age 
across samples was 24.19 y (range 18.83 to 31.69 y). To account 
for a potential effect of age within samples, we regressed the linear 
effect of age in each sample.

Analyses of hemisphere-wide average cortical thickness revealed 
a significant association with gender inequality in the right 
(Fig. 3A, beta 0.012 (95% CI 0.0033 to 0.020), P = 0.006, with 
an R2 = 4.34%), but not left hemisphere (beta 0.008 (95% CI 
−0.001 to 0.0155), P = 0.07; SI Appendix, Fig. S1). Countries 
with greater gender equality showed practically no differences in 
cortical thickness in the right hemisphere between the sexes. Sex 
differences emerged in countries with greater gender inequality, 
with men having thicker cortices than women. Reliability analyses 
showed that this result was not driven by a single sample 
(SI Appendix, Fig. S2). National gender inequality indices are 

associated with economic development (27). Our result remained 
significant after controlling for the logarithm of the per capita 
gross domestic product [beta 0.015 (95% CI 0.004 to 0.026), 
P = 0.0065]. Analyses looking at the association between cortical 
thickness with gender inequality in women only found that cor-
tical thickness in the right hemisphere tended to decrease with 
higher gender inequality, albeit not significantly [SI Appendix, 
Fig. S3, beta −0.022 (95% CI −0.047 to 0.0036), P = 0.093]. We 
found no evidence of an association in men [beta −0.0075 (95% 
CI −0.036 to 0.021), P = 0.6].

Analyses on brain regions of interest (68 subregions tested) 
showed that cortical thickness differences in three brain regions 
correlated significantly with gender inequality after correcting for 
multiple testing using false-discovery rate: right caudal anterior 
cingulate gyrus [beta 0.036 (95% CI 0.014 to 0.058), PFDR = 0.040], 
right orbitofrontal gyrus [beta 0.028 (95% CI 0.014 to 0.043), 
PFDR = 0.012], and left lateral occipital cortex [beta 0.017 (95% CI 
0.006 to 0.028), PFDR = 0.0495; Fig. 3 B–D]. These three areas 
shared the same pattern: There were no differences (or even thicker 
regional cortices in the case of the caudal anterior cingulate gyrus) 
in women in countries with greater gender equality, reversing to thin-
ner cortices in countries with greater gender inequality. The associ-
ation with the right caudal anterior cingulate gyrus also remained 
significant after controlling for economic development [beta 0.055 
(95% CI 0.027 to 0.084), PFDR = 0.0098], but was no longer sig-
nificant for the right medial orbitofrontal gyrus (PFDR = 0.064) or 
the left lateral occipital cortex (PFDR = 0.13).

Further analyses demonstrated that our cortical thickness results 
were consistent across several methodological variations. One 
could hypothesize that the association was driven by samples from 
China and the United States, the two countries that contributed 
the greatest number of images. Our results were not modified 
substantially when we excluded studies from those two countries 
(SI Appendix, Fig. S4). The results were also consistent when con-
sidering the individual noncombined inequality indices 
(SI Appendix, Fig. S5), including only studies performed on 3T 
MRI scanners (SI Appendix, Fig. S6), excluding very small studies 
(SI Appendix, Fig. S7), or exclusively analyzing those with visual 
quality checks performed by the same two researchers (SI Appendix, 
Fig. S8).

There were no significant associations between gender inequal-
ity and hemispheric or regional surface area (SI Appendix, Fig. S9), 
hippocampal volumes (SI Appendix, Fig. S10), or with total 
intracranial volume (SI Appendix, Fig. S11).

Discussion

The results show that country-level gender inequality is related to 
the average structural brain differences between women and men 
in cortical thickness. The effect seen was a global one, significant 
in the cortical thickness of the right hemisphere.

Gender inequality indices are composite measures that incor-
porate diverse experiences that might be mediating their effect on 
the brain through different biological mechanisms. However, we 
could hypothesize about the predominant underlying mechanisms 
based on the localized brain regions in which a significant associ-
ation was found, namely, the anterior cingulate gyrus and orbitof-
rontal gyrus. These regions have been related to several aspects of 
emotional control, including resilience to adversity (28), responses 
to inequity (29), or negative social comparisons (30). Changes in 
these regions have also been found in pathological conditions 
where stress is considered a central mechanism, including thinning 
in depression (25), or reduced volume in posttraumatic stress 
disorder (31). Stress would lead to these macroscopic changes 
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through dendritic remodeling and synaptic pruning, possibly 
mediated by stress hormones (32). Overall, the observed associa-
tion may result from exposure to an adverse environment and 
subsequent stress response throughout life. This would imply that 
sex differences in the thickness of those regions would be smaller 
in early development and increase during aging. This resonates 
with evidence highlighting the role of gender inequality in the 
higher prevalence of depression in girls which appears in adoles-
cence (33). Other data support this hypothesis about the timing 
of the observed changes. For example, stress in the adult brain 
seems to correlate most consistently with cortical thickness rather 
than cortical surface area (34, 35); similarly, hippocampal volume 
relates most consistently to early life stress (32). However, other 
mechanisms could contribute to such changes. Women could have 
lower access to beneficial, enriched environments, which could 
alter their brain structure through higher dendritic branching and 
increased synapse formation (17). Indeed, the composite indices 

of gender inequality incorporate the lower educational opportu-
nities of women compared to men. The observed associations 
could also relate to very early disturbances in development, par-
ticularly since cortical thickness peaks early in brain maturation 
(23). Our study could not examine further which of these mech-
anisms were involved, since many types of adverse experiences 
coexist across societies (36). New studies looking at specific pop-
ulations in which they are not as correlated might inform about 
the underlying mechanisms. Further insights could come from 
studies examining differences between cohorts that have been 
exposed to changing levels of adversity over time, particularly since 
some domains might improve earlier or be subject to specific policy 
interventions (such as improving perinatal care). A longitudinal 
temporal view would also strengthen the case for a causality mech-
anism in the observed association.

While analyses performed on small, nonrandom samples may 
not be representative of the population, we included multiple 

Fig. 1. Flowchart of sample selection.
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studies and from different cities in each country when possible, 
to increase representativeness. Neuroimaging is still an expensive 
tool, and despite our data including more than a third of partic-
ipants from low- and middle-income economies, only India rep-
resented the low- and lower-middle-income groups. By focusing 
on the difference between the brains of women and men within 
each site included, our analyses were less likely to be biased by 
factors related to the MRI scanner and sequence used (37), or the 
ethnic and socioeconomic background of the population studied 
(13, 38).

These results highlight the relevance of the macrosocial environ-
ment where sex differences in brain structure are manifested. Future 
studies will need to examine the mechanisms involved, their mod-
erating factors, and their timing, providing new opportunities for 
neuroscience-informed policies (21) to promote gender equality.

Materials and Methods

We included samples that reported structural MRI data (T1 weighted) acquired 
on 1.5T and 3T scanners from healthy adults aged 18 to 40  y (inclusive). 
Although “gender” is related to the individual expression of identity, gender 

inequality measured across countries is usually reduced to biological sex, 
which is also collected in many research data. We therefore use the term sex 
of participants, acknowledging incomplete overlap with gender identity. Data 
were obtained both from open-access platforms and collaborators across the 
world (Fig. 1), and they all had local institutional ethical approval. Images were 
analyzed with FreeSurfer, focusing on cortical thickness and surface area from 
68 regions of the Desikan–Killiany’s template and the two hemispheres, as 
well as the hippocampal volumes. Age was linearly regressed out from each 
sample (23). Following previous studies focusing on sex differences beyond 
brain size (9), total intracranial volume was also controlled for in the surface 
area and hippocampal volume analyses (SI Appendix, Fig. S12). When exam-
ining localized (regional) associations, we corrected results for multiple testing 
using false discovery rate (FDR). Further details of the methods can be found 
in SI Appendix. Group-level data and the script with the main analyses can 
be downloaded from https://github.com/zugmana/CLGI. Dataset S1 provides 
detailed information on how to gain access to individual-subject data from the 
different sites included.

Data, Materials, and Software Availability. Group data have been depos-
ited in Github (https://github.com/zugmana/CLGI) (39). Individual participant 
data can be accessed from different sources as detailed in Dataset S1. Some 
datasets require consent from principal investigators named there.

Fig. 2. Demographic characteristics of samples included. (A) Number of participants included in each country (bars), with different colors denoting different 
studies/samples. The right Y axis and diamonds describe gender inequality Z-score, where higher values denote higher inequality. (B) Map showing the location 
of the main institutions that performed the studies included. (C) Number of participants from high-income countries (HIC) and low- and middle-income countries 
(LMIC), highlighting participants from China and the United States. (D) Histogram with mean age and sex within and across the samples, respectively. EA&P = East 
Asia and Pacific; ME&NA = Middle East and North Africa; NAm = North America; SA = South Asia; SSA = Sub-Saharan Africa.
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