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Significance

Epithelial–mesenchymal plasticity 
is crucial for cancer metastasis 
and therapeutic resistance. Here, 
we have identified succinate as a 
novel link between the collagen 
lysyl hydroxylation and ten-
eleven translocation (TET) 
enzyme-dependent DNA 
modification that induces 
mesenchymal phenotypes in 
mammary epithelial cells. We 
show that PLOD2 expression 
during EMT is sufficient to elevate 
cytoplasmic succinate levels, 
which in turn reduces 5hmC 
accumulation in chromatin and 
enhances cancer cell plasticity/
stemness and colonization at 
secondary organs. Therefore, 
targeting the PLOD2/succinate 
axis may be a promising strategy 
to halt breast cancer progression.
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Aberrant accumulation of succinate has been detected in many cancers. However, the cellu-
lar function and regulation of succinate in cancer progression is not completely understood. 
Using stable isotope-resolved metabolomics analysis, we showed that the epithelial mesen-
chymal transition (EMT) was associated with profound changes in metabolites, including 
elevation of cytoplasmic succinate levels. The treatment with cell-permeable succinate 
induced mesenchymal phenotypes in mammary epithelial cells and enhanced cancer cell 
stemness. Chromatin immunoprecipitation and sequence analysis showed that elevated 
cytoplasmic succinate levels were sufficient to reduce global 5-hydroxymethylcytosinene 
(5hmC) accumulation and induce transcriptional repression of EMT-related genes. We 
showed that expression of procollagen-lysine,2-oxoglutarate 5-dioxygenase 2 (PLOD2) was 
associated with elevation of cytoplasmic succinate during the EMT process. Silencing of 
PLOD2 expression in breast cancer cells reduced succinate levels and inhibited cancer cell 
mesenchymal phenotypes and stemness, which was accompanied by elevated 5hmC levels 
in chromatin. Importantly, exogenous succinate rescued cancer cell stemness and 5hmC 
levels in PLOD2-silenced cells, suggesting that PLOD2 promotes cancer progression at 
least partially through succinate. These results reveal the previously unidentified function 
of succinate in enhancing cancer cell plasticity and stemness.
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Metabolic reprogramming is a hallmark of cancer (1), which is accompanied by profound 
changes in intracellular and extracellular metabolites. Otto Warburg first identified lactate 
as a cancer-associated metabolite produced through glycolysis (2). Intracellular and extra-
cellular function of lactate in cancer progression has been studied extensively (3). Dysregulation 
of alpha-Ketoglutarate (α-KG) and 2-hydroxyglutarate (2-HG) has also been detected during 
cancer development (4, 5). Mutated isocitrate dehydrogenase (IDH) converts α-KG to 
2-HG, and 2-HG acts as an antagonist of α-KG to inhibit α-KG-dependent histone and 
DNA demethylation (4, 6, 7). This 2-HG mediated epigenetic regulation is critical for 
glioma development.

Succinate, an intermediate metabolite of the tricarboxylic acid (TCA) cycle, is mainly 
generated from succinyl coenzyme A and then oxidized to fumarate by succinate dehy-
drogenase (SDH) in mitochondria (8). Cytoplasmic succinate can also be generated by 
α-KG-dependent dioxygenases as a byproduct. Accumulation of succinate has been 
observed during inflammation (9), hypertension (10), and cancer development (11). 
However, the function and regulation of succinate in cancer progression, especially in 
breast cancer, are not completely understood.

Epithelial–mesenchymal plasticity of cancer cells plays a pivotal role in tumor invasion, 
acquisition of stemness and metastasis (12). Snail, ZEB, Twist, and FoxC2 are transcription 
factors that modulate the EMT process in response to extracellular signals (12). Metabolic 
reprogramming is an important molecular event during the EMT process, and many 
metabolites are involved in EMT regulation (13). It has been shown that the ratio of α-KG 
to fumarate is elevated by lymphoid-specific helicase and subsequently alters nuclear factor 
κ-B kinase α (IKKα)-dependent EMT gene expression (14).

EMT is accompanied by enhanced extracellular matrix deposition and remodeling (15). 
We recently showed that expression of collagen and collagen synthesis-related genes is induced 
during EMT (15). PLOD2 is an enzyme that catalyzes lysyl hydroxylation on the Gly-X-Y 
motif of collagen protein (16). The hydroxylation of lysyl residues is one of the critical steps 
of collagens biosynthesis and is required for the formation of stabilized collagen cross-links 
(17). Increased expression of PLOD2 has been detected during the EMT (18). PLOD2 is 
known to be induced by HIF-1α in sarcomas (19), gastric cancer (20), and pancreatic cancer 
(21); it is regulated by FOXA1 in non-small-cell lung cancer (22) and is induced by TGF-β in 
myofibroblasts (23).
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In the present study, we revealed a novel link between collagen 
lysyl hydroxylation, succinate accumulation, and the epithelial–
mesenchymal plasticity. These results provide additional insights 
into the regulation of cytoplasmic succinate and its function in 
epigenetic reprogramming and cancer progression.

Results

EMT Is Associated with Elevation of Succinate Levels. EMT is 
associated with profound changes in metabolic reprogramming, 
which in turn promotes cancer progression (13). To examine 
what metabolites are modulated during the EMT process, we 
introduced Snail1 or Twist1 in the mammary epithelial cell line 
HMLE. Induction of EMT in Snail1- or Twist1-expressing cells 
was verified by western blot and immunofluorescence analyses 
(Fig. 1A and SI Appendix, Fig.  S1A). SIRM is a powerful and 
unbiased tool that combines mass spectrometry and NMR 
spectroscopy with isotopically enriched precursors to determine 
metabolic transformations (24). Using SIRM analysis, we identified 
hundreds of metabolites that were differentially accumulated in 
control and Twist1-expressing HMLE cells (Fig. 1B) (10.5061/
dryad.931zcrjqk). Succinate is one of the metabolites that was 
accumulated in Twist1-expressing cells (Fig.  1C). Next, we 
examined succinate levels in the soluble cytoplasm fraction and 
expanded the analysis in Snail1-, Twist1-, and TGF-β-induced 
EMT using the succinate quantification assay. Cytoplasmic 
succinate levels were significantly elevated during the EMT 
process (Fig.  1 D and E). By analyzing cytoplasmic succinate 
levels in a panel of malignant and nonmalignant mammary 

epithelial cell lines, we further confirmed that succinate levels 
were significantly higher in mammary epithelial cell lines with 
mesenchymal phenotypes compared with cell lines with epithelial 
phenotypes (Fig. 1 F and G and SI Appendix, Fig. S1B).

Succinate Induces Mesenchymal Phenotypes in Mammary 
Epithelial Cells. To explore the function of succinate during the 
EMT process, we treated HMLE and its malignant counterpart 
HMLER cells (25) with cell membrane permeable dimethyl 
succinate (DMS). Cells under this treatment gradually lost the 
epithelial morphology and acquired mesenchymal phenotypes. 
Immunofluorescence analysis showed that DMS treatment 
reduced E-cadherin levels and elevated N-cadherin and vimentin 
expression in HMLER cells (Fig.  2A). We also noticed that 
induction of EMT markers required long-term DMS treatment 
(Fig. 2B).

It is well-established that EMT induces cell migration and inva-
sion (12). Single-cell migration analysis and transwell invasion 
data showed that DMS treatment significantly enhanced cell 
migration and invasion in HMLE cells (Fig. 2 C and D and 
SI Appendix, Fig. S2 A and B). It has been shown that breast cancer 
cell lines with mesenchymal phenotypes form invasive stellate 
structures in 3D Matrigel (26). DMS treatment significantly 
enhanced the formation of invasive branch structures in HMLE 
cells (Fig. 2E). Cell migration and invasion in 3D collagen gels 
were also induced by DMS treatment (SI Appendix, Fig. S2C). 
Staining with α6-integrin and Ki67 antibodies further revealed that 
succinate treatment disrupted the acinar-like structures and enhanced 
cell proliferation in 3D culture (SI Appendix, Fig. S2 D and E). 
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Fig. 1. Succinate levels are elevated during EMT. (A) Expression of EMT markers was assessed by western blot in control, Snail1- and Twist1-expressing HMLE 
cells. (B) SIRM analysis showed the differential accumulation of metabolites in control and Twist1-expressing HMLE cells. (C) Quantification of succinate levels in 
control and Twist1-expressing HMLE cells with SIRM. M0 is unlabeled succinate, M2 is succinate with 2 13C atoms; results are presented as mean ± SEM; n = 3; 
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These results indicate that the succinate accumulation is sufficient 
to induce the EMT-related cell function.

Succinate Enhances Cancer Cell Stemness and Colonization. The 
activation of the EMT program is associated with enhanced cancer 
cell stemness and colonization potential (12). To define the roles of 
succinate in regulating cancer cell stemness, we treated HMLER 
cells with DMS and then performed the tumorsphere formation 
assay. The number of tumorspheres was significantly higher in 
the DMS-treated cells than in the control group (Fig. 3 A and 
B). Aldehyde dehydrogenase (ALDH) has been used to identify 
and isolate cell populations with cancer stem cell properties (27). 
The percentage of ALDH-high cells was significantly increased in 
DMS-treated HMLER cells compared to control cells (Fig. 3C). 
MCF7 cells had relatively low levels of succinate compared to the 
cell lines with mesenchymal phenotypes (SI Appendix, Fig. S2F). 
Enhanced tumorsphere formation was also detected in DMS-
treated MCF7 cells (Fig. 3 D and E).

To investigate the function of succinate in regulating cancer 
cell colonization, we injected control and DMS-treated HMLER 
cells into female mice via the tail vein. Six weeks after injection, 
the lungs were removed and sectioned for Hematoxylin and Eosin 
(H&E) staining. A significant higher number of metastasis lesions 
were formed in the DMS-treated cancer cells than in the control 
group (Fig. 3F). Similar experiments were performed with MCF-7 
cells in the presence of estradiol. DMS-treated MCF-7 cells also 
exhibited increased potency in lung colonization (Fig. 3G).

Succinate Reduces 5hmC Accumulation in Chromatin and 
Suppresses EMT-Related Gene Transcription. Epigenetic repro-
graming is crucial for cell plasticity and transcriptional regulation 
(28). 5hmC is the first product of 5-methylcytosine (5mC) demethy-
lation through TET dioxygenase-mediated oxidation. Increased 
DNA 5hmC in gene promoters and CpG islands is crucial for the 
transcriptional activation (29). Reduction of 5hmC has been detected 

in several malignancies, such as breast cancer (30), liver cancer (31), and 
kidney cancer (32). We showed via dot blot analysis that the Twist1- 
or Snail1-induced EMT was associated with significantly decreased 
5hmC levels (Fig. 4A). The reduction of 5hmC levels was also detected 
during the TGF-β-induced EMT (SI Appendix, Fig. S3A). By analyzing 
5hmC levels in a panel of malignant and non-malignant mammary 
epithelial cells, we further showed that DNA hydroxymethylation 
was significantly reduced in cell lines with mesenchymal phenotypes 
(Fig. 4 B and C). Interestingly, 5mC levels had no significant changes 
in HMLE cells after EMT. To examine genome-wide distribution 
of 5hmC before and after EMT, we performed ChIP-Seq analysis 
with 5hmC specific antibody (hMeDIP) in control and Twist1-
expressing HMLE cells (GSE227135). More than 130,000 peaks were 
identified of which 50% were in gene bodies. Enrichment of peaks 
in the promoter regions and CpG islands was detected (Fig. 4D). We 
also found that peak values of 5hmC at transcription start sites (TSS) 
and the number of 5hmC-high regulatory regions were reduced in 
Twist1-expressing HMLE cells (Fig. 4 E and F). These results further 
confirmed the reduction of 5hmC during the EMT process.

Succinate has been identified as a product inhibitor for the TET 
family of 5-methylcytosine hydroxylases (33, 34). Since the reduc-
tion of 5hmC during EMT is accompanied by elevated succinate 
levels, we wondered whether succinate causes 5hmC reduction. 
Dot blot analysis showed that DMS treatment significantly 
reduced 5hmC modification in chromatin (Fig. 4G). Time course 
experiments further showed that 5hmC levels were reduced 12 h 
after the DMS treatment (Fig. 4H), which is before the EMT 
phenotypes were induced.

To identify genes regulated by the succinate/5hmC axis during 
EMT, we analyzed the ChIP-Seq data and gene expression profiles 
generated from control and Twist1-expressing HMLE cells. 
Potential target genes, including DDR1, LAMC2, LHX6 and 
MYO5B, were identified. ChIP-seq analysis showed that Twist1 
expression reduced 5hmC accumulation at the DDR1 promoter 
region (SI Appendix, Fig. S3B). ChIP-PCR data further confirmed 
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Fig. 2. Succinate treatment induces EMT phenotypes in mammary epithelial cells. (A) Immunofluorescence images showing E-cadherin, N-cadherin, and vimentin 
expression in control and dimethylsuccinate (DMS)-treated (5 mM) HMLER cells, (Scale bar: 50 μm.) (B) HMLER cells were treated with DMS (5 mM) for 3 d, 10 d, 
and 20 d, and expression of EMT makers was assessed with western blot. Relative levels of E-cadherin, N-cadherin, and vimentin were quantified by normalizing 
to β-tubulin, n = 3. (C and D) Quantification of distance from origin and velocity of control and DMS-treated (5 mM) HMLE cells in a single cell migration analysis; 
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that 5hmC levels in the promoter region of DDR1 were signifi-
cantly downregulated during the Twist1- or Snail1-induced EMT 
(SI Appendix, Fig. S3C). The downregulation was accompanied 
with reduced gene expression (SI Appendix, Fig. S3D). 5hmC 
levels in the promoter regions of LAMC2, LHX6 and MYO5B 
were also significantly reduced in the Twist1-expressing cells, 
which was associated with transcription repression of these genes 
(SI Appendix, Fig. S3 E and F). Importantly, treatment with DMS 
significantly reduced expression of DDR1, LHX6 and MYO5B 
in HMLE cells (SI Appendix, Fig. S3 G and H). These results sug-
gest that succinate suppresses gene expression by reducing 5hmC 
accumulation in the regulatory regions.

PLOD2 Expression Is Induced during EMT and Elevates Cytoplasmic 
Succinate Levels. Succinate is an intermediate metabolite of the 
TCA cycle, and mitochondria is considered the major source of 
succinate via anaplerosis (11). Reduced expression or mutation 
of SDH causes succinate accumulation in mitochondria (35). 
However, the regulation of succinate in breast cancer remains to 
be determined. To determine how succinate is regulated during 
EMT, we first analyzed the expression of SDH genes in the gene 
expression profiles generated from control, Twist1- or Snail1-
expressing HMLE cells (15). Expression of the SDH gene family 
was only slightly changed during the Twist1- or Snail1-induced 

EMT (SI Appendix, Fig. S4A). Succinate can also be generated in 
cytoplasm by reaction catalyzed by α-KG-dependent dioxygenases. 
Gene expression profiling analysis showed that mRNA levels of 
several α-KG-dependent dioxygenases were induced during EMT 
(Fig. 5A). Among those genes, PLOD2 had the highest expression in 
mammary epithelial cells based on the RNA-seq data (Fig. 5B). Loss 
of function experiments further identified PLOD2, a dioxygenase 
catalyzing lysyl hydroxylation on collagen, as a major positive 
regulator of cytoplasmic succinate in mammary epithelial cells 
(Fig. 5C), while silencing LOX or LOXL2 only reduced 5 to 15% 
of succinate accumulation in the cytoplasm. We confirmed that 
PLOD2 expression was induced during EMT (Fig. 5D). PLOD2 
protein levels were also upregulated in breast cancer cell lines with 
mesenchymal phenotypes (Fig. 5E), which is correlated with the 
elevation of cytoplasmic succinate levels in these cell lines.

PLOD2 protein has two isoforms, LH2a and LH2b. LH2a does 
not contain the exon 13A and is 21 amino acids shorter than LH2b. 
We analyzed mRNA levels of these two isoforms in a panel of malig-
nant and nonmalignant mammary epithelial cell lines. LH2a and 
LH2b were both expressed in mammary epithelial cells (Fig. 5 F 
and G). The ratios of LH2b/LH2a were higher in ER-negative cell 
lines compared to ER-positive cell lines (Fig. 5H). The LH2b/LH2a 
ratio was also significantly increased in mammary epithelial cell lines 
with mesenchymal phenotypes (Fig. 5H). In addition, both Twist1 
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and Snail1 induced LH2b expression in HMLE cells (Fig. 5G), 
indicating that LH2b is the major isoform induced during the EMT 
process. Next, we introduced exogenous LH2b in HMLE cells with 
lentivirus. Ectopic LH2b expression significantly elevated cytoplas-
mic succinate levels (Fig. 5 I and J). These results indicate that 
PLOD2 (LH2b) expression is sufficient to enhance the accumula-
tion of cytoplasmic succinate during EMT.

PLOD2 Expression Enhances Cancer Cell Stemness and Reduces 
5hmC Accumulation through Succinate. Next, we asked whether 
increased PLOD2 expression enhances mesenchymal phenotypes and 
EMT-related stemness in mammary epithelial cells. Ectopic expression 
of PLOD2 (LH2b) promoted cell migration in HMLE cells (Fig. 6 
A–C). Silencing PLOD2 significantly reduced invasive phenotypes 
of breast cancer cells in 3D culture (Fig. 6D). We also found that 
expression of LH2b enhanced stem cell properties in HMLE cells 
(Fig. 6 E and F). Conversely, silencing PLOD2 in MDA-MB-231 
and MDA-MB-157 cells reduced the ALDH-high cell population 
and inhibited tumorsphere formation (Fig. 6 G–I). DMS treatment 
partially rescued tumorsphere formation in PLOD2-silenced MDA-
MB-231 and MDA-MB-157 cells (Fig. 6I and SI Appendix, Fig. S4B). 
These results suggest that the function of PLOD2 in enhancing cancer 
cell stemness is at least partially regulated through succinate.

To determine whether PLOD2 is involved in epigenetic regu-
lation, we examined 5hmC levels in control, PLOD2-silenced, 
and PLOD2-expresing cells. Ectopic expression of PLOD2 

(LH2b) in MCF-10A and HMLE cells reduced 5hmC levels 
(Fig. 7 A and B). Quantitative RT-PCR and ChIP data showed 
that overexpression of PLOD2 inhibited transcription of LAMC2, 
LHX6, and MYO5B, which was accompanied by reduced 5hmC 
levels in promoter regions (SI Appendix, Fig. S5 A and B). Silence 
of PLOD2 in MDA-MB-231 and MDA-MB-157 cells signifi-
cantly elevated 5hmC levels, while this elevation was inhibited by 
the DMS treatment (Fig. 7 C and D and SI Appendix, Fig. S5C). 
We also found that expression of LAMC2, LHX6, and MYO5B 
genes was induced in PLOD2-silenced cells (SI Appendix, 
Fig. S5D). These results suggest that PLOD2-induced 5hmC 
reduction and transcriptional repression are succinate dependent. 
By comparing PLOD2 protein and 5hmC levels in a human breast 
cancer tissue microarray, we further showed that increased expres-
sion of PLOD2 protein was associated with reduced 5hmC levels 
in nuclei (Fig. 7 E and F).

Increased PLOD2 Expression Promotes Cancer Cell Colonization. 
By analyzing PLOD2 expression in published gene expression 
profiles generated from human breast cancer tissues (36), we 
showed that increased PLOD2 expression correlated with short 
metastasis-free survival (Fig. 8 A and B). Since PLOD2 expression 
is crucial for the maintenance of cancer cell stemness; we wondered 
if PLOD2 expression is required for colonization of metastatic 
cancer cells. Control and PLOD2-silenced MDA-MB-231-cell 
(luciferase-labeled) were injected into SCID mice via tail vein, 
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and cancer cell colonization was monitored with IVIS imaging. 
Quantified bioluminescence data and H&E staining showed that 
silencing PLOD2 significantly reduced cancer cell colonization in 
the lungs (Fig. 8 C and D).

MCF7 cells exhibited low succinate levels and PLOD2 expres-
sion with relatively high 5hmC levels compared to the cells that 
have undergone EMT (SI Appendix, Fig. S5E). To determine 
whether PLOD2 expression is sufficient to enhance cancer cell 
colonization, we introduced exogenous LH2a and LH2b into 
MCF-7 cells (Fig. 8E). Control, LH2a-, or LH2b-expressing cells 
were injected into SCID mice in the presence of estradiol. 
Expression of LH2b but not LH2a in MCF-7 cells significantly 
increased the number of metastatic lesions in the lungs (Fig. 8 F 
and G). These results suggest that LH2b is the major isoform that 
promotes cancer metastasis during breast cancer progression.

Discussion

Accumulation of succinate has been detected in thyroid cancer, 
ovarian cancer, neuroblastoma (37), gastric cancer and renal 
carcinoma (38). The TCA cycle in mitochondria is the major 

source of succinate (11). However, the function and regulation 
of cytoplasmic succinate in cancer progression have not been 
fully understood. Here, we showed that cytoplasmic succinate 
levels were associated with EMT in malignant and nonmalignant 
mammary epithelial cells, and that elevated PLOD2 expression 
was sufficient to increase succinate levels (Fig. 8H).

Succinate is a metabolite with multiple cellular functions. The 
intracellular α-KG/succinate ratio modulates pluripotency in 
embryonic stem cells through the TET-dependent epigenetic reg-
ulation (39). 5hmC is generated by TET-induced 5mC oxidation 
during DNA demethylation. It is enriched in gene promoters and 
CpG islands and contributes to transcriptional activation (29). We 
showed that accumulation of cytoplasmic succinate reduced 5hmC 
levels in chromatin and contributed to TET-induced epigenetic 
reprogramming during the EMT process. Interestingly, levels of 
5mC in chromatin had no significant changes during EMT, sug-
gesting that only a small portion of 5mC is demethylated during 
the EMT process.

It has been shown that succinate inhibits prolyl hydroxylase 
domain enzyme in macrophages, resulting in HIF-1α stabilization 
(9). A similar function of succinate has been detected in FH and 
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SDH mutant tumors (35). Succinate has also been identified as 
an inhibitor for histone demethylases (33). Given the crucial func-
tion of HIF-1 pathway and histone methylation in EMT regula-
tion, it would be interesting to examine whether these two targets 
also mediate succinate function in regulating gene expression and 
epithelial–mesenchymal plasticity.

Cancer stem cells are the drivers of tumorigenesis, distant 
metastasis, and therapeutic tolerance (40). Activation of the EMT 
program induces cancer stemness, and subsequently enhances 
cancer cell colonization (41). We have identified succinate as a 
new EMT-related metabolite that enhances cancer cell stemness. 
Succinate levels were elevated during Twist1- or Snail1-induced 
EMT and in breast cancer cells with mesenchymal phenotypes. 
Importantly, exogenous succinate was sufficient to induce EMT 
phenotypes and enhance stemness in mammary epithelial cells. 
These results highlight the crucial function of succinate in regu-
lating cancer cell stemness and cancer progression.

Succinate is not the only metabolite that enhances EMT and 
cancer cell stemness. It has been shown that α-KG accumulation 
inhibits tumor progression and metastasis by suppressing the 
ZEB1/CtBP1-MMP3 axis and EMT phenotype through 
TET-mediated promoter demethylation (42, 43). Unsaturated 
fatty acids accumulated in ovarian CSCs regulate stemness gene 
by activating NF-κB (44). Increased glucose uptake and lactate 
secretion are prominent metabolic adaptations during EMT in a 
human PDAC cell line (45). Asparagine together with glutamine 
induces tumor growth and metastasis by modulating cell survival, 
growth, and EMT regulatory pathways (46, 47).

PLOD2 catalyzes lysyl hydroxylation on procollagen, and 
succinate is a byproduct in the reaction. Research on PLOD2 
function in cancer progression has mainly focused on collagen 
crosslink and ECM remodeling in tumor tissue. Using both 
gain- and loss-of-function approaches, we identified PLOD2 as 
a major regulator of cytoplasmic succinate during EMT. We 
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of ALDH activity in control and PLOD2-overexpressed HMLE cells; **P < 0.01, independent t test. (G and H) FACS analysis of ALDH activity in control and PLOD2-
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showed that silencing PLOD2 expression inhibited cancer cell 
stemness and cancer cell colonization. Interestingly, exogenous 
succinate rescued these phenotypes in PLOD2-silenced cells, 
suggesting that PLOD2 function in breast cancer is at least par-
tially mediated by succinate.

Two isoforms of PLOD2, LH2a and LH2b, are differentially 
expressed in certain tissue and cell lines (48). PLOD2 expression is 
induced during cancer development (16, 19, 49); however, expres-
sion of these two isoforms has not been explored in breast cancer. 
We found that LH2a and LH2b were differentially expressed in 
breast cancer cell lines. LH2b expression was significantly induced 
during EMT and in ER negative cancer cell lines. The differential 
expression of LH2a and LH2b during the EMT may be regulated 
by spicing factors ESRP1 and RBFOX2 (50). We showed that 
LH2b was more potent in enhancing cancer cell colonization in the 
lungs. It is important in the future to determine whether deletion 
of exon 13 impairs PLOD2 activity in elevating succinate levels and 
promoting cancer cell plasticity/stemness.

In summary, we have identified succinate as a metabolite that 
enhances cancer cell plasticity/stemness and promotes cancer cell 
colonization. This study provides additional insights on the func-
tion of PLOD2 in epigenetic regulation by elevating cytoplasmic 
succinate levels and suggests a potential strategy to target cancer 
stem cells by reducing cytoplasmic succinate levels.

Materials and Methods

SIRM Analysis. Cells were incubated in the stable isotope tracer medium contain-
ing [U-13C]-glucose (CLM-1396-PK) at 0.45%, 10% dialyzed fetal bovine serum in 
glucose-free Dulbecco’s Modified Eagle’s Medium with 5% CO2 at 37 °C. At the end 
of the tracer treatment (24 h later), the cell culture plates were placed on ice, the 
medium was removed, and the plates were washed three times with ice-cold PBS. 
One milliliter cold CH3CN, 0.55 mL H2O, and 0.2 mL Tris-HCl (0.2 mM, pH 8.0) were 

added into each plate and cells were scraped and collected in 15-mL tubes. One 
milliliter cold chloroform was added in the 15-mL tube containing cell samples. 
After centrifugation, the top layer (polar extraction) was transferred to the pre-weight 
15 tubes with fine tip pipette. Exact weight for the polar extraction was recorded 
and two aliquots of 1/8 of the total polar extract volume were transferred to 1.5-mL 
glass vials for gas chromatography-mass spectrometry analysis. Two aliquots of 1/16 
of the total polar extract volume were transferred to 0.5-mL screw-top microfuge 
tubes for Fourier transform-mass spectrometry analysis. The remaining polar extract 
was aliquoted into two 2.0-mL microfuge tubes for NMR analysis. The analysis and 
quantification were performed as previously described (24).

DNA Extraction and Dot-Blot Assay. Cells were collected and suspended in 
200 μL of TE buffer. The genomic DNA was extracted by Genomic DNA Purification 
Kit (K0512, Thermo Fisher Scientific, Waltham, MA). The extracted DNA (1 μg) was 
mixed with 200 μL 6× SSC and denatured at 100°C for 10 min. The DNA samples 
were transferred to nitrocellulose membrane with the dot-blot apparatus. The mem-
brane was dried in the air and placed it on 80°C heater for 2 h. Standard western blot 
assays were used to analyze 5hmC (39769, Active Motif, Carlsbad, CA) levels in cells.

Succinate Quantification Assay. Cytoplasm metabolites were extracted as 
previously described (51). In brief, 1 × 106 cells were washed with cold PBS and 
suspended in digitonin buffer for 10 s on ice. After centrifuging at 3000 rpm for 
30s, 10 μL of sample or succinate standard was added to each well of 96-well 
plates. A reaction mixture (200 μL distilled water, 20 μL buffer, 20 μL NADH,  
20 μL ATP/PEP/CoA, 2 μL PK/L-LDH) was added and the absorbance (A1) was read 
at OD340 nm after 3 min. After adding 2 μL succinyl-CoA synthetase, the absorb-
ance (A2) was read on a Spectra MRTM microplate spectrophotometer (Dynex 
Technologies, Chantilly, VA) at OD340 nm at the end of the reaction (6 min later). 
The concentrations of succinate in samples were calculated by the ΔA method.

ChIP and ChIP-Sequence Assay. For 5hmC immunoprecipitation, purified 
genomic DNA was sonicated to 200 to 1,000 base pairs (bp) and heat-denatured 
(10 min, 95 °C). An aliquot of sonicated genomic DNA was saved as input. One 
microgram of fragmented genomic DNA was immunoprecipitated with 2 μg of 
rabbit 5hmC Ab (Active Motif) overnight at 4 °C in a final volume of 200 μL of 
immunoprecipitation buffer (10 mM sodium phosphate at pH 7.0, 140 mM NaCl, 

CTRL
PLOD2

5-hmC

5-mC
Methy
Blue

CTRL

PLOD2

1.2

0.8

0.4

0.0

HMLE

A B

1.2

1.0
0.8
0.6

sh
PLOD2+

DMS

***
*

sh
CTRL

sh
PLOD2

1.4

5hmC

       low              high
          

low           5                 29
high        26                14

PLOD2 17.087

Chi-square

statistical significance (p<0.0001)

5h
m

C
PL

O
D

2
BC Tissue 1 BC Tissue 2

C

D

MCF10A

CTRL

PLOD2

0.6

0.4

0.2

0.0R
el

at
iv

e 
5-

hm
C

 
   

   
   

le
ve

ls

**

5-hmC

5-mC

Methy
Blue

sh
PLOD2#

4

sh
CTRL

sh
PLOD2#

3

sh
PLOD2#

4

sh
CTRL

sh
PLOD2#

3

1.5

1.0

0.5

0.0

***
*

E
F

R
el

at
iv

e 
5-

hm
C

 
   

   
   

le
ve

ls

R
el

at
iv

e 
5-

hm
C

 
   

   
   

le
ve

ls

R
el

at
iv

e 
5-

hm
C

 
   

   
   

le
ve

ls
*

L

**

L L

***

Fig. 7. PLOD2 expression reduces 5hmC levels in mammary epithelial cells. (A and B) Dot blot images (Left) and quantification data (Right) showing 5hmC levels 
in chromatin isolated from control and PLOD2-expressing MCF-10A (A), n = 3; and HMLE cells (B); n = 3, *P < 0.05, **P < 0.01, independent t test. (C and D) Dot 
blot images and quantification data showed 5hmC levels in control and PLOD2-silenced MDA-MB-231 cells with or without succinate treatment; n = 3, *P < 0.05, 
***P < 0.001, one-way ANOVA. (E and F) IHC and Chi-square analyzing the association of PLOD2 expression and 5hmC levels in tissue microarray containing 74 
normal human mammary and breast cancer tissue samples.
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0.05% Triton X-100). The DNA–antibody mixture was pulled down with 20 μL of 
protein G Dynabeads (Invitrogen, Waltham, MA) for 2 h at 4 °C, and the DNA was 
purified for the sequence and quantitative PCR analysis (Active Motif).

The 75-nt sequence reads were mapped to the hg38 genome using the 
BOWTIE2 algorithm with default settings. Alignment information for each read 
is stored in the BAM format. Low-quality reads and duplicate reads were removed 
by SAMtools. To comparing fragment density between samples, the TSS and TTS 
region of all the annotated genes are equally divided into 100 bins in bed format. 
Each bin was 100 base pairs long. BEDtools coverage function was used to count 
the reads density for each bin in the gene. The average coverage for each bin was 
calculated and plotted using python.

In Vivo Cancer Cell Colonization Assay. Six-week–old female SCID mice 
were randomly grouped, and estradiol pellets were implanted into mice 1 d 
before cancer cell tail vein injection if necessary. 1 × 106 cancer cells were 
injected via the tail vein. After 6 to 8 wk, lung tissues were harvested and fixed 
with 4% PFA. H&E staining and bioluminescent imaging were performed to 

analyze cancer cell colonization. All procedures were performed within the 
guidelines of the Division of Laboratory Animal Resources at the University 
of Kentucky.

Patient Survival Analysis and Other Statistical Analysis. To address the 
clinical relevance of PLOD2 expression, we assessed the association between 
mRNA levels of PLOD2 and distant recurrence-free survival using the pub-
lished microarray data generated from 1,803 human breast tissue samples 
(36). Tumor samples were split into two equal-size groups with low and high 
PLOD2 expression based on mRNA levels. Difference in the distant recur-
rence-free survival times was assessed using the Cox proportional hazard 
(log-rank) test.

All experiments were repeated at least twice. Results were reported as mean 
± SEM; the significance of difference was assessed by the χ2 test, independent 
t test, or one-way (ANOVA) with SigmaPlot (Systat Software) or Statistical Package 
for Social Sciences Statistics (International Business Machines, Statistics). P < 0.05 
is considered statistically significant.
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Fig. 8. PLOD2 expression is associated with breast cancer metastasis and promotes cancer cell colonization. (A) Kaplan–Meier analysis showed the association 
of PLOD2 expression with distant recurrence-free survival in breast cancer patients; patients were split into two equal-size groups based on PLOD2 mRNA levels 
in tumor tissue, n = 1803. (B) Kaplan–Meier analysis showed the association of PLOD2 expression with distant recurrence-free survival in patients with ER positive 
or negative breast cancer; patients were split into two equal-size groups; n = 664; ER negative, n = 275. (C and D) Colonization of control and PLOD2-silenced 
MDA-MB-231 cells in the lungs was assessed by bioluminescence imaging (C) and H&E analysis. (D) Results are presented as mean ± SEM; n = 6; ***P < 0.001. 
(E) LH2b and LH2a vectors were introduced in MCF7 cells, and protein expression was examined by western blot analysis. (F and G) Lung colonization of control 
and LH2b/LH2a-overexpressed MCF-7 cells was examined by H&E staining; phage images (F) and quantification (G) of tumor lesions in the lung. Results are 
presented as mean ± SEM; n = 7 (LH2a, n = 8); *P < 0.05, **P < 0.01, one-way ANOVA. (H) Scheme showing how PLOD2-induced succinate accumulation enhances 
cancer cell stemness and cancer progression.
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More detailed information about the Materials and Methods of this study are 
provided in the SI Appendix.

Data, Materials, and Software Availability. ChIP-seq; SIRM data have been 
deposited in GEO (GSE227135) (52).
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