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From proteins to chromosomes, polymers fold into specific conformations that control
their biological function. Polymer folding has long been studied with equilibrium ther-
modynamics, yet intracellular organization and regulation involve energy-consuming,
active processes. Signatures of activity have been measured in the context of chromatin
motion, which shows spatial correlations and enhanced subdiffusion only in the
presence of adenosine triphosphate. Moreover, chromatin motion varies with genomic
coordinate, pointing toward a heterogeneous pattern of active processes along the
sequence. How do such patterns of activity affect the conformation of a polymer
such as chromatin? We address this question by combining analytical theory and
simulations to study a polymer subjected to sequence-dependent correlated active
forces. Our analysis shows that a local increase in activity (larger active forces)
can cause the polymer backbone to bend and expand, while less active segments
straighten out and condense. Our simulations further predict that modest activity
differences can drive compartmentalization of the polymer consistent with the patterns
observed in chromosome conformation capture experiments. Moreover, segments of
the polymer that show correlated active (sub)diffusion attract each other through
effective long-ranged harmonic interactions, whereas anticorrelations lead to effective
repulsions. Thus, our theory offers nonequilibrium mechanisms for forming genomic
compartments, which cannot be distinguished from affinity-based folding using
structural data alone. As a first step toward exploring whether active mechanisms
contribute to shaping genome conformations, we discuss a data-driven approach.
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The folding of various biopolymers into specific conformations is vital for cellular
function. Decades of research on equilibrium polymer theory have revealed basic
principles of sequence-controlled folding (1–6). Specifically, polymers composed of
sequences of chemically distinct monomers can, via affinity-based monomer–monomer
and monomer–solvent interactions, fold into particular shapes despite the dramatic
loss of conformational entropy. These ideas range from simple hydrophobic effects
that explain the positioning of residues within globular proteins (7–9), to complex
free energy landscapes that precisely predict protein structure (1, 5). More recently,
analogous concepts have been applied to the folding of interphase chromatin—a complex
heteropolymer consisting of genomic DNA and associated proteins (10).

Advances in imaging and sequencing technology have revealed that transcriptionally
active euchromatin, which typically resides in the nuclear interior, spatially segregates
from transcriptionally silent heterochromatin at the nuclear periphery (11). Chromosome
conformation capture (3C) experiments measure this segregation via an enrichment
of contact frequencies within euchromatic (A) and heterochromatic (B) regions and
depletion of contacts between them (12). These “A/B-compartments” are thought to
form because of pairwise attraction between chromatin segments with similar histone
modifications, which leads to equilibrium microphase separation (13). Borrowing
thermodynamic ideas from protein folding, increasingly sophisticated equilibrium
models have designed interaction landscapes to simulate genomic structures that
recapitulate 3C data (14–22). This success is remarkable, yet also raises the question
if additional mechanisms could be at play in the far-from-equilibrium intracellular
environment.

Many chromatin-associated proteins are enzymes (23–25) that break detailed balance
by turning over chemical energy (26), such as adenosine triphosphate (ATP) or
metabolites, to perform nonequilibrium reactions and/or exert mechanical forces (27),
cf. Fig. 1. Such active processes characteristically lead to faster motion that cannot be
explained by thermal fluctuations alone (31). Indeed, the subdiffusion of chromosomal
loci slows down in the absence of ATP in both bacteria and eukaryotes (32).
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Fig. 1. Model of the genome as an active heteropolymer. The genome acts as a scaffold for a myriad of active processes. Motor proteins, such as RNA
polymerase II and loop extruding factors, consume chemical energy to exert forces on DNA (24). These nucleoside triphosphatases (NTPases) hydrolyze
nucleoside triphosphates (NTP) such as ATP, thereby switching to an NDP-bound state, and restore their NTP-bound conformation by nucleotide exchange (28).
For example, specialized proteins actively modify DNA-bound histones and transcription factors via nonequilibrium reactions (23, 29, 30). In the context of
eukaryotes, active processes are enriched in transcriptionally active euchromatin compared to inactive heterochromatin. (For visual clarity in the figure, histones
in euchromatin and active processes in heterochromatin are omitted.) In our coarse-grained model, we describe active processes by random forces that have
larger magnitude and thus drive faster diffusion in active regions than in inactive regions. We also stipulate that the active forces at different loci are not
necessarily independent. We hypothesize that correlated excitations could arise, for example, from the coordinated activation of an enhancer and its cognate
promoter. Alternatively, correlated excitations could also arise from fluctuating concentration gradients of molecules that show sequence-specific interactions
with chromatin.

In addition, nucleus-wide tracking of fluorescently labeled
histones has unveiled micron-scale regions of correlated chro-
matin motion, which disappear after ATP depletion or ATPase
inhibition (33, 34). Moreover, the distribution of active processes
varies along the genome, which is consistent with heterogeneous
chromatin motion (35). The apparent diffusion coefficient of
individual loci depends on their location in sequence space (36)
and on transcriptional state (37), although the precise effect
of transcription is debated (38, 39). Similarly, histone tracking
experiments have measured faster motion in active euchromatin
in the nuclear interior than in heterochromatin at the nuclear
periphery (39, 40). These observations point toward the presence
of sequence-controlled active forces that affect the polymeric
genome’s mobility. To study how such active processes may
contribute to shaping genome structure, we need a theory that
can link active polymer dynamics to folding patterns (41).

By modeling activity via persistent monomer motion, past
work has predicted nonequilibrium phenomena such as coherent
motion and polymer collapse or swelling (42–52). However,
these studies consider uniform activity along the polymer and
thus cannot explain heterogeneous folding patterns. More recent
models have incorporated nonuniform activity via active forces
that vary in magnitude along the chain (53–59), akin to a local
effective temperature (60). Simulations have shown that large
(30-fold) activity differences can drive phase separation between
different polymer regions (53), analogous to mixtures of active
and passive particles (61, 62), although smaller activity differences
are sufficient in polymeric mixtures (63, 64). Finer grained
models have incorporated motor activity via force dipoles (65–
67) that align tangentially with the chain (68–71), or through
explicit simulation of translocating proteins (72). However, an
analytic framework that explains why and how nonuniform
activity can fold polymers is still lacking. Moreover, prior work
has assumed that active processes at distinct genomic loci are

statistically independent. In the context of chromatin, however,
we hypothesize that correlations could arise from the coordinated
transcriptional activation of different regions, such as enhancers
and corresponding promoters (73, 74) or coregulation of genes
by common transcription factors (75–77).

To address these open issues, we study a model of a polymer
that is driven by correlated active forces with nonuniform
magnitude. Our continuum theory shows that active (A) regions
of the polymer expand and bend, when averaged over an
ensemble, whereas inactive (B) regions contract and straighten
out. Therefore, increased activity within euchromatin could help
preserve its expanded state and increase its accessibility to active
proteins. Using polymer simulations, we find that even modest
activity ratios (two- to ten-fold) can recapitulate the degree of
A/B compartmentalization observed in Hi-C data. Moreover,
we find that distinct loci experiencing correlated active forces will
effectively attract, while anticorrelations lead to repulsion. Our
results provide a nonequilibrium mechanism that links activity-
driven correlated motion to the folding patterns observed in
3C data. Finally, we derive an analytical mapping from our
active polymer model to an effective equilibrium model where
folding is determined by pairwise affinities. These two models
are indistinguishable based on structural data alone, raising the
need for future dynamic measurements. For example, our model
assumptions could be tested via measurements of pairwise ve-
locity correlations of specific loci. Furthermore, given ensemble-
averaged conformational data of a polymer, our analytical theory
enables us to propose an activity profile that could reproduce the
observed steady state. By comparing the inferred activity profile
to DNA-binding patterns of chromatin-associating proteins, one
could determine whether active processes contribute significantly
to certain folding patterns. Taken together, our results provide
an avenue for analyzing and interpreting data on chromosomes,
and have broad implications for active polymer systems.
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Model

To study the folding of an active polymer, we combine analytical
calculations (of a linear, continuous model) and Brownian
dynamics simulations (of a discrete chain). For our theoretical
analysis, we idealize the polymer as a space curve r(s, t), where
s is a continuous, dimensionless material coordinate along the
polymer backbone. We approximate the large-scale dynamics of
the polymer by the Rouse model, an extensible chain of material
points that interact through Hookean springs κ (42, 78–80),

∂tr(s, t) = ξ−1 ∂s
[
κ ∂sr(s, t)

]
+ �(s, t), [1]

where ξ is the drag friction with the surrounding solution and
�(s, t) is a zero-mean Gaussian random displacement velocity
field which we refer to as “excitations.” In general, the covariance
of the excitations at different material points is given by〈

�(s, t) · �(s′, t ′)
〉
:= C(s, s′) δ(t − t ′), [2]

on timescales longer than the decorrelation time. For a passive
polymer that reaches thermal equilibrium, the excitations are
determined by the heat bath, C(s, s′) = 6kBT ξ−1 δ(s − s′),
which follows from the fluctuation-dissipation theorem. How-
ever, sequence-specific active processes that stir the polymer
through random forces will drive the system away from thermal
equilibrium. These “athermal excitations” may vary in magnitude
along the polymer and exhibit sequence-specific correlations,

C(s, s′) = ξ−1
√
A(s)A(s′) C(s, s′), [3]

where A(s) = A0 [1 + ε(s)] is the activity at locus s (in units of
energy), and C(s, s′) is the “normalized” correlation function.
Thermal noise can be interpreted as a baseline activity A0,
which introduces a homogeneous diagonal contribution to the
correlation function. Fig. 1 depicts possible molecular drivers
of these athermal excitations in the context of the genome.
Note that Eq. 3 is directly proportional to the pairwise velocity
correlation function (SI Appendix, 1 C). Thus, by describing the
polymer response to these excitations, our model links patterns
of correlated motion with patterns of folding.

Brownian Dynamics Simulations of a Discrete Chain. To
numerically test our theoretical analysis, we developed Brownian
dynamics simulations of a discretized Rouse chain, Eq. 1,
where each of the n ∈ [1, N ] monomers represents a Kuhn
segment with characteristic length b. In our simulations, we
use the Kuhn length b and the average diffusion coefficient
D0 of a free monomer, which is related to the average activity
A0 =

∑
n An/N via D0 = A0/(6ξ), to define the stiffness of

the springs connecting neighboring monomers, κ/ξ = 3D0/b2.
Having discretized all fields of our continuum theory, the
covariance matrix between the athermal excitations of different
beads is then given by

Cnm = ξ−1
√
An Am Cnm, [4]

where we have defined the Pearson correlation matrix
Cnm ∈ [−1, 1]. To implement more realistic polymer
simulations, including self-avoidance and a hard confinement,
we adapt the “polychrom” software package (81) as described
in Methods. These simulations allow us to test the continued
validity of results from our theory in a strongly nonlinear setting
that is inaccessible to analytical calculations.

Steady-State Polymer Conformation. We analytically solve the
linearized active polymer model Eq. 1 via a Rouse mode
decomposition (82), where r(s, t) → r̃q(t) and �(s, t) →
�̃q(t) indicate Fourier transforms. For a compact notation, we
concatenate all Rouse modes row-wise into a matrix R(t) with
rows Rq,...(t) := r̃q(t). Analogously, we define the random
velocity mode matrix H (t) with rows Hq,...(t) := �̃q(t), which
has zero mean and covariance 〈H (t) · H †(t ′)〉 := C δ(t − t ′).
In the resulting Rouse mode dynamics,

∂tR(t) = −J · R(t) + H (t), [5]

the response matrix J encodes all material properties (Methods)
and is diagonal for a homogeneous Rouse polymer Eq. 1,
Jqk = ξ−1κ q2 δqk. In contrast, athermal excitations that break
translational invariance are characterized by off-diagonal entries
in their covariance matrix C(s, s′)→ Cqk. Although this coupling
precludes an isolated analysis of individual Rouse modes, one can
derive an exact expression for the long time limit of the second
Rouse moment (Methods) as

lim
t→∞

〈
R(t) · R†(t)

〉
=
∫
∞

0
dτ e−J τ · C · e−J

†τ . [6]

Note, however, that the above equation describes polymer
conformations on average, which are liquid-like in the sense
that 〈R(t) · R†(t)〉 � 〈R(t)〉 · 〈R†(t)〉. The resulting “folding”
is thus distinct from most proteins, which form globules with a
well-defined conformation, 〈R(t)〉 · 〈R†(t)〉 ∼ 〈R(t) · R†(t)〉.
Nevertheless, our analysis reveals how inhomogeneous excitations
alone can effectively give rise to patterned polymer conformations
by coupling different mechanical modes. To quantify these
patterns, we transform Eq. 6 back into real space, which yields the
spatial correlation between pairs of material points. Subsequently,
we determine their pairwise mean squared separation and the
alignment of different contour vectors, ∂sr(s) for a continuum
polymer or ri+1 − ri for a discrete chain.

Results

Local Activity Modulations Induce Long-Range Correlations
Akin to Bending. To elucidate how active processes affect a
polymer’s conformation, we first study a minimal scenario
with inhomogeneous activity A(s) represented by statistically
independent excitations C(s, s′) = ξ−1 A(s) δ(s − s′). Simula-
tions have shown that less active monomers localize closer to
the boundary of a hard confinement than their more active
counterparts (53, 54). This positioning trend reverses if the
volume packing fraction is small or if the confinement is soft (54),
and can be forcibly inverted by introducing selective monomer–
boundary interactions (53), or self-attraction between inactive
monomers (58). Thus, past theoretical work has shown that
activity differences can reproduce nuclear positioning of (active)
euchromatin and (inactive) heterochromatin. However, it is not
yet clear how and why active processes affect polymer shape, a
question that we now address.

Eq. 6 predicts the preferred polymer conformation in response
to any predetermined profile of activity (SI Appendix, 2 A.3 for
Green’s function kernels). As an example, we focus on sinusoidal
activity modulations A(s) = A0 [1 + ε cos(s/λ)] around an
average value A0, with amplitude εA0 and characteristic length λ.
These excitations elicit a spatial correlation (SI Appendix, 2 A.3)
between pairs of material points, which we use to calculate the
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Fig. 2. Activity modulations induce polymer folding. (A) Simulation snapshot of a Rouse chain composed of 100 monomers, driven by statistically independent
athermal excitations that vary in magnitude, with local activity A(s) = A0 [1 + � cos(s/�)] and � = 0.5. We plot the same activity profile normalized by its
average value, A(s)/A0, along the diagonal of panel B. (B) Above the diagonal: Mean squared separation between pairs of material points with coordinates s
and s′ along the polymer backbone. Below the diagonal: Change in mean squared separation relative to a Rouse polymer with homogeneous activity A0. Active
regions locally expand while inactive regions locally condense. Distant active polymer segments get farther apart while inactive polymer segments come closer
together (dashed circle). (C) Response of the polymer to a localized increase in activity. Above the diagonal: A local increase in activity induces effective polymer
bending [antialignment of contour vectors ∂sr(s)] when averaged over a large ensemble. Analogously, a local decrease in activity (sign change) leads to polymer
straightening (alignment of contour vectors). Below the diagonal: A local increase in activity leads to a larger spatial separation between the active region and
the remainder of the polymer, which maintains the homogeneous activity A0. Analogously, a local decrease in activity (sign change) leads to a smaller spatial
separation between the less active region and the remainder of the polymer. Local expansion and contraction of the polymer backbone are reflected in the
relative contour length (plotted on the diagonal), which is proportional to the relative level of activity. (D) Below the diagonal: Hi-C data from ref. 83 showing
the contact frequencies between pairs of genomic coordinates within a section of chromosome 2 in murine erythroblast cells. Above the diagonal: Simulated
contact probability between pairs of monomers of a 1000-mer self-avoiding chain in a hard spherical confinement. The activity difference between active (A,
red) and inactive (B, blue) monomers is chosen to match the degree of compartmentalization observed in the Hi-C data. (E) Above the diagonal: Simulated
contact map shows antidiagonal contacts (“jets”) between B regions that flank a small A region. Below the diagonal: Jets are associated with antialignment
of contour vectors, suggesting that the A region loops out and zips together neighboring B regions. (F ) Simulated contact frequency maps show increasing
compartmentalization (COMP score) as a function of the normalized activity difference between A and B regions. Dashed lines illustrate the activity difference
(AA/AB ≈ 6) required to reproduce the COMP score observed in the Hi-C data of ref. 83. Representative simulation snapshots show phase separation within the
polymer.

pairwise mean squared separation in terms of the Kuhn length
b :=

√
A0/(2κ) (above the diagonal in Fig. 2B):〈

[r(s, t)− r(s′, t)]2
〉
= b2λ

{
|s−s′|
λ

+ 2ε cos
( s+s′

2λ
)[

cos
( s−s′

2λ
)
− e−

|s−s′|
2λ

]}
.

[7]

In comparison to a reference polymer with uniform activity
(ε = 0), we observe that active polymer segments locally expand
while inactive segments locally condense (below the diagonal
in Fig. 2B), resembling the morphology of euchromatin and
heterochromatin (84, 85). Thus, our theory suggests that active
processes like transcription could lead to chromatin deconden-
sation, which might form a positive feedback loop by further
increasing genome accessibility to the transcription machinery
(86). Indeed, it was shown experimentally that euchromatin
requires ATP and thus dissipation of energy to preserve its
expanded state (33).

Consistent with prior work (53, 55, 57, 58), we find that pairs
of active segments move farther apart while inactive segments
come closer together (below the diagonal in Fig. 2B). To explain
this observation, we investigate the response of the polymer to a
localized change in activity (below the diagonal in Fig. 2C ). We
find a long-ranged (logarithmic in sequence space) increase in
spatial separation between more active regions and the remainder

of the polymer. Conversely, regions with decreased activity move
closer to the remainder of the polymer, and more complicated
excitation patterns can be analyzed based on the superposition
principle.

To investigate the shape changes associated with this spatial
separation, we measure the pairwise alignment of contour vectors,
�(s, t) := ∂sr(s, t), at different material points for an arbitrary
activity profile A(s) = A0 [1 + ε(s)],〈

�(s, t) · �(s′, t)
〉
= [1 + ε(s)] δ(s − s′)

+
∫
dx ε(x)Gτ (s − x, s′ − x). [8]

The Green’s kernel has the most convenient representation
in polar coordinates Gτ (α cosφ,α sinφ) = sin(2φ)/(πα2).
The last term demonstrates that local activity modulations
induce correlations (effective pairwise couplings) between distant
material points, scaling with the distance in sequence space as
a power law with exponent −2. Note that the quantitative
value of this term will also depend on the local length of the
polymer backbone (Fig. 2C , on the diagonal), whereas the
sign qualitatively distinguishes alignment from antialignment.
However, abolishing changes in contour length by enforcing
inextensibility on an ensemble-averaged level does not change
the result (SI Appendix, 2 A.4).
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Fig. 2C shows above the diagonal that increased activity
within a segment of size λ effectively induces bending (pairwise
antialignment of contour vectors), while decreased activity
leads to straightening (pairwise alignment of contour vectors).
Heuristically, active monomers “run away” from their inactive
neighbors and effectively bring these neighbors together into
a loop-like conformation. This explanation is supported by
ref. 61, which studied the dynamics of two particles with
different activities that interact through some pair potential. It
was shown that, on average, the particle experiencing smaller
excitations will move along the applied force whereas the
more active particle will move opposite to the applied force.
While ref. 61 considered steric repulsion where the active
particle “pushes” around the passive one, here, we are dealing
with attractive Hookean springs where instead active particles
pull on their inactive neighbors. Thus, in our model, seg-
mented activity variations lead to the emergence of spontaneous
curvature.

The first term in Eq. 8 describes local compaction (or
expansion) of the polymer backbone from reduced (or increased)
activity (59). Similar changes in the local contour length could
be induced by variations in tension, i.e., the spring constant
κ(s). Therefore, it is natural to inquire if conformational changes
due to activity variations can be equivalently achieved in a
system in thermal equilibrium through variations in the local
mechanical properties of the polymer. However, as shown in
SI Appendix, 2 A.2, modulations in tension fail to produce
any long-ranged contour correlations akin to polymer bending.
Changes in the spring stiffness only affect the distance between
material points (bond length) and have no effect on the bond
angles. Similarly, variations of the drag friction coefficient ξ(s),
for example, due to differences in monomer size, do not change
the polymer conformation (SI Appendix, 2 A.1). This is because
in equilibrium with a thermal heat bath, polymer conformations
sample a Boltzmann distribution determined by a free energy,
independent of dynamic effects such as friction. Thus, in the
absence of long-ranged interactions, activity differences, which
can act globally, are required to fold a Rouse polymer into specific
conformations.

Activity Differences Recapitulate A/B-Compartments in Sim-
ulated Contact Maps. We next apply our model to study the
formation of A/B-compartments, a cornerstone of eukaryotic
genome organization (12). To make a meaningful comparison
to Hi-C data, we model a region of Chromosome 2 in murine
erythroblast cells (83) as an active, self-avoiding polymer that
occupies a volume fraction of 11.7% in a nuclear confinement
(Methods), where each monomer corresponds to 25 kbp. We ask
whether the compartmentalization observed in ref. 83 (Fig. 2D,
below the diagonal) can be reproduced purely by differences
in the magnitude of athermal excitations in active (A) and
inactive (B) regions. To that end, we derive the identities of
A and B monomers from the data in ref. 83, as discussed in
Methods. The simulated contact frequencies between pairs of
monomers display a checkerboard pattern featuring strong B–
B contacts, despite the lack of explicit attractive interactions
between monomers (Fig. 2D, above the diagonal). While A–
A contacts in our simulations are weaker than in the data of
ref. 83, more balanced A/B compartments emerge for larger
volume fractions (SI Appendix, Fig. S8 B and D) or, as discussed
in the next section, if A monomers experience correlated
excitations.

The strong B compartments in our model are reminiscent of
previous work on equilibrium copolymers with short-ranged B–B
attractions and little to no A–A attraction (13). Since this model
successfully reproduced microscopy and Hi-C data (13), we
compared it to our active polymer simulations (SI Appendix, 4).
While both models show A/B compartments (SI Appendix,
Fig. S8A), the compartment boundaries are more blurred in
the active model due to the presence of antidiagonal features,
“jets” (87), which extend from A regions into neighboring B
compartments (Fig. 2E and SI Appendix, Fig. S8C). Consistent
with the linear theory (Fig. 2C ), on average, A regions loop out
and zip together the flanking B regions (contour alignment in
Fig. 2E). In contrast, the equilibrium model lacks any structure in
contour alignment (SI Appendix, Fig. S8C, below the diagonal)
and, surprisingly, also predicts faster folding kinetics than the
active model (SI Appendix, 4 B). The cell likely leverages both
active and passive mechanisms of compartmentalization, and thus
hybrid models will invariably fit the data better (58). Nonetheless,
the existence of A/B-compartments in the purely active model
demonstrates that activity differences are capable of contributing
to genome organization.

To explore how the degree of compartmentalization varies
with the activity difference between A and B regions, we extract
a scalar order parameter (“compartment score,” COMP) from
both simulated and experimental contact maps (Methods). This
compartment score, defined in ref. 88, measures the contrast in
the checkerboard pattern as the normalized contact frequency
difference between same-type and different-type chromatin,
namely COMP = (AA + BB − 2AB)/(AA + BB + 2AB). We
find that the compartment score increases in a sigmoidal fashion
with the activity difference between A and B regions (Fig. 2F ),
indicating a typical scale for onset of compartmentalization in
our simulations. This activity difference scale depends on many
parameters, including the A and B block sizes (63) and the
capture radius used to construct the contact frequency map.
For this particular A/B pattern, we find nontrivial compartmen-
talization for activity differences as small as the average level
of activity, AA − AB = A0 = (AA + AB)/2. Note that in
our analytic theory, which describes a phantom chain without
volume exclusion, compartmentalization, as detected in the mean
squared separation, is simply a linear response to the activity
difference, Eq. 7.

Finally, the compartment score curve in Fig. 2F can be used
to read off the activity difference required to reproduce A/B
compartmentalization in a given Hi-C dataset. While the degree
of chromatin compartmentalization will vary by cell type, a
whole-genome analysis of the murine erythroblast data of ref. 83
(Fig. 2F ) suggests a score of COMP ∼ 0.71, which corresponds
to an activity ratio of AA/AB ≈ 6. We used this inferred activity
ratio in the polymer simulations depicted above the diagonal in
Fig. 2D.

While the activity ratio cannot be measured directly, one can
use the monomer mean squared displacement, MSD(t) = 0 tα ,
as a proxy. On sufficiently short time scales in a phantom Rouse
chain, the ratio of anomalous diffusion coefficients in active and
inactive regions is identically the activity ratio,0A/0B = AA/AB.
However, the value of 0 and α in active and inactive regions will
depend on the observation time window and the microscopic
properties of the chain, as shown in our nonlinear simulations
(SI Appendix, 3 C). Thus, our predicted activity ratio serves as
an upper bound for the ratio of MSDs in A and B regions,
which can be extracted from measurements of euchromatic and
heterochromatic motion (39).
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A B C

Fig. 3. Correlated activity leads to compartments via an effective attraction. (A) Pearson correlation matrix that relates the directions of the random forces
acting on different monomers. We construct this matrix by assigning each monomer a chemical identity (+, −, or neutral) whereby monomers of the same
chemical species experience correlated excitations, while monomers of different species experience anticorrelated excitations. In the schematic above the
matrix, up arrows indicate + monomers and down arrows indicate −monomers. (B) Simulated contact frequencies between pairs of monomers of a 100-mer
self-avoiding chain in a spherical confinement. The polymer is driven by athermal excitations with the Pearson correlation matrix shown in panel A. Above the
diagonal: When activity is uniform, contacts between monomers that experience correlated excitations are enhanced, while anticorrelated excitations lead to a
depletion of contacts. Below the diagonal: We introduce activity modulations where + and −monomers have activity 1.9A0 (red), and neutral monomers have
activity 0.1A0 (blue). As in Fig. 2, inactive regions form compartments, without disrupting the folding pattern caused by correlated excitations. (C) Correlated
excitations fold an active polymer analogously to effective harmonic interactions in a passive polymer, cf. Eq. 9. To illustrate these couplings, we consider
two polymer segments of equal length �i located at coordinates si and s′i , which experience excitations with correlation coefficient �i (green box). Positive
correlations (�i > 0) lead to an effective attraction (blue) between these segments through weak, long-ranged harmonic interactions. Conversely, anticorrelated
excitations (�i < 0) lead to an effective repulsion (orange) between these segments. If the coordinates si and s′i coincide (that is, if we consider correlated
excitations within a contiguous segment), then the correlation coefficient is positive and the segment condenses.

Correlated Active Processes Create Compartments. Experi-
ments that track the movement of GFP-tagged histones have
demonstrated spatial correlations in chromatin motion that
depend on RNA polymerase II activity and on ATP (33, 34).
While these experiments cannot relate spatial and genomic
proximity, ref. 89 has observed pairwise correlated movement
of specific loci. Motivated by these experiments, we hypothesize
that correlated movement could be driven by correlated active
forces, which produce athermal excitations with a nondiagonal
covariance C(s, s′). This hypothesis is plausible if the active
processes at distinct genomic locations are not completely
independent.

To model sequence correlations, we define a heteropolymer
with three types of monomers (+, −, and neutral). We then
introduce a stochastic process that has opposing effects on + and
−monomers, but does not affect neutral monomers. The choice
of + and − as labels for the monomer type evokes the analogy
of a charged heteropolymer (for example, a polyelectrolyte or
polyampholyte) in a fluctuating electric field. In this example,
the random electrical forces at a given time will point in the
same direction for monomers of the same charge, but in opposite
directions for monomers of opposing charge. More generally,
correlated excitations could be achieved by a fluctuating, large-
scale concentration gradient of proteins that show sequence-
specific interactions with the polymer backbone (Fig. 3A).

Based on these ideas, we construct a sample Pearson correlation
matrix for the excitations of a polymer with an alternating pattern
of +, −, and neutral monomers (Fig. 3A). Using this Pearson
correlation matrix as input and assuming a homogeneous level
of activity, cf. Eq. 4, we then perform Brownian dynamics
simulations featuring self-avoidance and a spherical confinement.
Fig. 3B shows, above the diagonal, that contacts between loci
driven by correlated excitations are enhanced, whereas contacts
between anticorrelated loci are depleted. These folding patterns
are accompanied by long-range correlations between the contour
vectors at distant material points, as shown in our theoretical
calculations (SI Appendix, 2 A.6). In addition to the pattern
of correlations, we superimpose activity modulations, An, such

that charged (±) monomers are active and neutral monomers
are inactive. We find an enhancement of contacts between
inactive regions, leading to a full checkerboard pattern (Fig. 3B,
below the diagonal). Thus, correlated active forces and activity
differences offer complementary, nonequilibrium mechanisms
for the formation of genomic compartments.

The Effects of Correlated, Nonequilibrium Excitations on Poly-
mer Shape can be Recapitulated by an Equilibrium Model with
Intersegment Interactions. The linear active polymer, driven
by athermal Gaussian excitations with covariance C(s, s′) =
ξ−1 A0 [δ(s − s′) + Ĉ(s, s′)], maintains a Gaussian steady-state
distribution of conformations. This Gaussian steady state is, up
to translational invariance, fully characterized by its two-point
correlation function 〈r(s, t) · r(s′, t)〉, which can be computed
in terms of the prescribed entries of C(s, s′). To illuminate the
characteristics of active polymer folding, we note that any Gaussian
steady state can be regarded as the thermal equilibrium weight of
a phantom polymer with additional Hookean springs, K̂(s, s′),
which harmonically couple pairs of material points (18). After
setting a temperature scale by A0 = 6kBT , one can obtain
the harmonic couplings by inverting the two-point correlation
function 〈r(s, t) · r(s′, t)〉, as shown in Methods:

K̂(s, s′) = −
[
∂2
s + ∂2

s′
]
Ĉ(s, s′)

+
∫∫

dx dx′ Ĉ(x, x′)GK (s − x, s′ − x′). [9]

The Green’s kernel has the most convenient representation in
polar coordinates GK (α cosφ,α sinφ) = −6 cos(4φ)/(πα4).
Eq. 9 establishes a mapping between active and passive polymers
whose conformations, in steady state, are sampled from the
same distribution (i.e., identical mean squared separation and
contour alignment). While the active polymer folds due to
constraints on the excitations (i.e., correlations; the special case
of activity modulations is discussed in SI Appendix, 2 B.3), in
the corresponding passive polymer constraints are introduced in
the form of springs. These harmonic couplings can be positive
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or negative, mediating pairwise attraction or repulsion between
distant material points. The first term of Eq. 9 indicates that
pairs of polymer segments experiencing maximally correlated ex-
citations will show effective pairwise attraction, while maximally
anticorrelated excitations lead to repulsion. By using a box-shaped
correlation function to study the second term of Eq.9, we confirm
that correlated excitations in general induce pairwise attraction
(Fig. 3C ), whereas anticorrelated excitations lead to repulsion.

These results can be heuristically understood via the dynamics
of the end-to-end distance vector of, say, a trimer (N = 3). For
such a trimer, fluctuations of the end-to-end distance1 are driven
by a noise term with variance 〈[�1(t)]2〉 = 〈[�1(t)−�3(t)]2〉 =
〈[�1(t)]2〉+ 〈[�3(t)]2〉 − 2〈�1(t) · �3(t)〉. When the excitations
are independent and equal in magnitude, one has 〈[�1(t)]2〉 =
2 〈[�1(t)]2〉. In comparison, anticorrelated excitations (〈�1(t) ·
�3(t)〉 < 0) increase the variance of the end-to-end separation,
whereas correlated excitations (〈�1(t) ·�3(t)〉 > 0) cause the end
points to come closer together. While these effects are diminished
for longer polymers, they provide basic insights into the effective
harmonic interactions that lead to the contact frequency map
shown in Fig. 3B.

The existence of an analytical mapping between active and
passive mechanisms of polymer folding suggests that many
equivalent models could explain structural data on chromosomes.
In this context, our passive linear model can be regarded
as a harmonic approximation to a contact energy landscape,
which has been exploited by past theoretical work on genome
organization (14–17, 19–21). Our results shed further light on
the success of these equilibrium models in reproducing Hi-C
data despite the undeniable presence of active processes (90).
As such, how can one experimentally disentangle equilibrium
and nonequilibrium mechanisms of compartment formation?
Based on static snapshots, our theory can be used to propose
a candidate pattern of active processes that drive chromatin
toward its observed steady-state conformation. Then, one can
test whether the inferred activity profile matches orthogonal
experimental measurements, such as the DNA-binding patterns

of active enzymes, or if passive folding mechanisms are more
plausible.

Inferring an Activity Profile from Ensemble-Averaged Polymer
Conformations. In the following, we infer a candidate map of
athermal excitations that could fold a polymer into a desired
(target) conformation. To that end, we use our linear theory to
predict the activity of each monomer given the mean squared
separation between all pairs of monomers (cf. workflow depicted
in Fig. 4A). We test our approach on artificial target conforma-
tions, which we generate via simulations of (nonlinear) polymers
driven by activity modulations, with profiles corresponding to
Fig. 2 D–F.

As it is not clear how nonlinear constraints such as self-
avoidance or a hard confinement translate into our linearized
theory, we invoke no prior knowledge of the mechanical
properties of the polymer. Instead, we adopt a data-driven
approach and first determine an effective response matrix J
that approximates the mechanical properties of the simulated
polymer (SI Appendix, 5 A and B; (130)). Next, we set up a
numerical optimization scheme whereby we seek the activity
profile (Fig. 4B) that minimizes the squared deviation between
the mean squared separation map predicted by our theory and
our artificial data (SI Appendix, 5 C; (130)). Inference from the
linear theory captures the overall block-like structure of the mean
squared separation map, but does not account for some of the
finer qualitative features observed in the nonlinear simulations
(SI Appendix, 5 C). We hypothesize that these fitting results
could be improved in future studies by introducing constraints
on the analytical theory, or by considering excitations that have an
effective correlation length in addition to activity modulations.

Correspondingly, the linear model successfully infers the
structure of the activity profile used in our nonlinear simulations
(Fig. 4 B and C ). The inferred and original activity profiles
visually appear similar and have comparable amplitudes AA−AB
(Fig. 4B). However, the inferred ratio of activity AA/AB is
systematically lower than in our simulations (Fig. 4D). These

DC

BA

Fig. 4. Inferring an activity profile based on structural data. (A) Data analysis workflow, which takes as input a heatmap with the pairwise mean squared
separation between all monomers. First, we infer the mechanical properties of the homogeneous polymer on top of which activity differences will be imposed.
We then propose a profile of activity that minimizes the mean squared error between the predicted mean squared separation map and the data. This workflow
can be used to identify candidate active regions of the polymer, which could then be tested against alternative measurements. (B) We applied the workflow
shown in A to simulated data on self-avoiding polymers driven by activity modulations in a spherical confinement (cf. Fig. 2F ). We find, in general, good
agreement between the inferred activity profile and the true profile used in the simulations. (C) The fitted activity profiles correctly identify the boundaries
between active and inactive regions in the true activity profile. Color-coded circles next to the activity profiles correspond to the plot points (fitted activity ratios)
in panel D; highlighted circle indicates activity profile in panel B. (D) The fitted activity ratio between active (A) and inactive (B) regions correlates with the activity
ratios of the athermal excitations used in our simulations. In our linear model, a systematically lower activity ratio is sufficient to reproduce the folding patterns
observed in the nonlinear simulations.
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results suggest that the lack of constraints in the linearized model
makes it easier to create folding patterns than in our simulations.
Despite these quantitative differences, this approach successfully
identifies active and inactive polymer segments in all simulations
that show pronounced folding patterns (Fig. 4C ).

In closing, we propose an approach to infer a distribution of
active processes along chromatin from of experimental data. As
a first test for plausibility, one could compare inferred activity
profiles against orthogonal experimental measurements such as
ChIP-Seq for ATPases or histone marks associated with active
chromatin.

Discussion

Using our nonequilibrium polymer theory, we have demon-
strated that differences in activity and correlations between
athermal excitations at different loci can fold a polymer into
specific shapes. These liquid-like conformations have a large
variability and are therefore only realized as a population average.
Our model could thus be applicable to chromatin, which
shows a much larger cell-to-cell variability than stable protein
structures (91, 92). In this context, we zoom out to large length
scales, where molecular drivers of active processes (Fig. 1) produce
effective athermal excitations. Although it neglects many details
of chromatin structure, including nucleosome packaging and
solvent effects, the Rouse model can still provide valuable insights
into the configurations of real polymers. Indeed, our simulations
of self-avoiding, confined polymers show very similar results to
the linear theory. Moreover, Rouse models have been used to
recapitulate the dynamics and response of chromosomal loci to
an applied force (93–95). Our model then makes several testable
predictions that could be further investigated with experiments
and theory.

We predict that a local increase in activity should lead to
chromatin decondensation (Fig. 2 A and B). Indeed, it was
shown that recruiting a transcriptional activator, and hence
RNA polymerase II, to mouse chromocenters caused these
heterochromatic regions to decollapse (96). The resulting increase
in chromatin accessibility could further increase transcriptional
activity (86), forming a nonlinear positive feedback loop. Such a
feedback loop would, over time, stabilize an open chromatin
structure in active regions. Furthermore, our model shows
that a local decrease of activity leads to straightening of the
polymer backbone, whereas a local increase in activity induces
bending (Fig. 2C ). These results could explain an observation
in recent simulations, which demonstrated that forces exerted by
bound molecular motors can bend polymers into hairpins (72).
Such zipped structures also arise in Hi-C maps (87, 97, 98)
and in our simulated contact maps as jet-like, antidiagonal
features originating from small A regions and extending into
the neighboring B compartment (Fig. 2 D and E). Experiments
suggest that these structures could be formed by active loop
extrusion (87), which is not explicitly accounted for in our model.
Nevertheless, it is interesting that the spontaneous loops induced
by a local hot spot of activity could still create jet-like features.
These predictions could be directly tested by measuring mean
squared distances and average contour alignment in chromatin
tracing data (99–101).

In addition to locally deforming the polymer backbone,
activity differences lead to a “checkerboard” pattern indicative
of compartmentalization. We show that the degree of A/B
compartmentalization observed in experimental contact maps
can be recapitulated in our simulations with activity ratios in
the two-fold to ten-fold range (Fig. 2F ). These ratios are much

smaller than the 20- to 30-fold activity differences reported in
prior numerical studies which focused on the spatial positioning
of active and inactive regions within a confinement (53, 54).
Instead, our results are more similar to the activity differences
required for phase separation in mixtures of active and inactive
homogenous polymers (63, 64).

To test whether these activity ratios are plausible, one could
measure the ratio of the anomalous diffusion coefficients of
euchromatic (A) and heterochromatic (B) regions, as has been
done in histone tracking experiments (39). Since euchromatin
has a higher level of transcriptional activity, we may expect that it
will exhibit faster (sub)diffusion than heterochromatin (39, 40).
However, the effect of transcription on the subdiffusion of
individual loci is controversial (37, 38). One way to explain
these conflicting results is to note that diffusion is not only
proportional to activity, which increases during transcription, but
is also inversely proportional to friction, which increases when the
transcriptional machinery binds to the promoter. Concomitant
with this idea, it was observed that during transcription inhi-
bition, the subdiffusion of DNA-bound histones increases after
RNA polymerase II disassociates (39, 40), but decreases if RNA
polymerase II remains bound (39). Future work could elucidate
how the polymer conformation responds to simultaneous changes
in friction and activity.

Another test of activity-induced compartmentalization would
be to perform Hi-C experiments after knocking out active
processes. However, global ATP depletion runs the risk of
glassifying the intracellular environment (102). In addition,
ATPase inhibition may also modify the effective pairwise chemi-
cal affinities between loci. Nonetheless, existing experiments with
transcription inhibition show that A/B-compartments remain,
but the contrast in the checkerboard pattern decreases (83, 103).
It therefore seems plausible that transcription plays some
role in compartmentalization, which must be clarified in fu-
ture studies (104). We hypothesize that activity differences
may complement known mechanisms of eu/heterochromatin
segregation, including phase separation mediated by linker
histone H1 and heterochromatin protein HP1-α, as well
as association of heterochromatic domains to the nuclear
lamina (10).

In addition, whole-nucleus histone tracking has shown that
transcription and ATP-dependent processes are required for
coherent motion of chromatin (33, 34). The mechanistic origin
of correlated motion is under active research (58, 65, 66, 69, 70,
105, 106) and its consequences for chromatin folding are still
unknown. Our theory predicts that regions exhibiting correlated
motion will, when driven by sequence-specific athermal excita-
tions, form compartments. This raises the question of whether
coordinated transcription of enhancers and promoters could lead
to contacts, or “microcompartments,” as has been observed in
increasingly high-resolution contact maps (107–109). However,
further research is needed to investigate the relationship between
coordinated transcriptional programs and correlated motion. To
directly test our model assumptions, one could measure pairwise
velocity correlations between specific loci, as a function of
transcriptional state and sequence coordinate (89). For example,
one could measure whether cis regulatory elements show corre-
lated movement, and then test whether transcription inhibition
at one locus decorrelates this movement and the associated
contacts. A similar procedure could be used to test whether the
colocalization of coregulated genes is a consequence of correlated
active processes (75, 76, 110, 111). For example, coordinated
transcription factor–binding events can initiate processes that
break detailed balance (112, 113).
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Overall, dynamic measurements will play a major role in
disentangling active and passive mechanisms of chromatin
folding, which we have demonstrated to be indistinguishable
based on Hi-C data alone. For example, our predictions regarding
the kinetics of compartment formation (SI Appendix, 4 B) could
be compared to Hi-C data at multiple points in the cell cycle of
synchronized cells (83, 114, 115). In future work, we hope to also
identify dynamic signatures of activity (116) that can be extracted
from trajectories of genomic loci (117) in order to examine the
role of active processes in chromatin folding. As a complementary
technique, we have here presented a proof of concept that an
activity profile can be inferred from structural data on a polymer.
In future work, we propose to extend this method to chromatin
tracing data (99, 100), which measures the pairwise mean squared
separation of genetic loci along with other attributes such as
transcriptional (100) and epigenetic state (118, 119).

In closing, we note that our theory also has broad implications
beyond chromatin folding. We hypothesize that one could,
for example, use electromagnetically driven colloidal (Janus)
particles to engineer active polymers that fold into desired
conformations (120), by applying targeted excitations through
dynamic light patterns. Furthermore, on large length scales, our
model shares its mathematical structure with mechanical models
of membranes. Interestingly, it was recently shown that Min
proteins can deform giant unilamellar vesicles by binding to the
membrane (121). While it was hypothesized that Min proteins
induce spontaneous curvature (122) and that this could even
affect their binding kinetics (123), the underlying mechanism
remains unknown. Our theory could provide some hints as to
how reactions themselves could effectively induce spontaneous
curvature in membranes. Overall, our analysis motivates future
research into the role that active processes play in determining the
mechanical conformation of a variety of pattern-forming systems.

Materials and Methods
Derivation of the Steady-State Polymer Conformation. We now outline a
brief derivation of the steady-state polymer conformation, starting from Eq. 5; a
more elaborate calculation is provided in SI Appendix, 1 B, while corresponding
Mathematica and Julia code is provided in ref ([insert Zenodo ref here]) and in
the Github repository: https://github.com/Driy/Active-Polymer-Conformation.
Given an unknown matrix-valued function H(t), which encodes a possible
trajectory of the excitations, Eq. 5 is formally solved by

R(t) = e−J(t−t0) · R(t0) +

∫ t

t0
dτ e−J(t−τ) · H(τ ), [10]

where the first term vanishes in the limit t − t0 → ∞. We use the formal
solution for a single trajectory of the Rouse matrix, Eq. 10, to determine the
second Rouse moment, 〈R(t) · R†(t)〉, in response to athermal excitations with
covariance 〈H(t) ·H†(t′)〉 := C δ(t− t′). To that end, we multiply Eq. 10with
its conjugate transpose and average over many trajectories. Both in the limit
of late times (t → ∞ for arbitrary t0), or equivalently early reference times
(t0 →−∞ for arbitrary t), one then finds

lim
t−t0→∞

〈
R(t) · R†(t)

〉
=

∫
∞

0
dτ e−Jτ · C · e−J

†τ . [6]

Here and henceforth, we consider reference times that lie infinitely far in the past
(t0 → −∞), and therefore omit the time limit (limt−t0→∞ . . . ) for brevity
of notation. For polymers whose material properties such as line tension and
friction are homogeneous, the response matrix is diagonal (Jqk ≡ Jqq δqk ) and
Eq. 6 evaluates to: 〈

r̃q(t) · r̃∗k (t)
〉
=

Cqk
Jqq + Jkk

. [11]

For a Rouse polymer (Jqk = ξ−1κ q2 δqk ) that, as discussed in the main
text, is driven by correlated athermal excitations with mode covariance Cqk =

ξ−1 A0 [Lδqk + Ĉqk], one has:

〈
r̃q(t) · r̃∗k (t)

〉
= b2

[
Lδqk
q2

+
2 Ĉqk

q2 + k2

]
, [12]

where the characteristic length is given by b :=
√
A0/(2κ). In general,

however, the response matrix will be nondiagonal and we need to use a
perturbation approach (SIAppendix, 1 E) to approximate the matrix exponentials
in Eq. 6.

Steady-State Conformation of a Passive Polymer. We now consider the
steady-state conformation of a polymer of length L, which is in thermal
equilibrium with a heat bath of temperature T . The passive polymer is governed
by reciprocal interactions and therefore has a Hermitian response matrix,
J = J†. In thermal equilibrium, the excitations are statistically independent
and homogeneous, with covariance C(s, s′) = ξ−1A0 δ(s − s′) and activity
A0 = 6kBT . Because different excitation modes are now independent,
Cqk = ξ−1A0 Lδqk , Eq. 6 evaluates to〈

R(t) · R†(t)
〉
=

1
2
ξ−1 A0 L J

−1, [13]

so that polymer folding can only be induced by nondiagonal elements in the
response matrix J. We herein assume that the response matrix is dominated by
topological connectivity of neighboring material points and by homogeneous
mechanical features of the polymer backbone. Therefore, we decompose the
response matrix into a dominant diagonal contribution J̄qk := Jqq δqk and a

weak off-diagonal contribution δJ := J − J̄, so that〈
R(t) · R†(t)

〉
≈

1
2
ξ−1 A0 L

(
J̄−1
− J̄−1

· δJ · J̄−1
)
. [14]

To enforce polymer folding in our equilibrium model, we introduce additional
Hookean springs to Eq. 1,

∂tr(s, t) = �(s, t)

+
κ

ξ

{
∂2
s r(s, t) +

∫
ds′ K̂(s, s′)

[
r(s′, t)− r(s, t)

]}
.

[15]

With K̂kq :=
∫∫

ds ds′ e−iqsK̂(s, s′)eiks
′

as convention for Fourier transforms,
the diagonal and off-diagonal components of the response matrix are given
by J̄kq = ξ−1 κ q2 δkq and δJkq = −ξ−1 κ L−1(̂Kkq − K̂q−k,0), respectively.
Thus, Eq. 14 evaluates to:

〈
r̃q(t) · r̃∗k (t)

〉
= b2

 Lδkq
q2

+
K̂kq − K̂−kq , 0

q2 k2

 , [16]

where the characteristic length is given by b :=
√
A0/(2κ), as before. Note

that the homogeneous Fourier modes of the harmonic interaction map, q = 0
and k = 0, cancel out in the polymer’s Langevin equation [15], and thus also
in the steady-state conformation, 16. Therefore, in the following we assume
K̂q0 = 0∀ q. Equating Eqs. 12 and 16, and transforming back into real space,
one obtains Eq. 9.

Rouse Polymer Simulation Details. To test the approximations in our
analytical theory and visualize individual polymer conformations, we perform
Brownian dynamics of a discretized Rouse chain without self-avoidance
or confinement: https://github.com/kannandeepti/active-polymers. Since the
average monomer diffusion coefficient D0 only rescales time and has no effect
on the steady state conformation, we arbitrarily setD0 = 1 and the Kuhn length
b = 1, such that all simulated length scales are now in units of Kuhn lengths.
We integrate the discrete version of Eq. 1 using a first-order Stochastic Runge
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Kutta scheme detailed in ref. 124 with time step h = 0.01 chosen to be an
order of magnitude smaller than the time to diffuse a Kuhn length, b2/6D. We
then run the simulation for a Rouse time to allow the polymer to reach steady
state. The snapshot in Fig. 2A was visualized with OVITO (125) and taken from a
simulation with monomer diffusion coefficient Dn = D0[1 + ε cos(2πn/λ)],
where λ = 25 Kuhn lengths and the total chain is 100 Kuhn lengths.

Self-Avoiding, Confined Polymer Simulation Details. We also develop more
realisticpolymersimulationsbyadaptingthe“polychrom”softwarepackage(81),
a thin wrapper around OpenMM (126): https://github.com/open2c/polychrom.
The deterministic forces applied to the polymer are given by the following
potential energy functions detailed in the polychrom.forces module: 1)
Polymer connectivity via harmonic bonds with energy 0.5κ(rij − 1)2, where
rij is the distance between the centers of adjacent monomers with diameter
d = 1, and κ is chosen such that the average extension of the bond is 0.1
when the harmonic energy is kBT . 2) Spherical confinement with radius rC of
the form fC [((rn − rC)2 + δ2)1/2

− δ] if rn > rC and 0 if not, where rn is the
distance of the nth monomer to the origin, fC = 5kBT/d is the confining force,
and δ = 0.1 is some small number inserted to prevent rounding errors. The
confinement energy is thus a smooth version of the function fC |r − rc|, where
the radius rC is chosen such that the total volume fraction of all monomers
within the confinement is 0.117. 3) Repulsive short-ranged interactions via a
Lennard-Jones like potential:

U(rij) = U0

{
1 +

(
r̃ij
)12

[(
r̃ij
)2
− 1

]}
, r̃ij :=

rij
d

√
6
7
, [17]

whereU0 = 3kBT represents a finite energy barrier to allow chain passing when
rij < 0.6d. The stochastic forces are implemented according to Eq. 4 using
custom Brownian integrators, as detailed in the contrib/integrators
moduleoftheGitHubrepository:https://github.com/kannandeepti/polychrom_
analysis.

Random initial configurations were generated by growing the polymer on a
cubic lattice in a cubic box of size rC . Steady state was determined by running
the simulation until the monomer mean squared displacement plateaus at the
squared radius of confinement, i.e., until each monomer has had enough time
to explore its volume (107 time steps). We then ran each simulation for twice this
equilibration time and sampled 10 steady-state conformations from each run.
For each set of parameters, we repeated this procedure over 200 independent
simulation runs and thus computed average contact maps from an ensemble of
2,000 snapshots. We define a contact as an intermonomer separation that is less
than two monomer diameters. Simulation snapshots in Fig. 2F were generated
with nglview (127).

Hi-C Data Processing and Compartment Identification. To make a mean-
ingful comparison to Hi-C data, we model a region (35 Mbp to 60 Mbp) of
Chromosome 2 in murine erythroblasts, a model eukaryotic cell line (83). We
then derive the identities of active (A) and inactive (B) monomers in our simulated
chain from the data in the following way (130). First, we iteratively correct the
experimental contact map at 100-kbp resolution such that the rows and columns
sum to one, a process that removes experimental biases and ensures equal
visibility of all loci (128). We then divide each diagonal of the experimental

contact frequency map by its mean in order to produce an “observed over
expected” map, which measures structure in the data beyond the average decay
of contacts with genomic separation. Subtracting the mean from this “observed
over expected” map yields a matrix where positive entries indicate enrichment
of contacts above the mean and negative entries denote depletion of contacts
below the mean. The first eigenvector (E1) of the resulting map captures the
checkerboard pattern characteristic of A/B compartmentalization, and can thus
be used to binarize the genome into active (A) and inactive (B) segments. Since
the A/B identities are determined up to a sign of the entries of E1, we “align”
the E1 track to a binned profile of GC content, such that positive entries correlate
with active chromatin and negative entries with inactive chromatin (128). Since
compartments are typically measured at the 100-kbp resolution, it is sufficient
to assign 4 monomers to each Hi-C bin, i.e., one monomer per 25 kbp. Note
that this resolution is well beyond the persistence length of chromatin, which
is on the order of 1 kbp (129), justifying the omission of bending rigidity in
our simulations.

Compartment Scores. To quantify the degree of compartmentalization ob-
served in both experimental and simulated contact maps, we compute an order
parameter—the compartment score (130). Specifically, we use the definition of
the “COMP score 2” introduced in ref. 88. We first process the simulated contact
maps in the same way as the experimental data, i.e., via iterative correction and
computation of E1 (see previous section). The rows and columns of the observed
over expected map are sorted and binned by quantiles of the E1 track, such that
the top left quadrant shows B–B contacts, the bottom right quadrant shows A–A
contacts, and the off-diagonal quadrants show contacts between A and B regions.
The COMP score is defined by averaging over the top 25% of contacts in each
of the 4 quadrants and computing (AA + BB− 2AB)/(AA + BB + 2AB). The
resulting score is 0.0 if there is no difference between the contact frequencies
of same-type and different-type chromatin, and 1.0 if A and B regions are
perfectly demixed.

Data, Materials, and Software Availability. Source code used for simulations
and numerical analysis, as well as simulation scripts containing parameters used.
Data have been deposited in Zenodo (10.5281/zenodo.7274942) (130).
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46. D. Osmanović, Y. Rabin, Dynamics of active rouse chains. Soft Matter 13, 963–968 (2017).
47. S. M. Mousavi, G. Gompper, R. G. Winkler, Active Brownian ring polymers. J. Chem. Phys. 150,

064913 (2019).
48. T. Saito, T. Sakaue, Inferring active noise characteristics from the paired observations of

anomalous diffusion. Polymers 11, 2 (2019).
49. S. K. Anand, S. P. Singh, Conformation and dynamics of a self-avoiding active flexible polymer.

Phys. Rev. E 101, 030501 (2020).
50. A. Ghosh, A. J. Spakowitz, Statistical behavior of nonequilibrium and living biological systems

subjected to active and thermal fluctuations. Phys. Rev. E 105, 014415 (2022).
51. A. Ghosh, A. J. Spakowitz, Active and thermal fluctuations in multi-scale polymer structure and

dynamics. Soft Matter 18, 6629–6637 (2022).
52. R. G. Winkler, G. Gompper, The physics of active polymers and filaments. J. Chem. Phys. 153,

040901 (2020).
53. N. Ganai, S. Sengupta, G. I. Menon, Chromosome positioning from activity-based segregation.

Nucleic Acids Res. 42, 4145–4159 (2014).
54. A. Awazu, Segregation and phase inversion of strongly and weakly fluctuating Brownian particle

mixtures and a chain of such particle mixtures in spherical containers. Phys. Rev. E 90, 042308
(2014).

55. S. A. Sewitz et al., Heterogeneous chromatin mobility derived from chromatin states
is a determinant of genome organisation in S. cerevisiae. bioRxiv [Preprint] (2017).
https://doi.org/10.1101/106344 (Accessed 24 October 2022).

56. L. Liu, G. Shi, D. Thirumalai, C. Hyeon, Chain organization of human interphase chromosome
determines the spatiotemporal dynamics of chromatin loci. PLoS Comput. Biol. 14, e1006617
(2018).

57. A. Agrawal, N. Ganai, S. Sengupta, G. I. Menon, Nonequilibrium biophysical processes influence
the large-scale architecture of the cell nucleus. Biophys. J. 118, 2229–2244 (2020).

58. Z. Jiang, Y. Qi, K. Kamat, B. Zhang, Phase separation and correlated motions in motorized
genome. J. Phys. Chem. B 126, 5619–5628 (2022).
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