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A B S T R A C T   

Piwi-interacting RNAs (piRNAs) are a class of non-coding RNAs that play a key role in spermatogenesis. How
ever, little is known about their expression characterization and role in somatic cells infected with herpes simplex 
virus type 1 (HSV-1). In this study, we systematically investigated the cellular piRNA expression profiles of HSV- 
1-infected human lung fibroblasts. Compared with the control group, 69 differentially expressed piRNAs were 
identified in the infection group, among which 52 were up-regulated and 17 were down-regulated. The changes 
in the expression of 8 piRNAs were further verified by RT-qPCR with a similar expression trend. Gene ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the target genes of 
piRNAs were mainly involved in antiviral immunity and various human disease-related signaling pathways. 
Furthermore, we tested the effects of four up-regulated piRNAs on viral replication by transfecting piRNA 
mimics. The results showed that the virus titers of the group transfected with piRNA-hsa-28,382 (alias piR- 
36,233) mimic decreased significantly, and that of the group transfected piRNA-hsa-28,190 (alias piR-36,041) 
mimic significantly increased. Overall, our results revealed the expression characteristics of piRNAs in HSV-1- 
infected cells. We also screened two piRNAs that potentially regulate HSV-1 replication. These results may 
promote a better understanding of the regulatory mechanism of pathophysiological changes induced by HSV-1 
infection.   

1. Introduction 

Herpes simplex virus type 1 (HSV-1) is a highly infectious virus that 
is primarily transmitted by oral-oral contact (saliva). It belongs to the 
herpes α virus subfamily and its seroprevalence rate in the population 
can even reach 80% (James et al., 2020; Whitley and Roizman, 2001). 
Unlike HSV-2, which belongs to the same alphaherpesvirinae, HSV-1 
rarely causes genital area infection, but up to 40% of infected patients 
may develop clinical symptoms such as skin lesions and even central 
nervous system complications (Duarte et al., 2019). HSV-1 can cause 
lifelong latent infection. When the host is subjected to various nonspe
cific stimuli, it can periodically reactivate the latently infected virus, 
leading to recurrent disease (Elbers et al., 2007). At present, there is no 
effective vaccine against HSV-1, and antiviral therapy is the main clin
ical control strategy for HSV infection (Johnston et al., 2016). Yet, high 
drug resistance has emerged in people with low immune function 

(Greeley et al., 2020). Therefore, it is of urgent importance to deeply 
understand the infection of HSV-1 and its interaction with the host. 

PIWI-interacting RNAs (piRNAs) are a class of small silent RNAs 
containing 24 to 31 nucleotides (nt) (Aravin et al., 2001). The piRNAs 
were first identified in the testis of Drosophila, which can silence Stellate 
(the multi-copy gene) on the X chromosome of Drosophila (Aravin et al., 
2001). PIWI proteins belong to the argonaute/PIWI family (Carmell 
et al., 2002) and contain domains of endonuclease activity that enable 
them to cleave RNA. In humans, there are four PIWI homologues, 
namely PIWIL1, PIWIL2, PIWIL3, and PIWIL4 (Kim, 2019). As a member 
of non-coding RNAs, piRNAs usually interact with PIWI proteins to 
induce target gene silencing by forming an RNA-induced silencing 
complex (RISC) (Girard et al., 2006). Compared with well-known 
microRNAs, piRNAs are different in length, quantity, and expression 
pattern (Aravin et al., 2006). The roles of piRNAs are very conservative 
in animal germ cells and can protect the vast majority of animal germ 
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line genomes from transposon expression (Lewis et al., 2018). The 
piRNAs can also function outside the germ line. Abnormal regulation of 
piRNAs has been found in different tumor tissues and may be closely 
related to the malignant phenotype and clinical stage of tumor cells 
(Ozata et al., 2019). 

Previously, the process of achieving antiviral defense based on RNA 
interference mechanism was usually attributed to siRNAs, especially in 
plant and insect virus infection (Berkhout, 2018). With an increasing 
number of studies on piRNAs in recent years, the role of piRNAs in the 
process of virus infection has also gained new understanding. For 
example, studies have found that mosquitoes can fight RNA virus in
fections through the ping-pong pathway (Miesen et al., 2015, 2016). 
However, there is still a big gap in the research on the expression pattern 
and function of piRNAs in virus-infected mammalian cells. Previously, 
the expression of piRNAs induced by coxsackievirus B3 (CVB3) and 
human rhinovirus (HRV) infections was analyzed (Li et al., 2021; Yao 
et al., 2020). The possible mechanisms of piRNAs involved in the 
regulation of pathophysiological changes in human cells infected with 
viruses were initially explored. However, the expression pattern and 
function of piRNAs during HSV-1 infection remains unknown. 

In this study, we sought to investigate the effect of HSV-1 infection 
on piRNA expression and explore the possible role of differentially 
expressed piRNAs in the process of HSV-1 infection. We investigated 
host piRNAs’ expression patterns and function during HSV-1 infection 
using high-throughput RNA sequencing and functional analysis in HSV- 
1 infected and mock-infected human lung fibroblasts. Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analyzed differentially expressed piRNAs to reveal the po
tential roles of piRNAs in the process of HSV-1 infection. Furthermore, 
we tested the effects of four up-regulated piRNAs on viral replication by 
transfecting piRNA mimics. Overall, our results revealed the expression 
patterns of piRNAs induced by HSV-1 infection and identified two piR
NAs that potentially regulate HSV-1 replication, which furthers our 
understanding of the regulatory mechanism of pathophysiological 
changes induced by HSV-1 infection. 

2. Materials and methods 

2.1. Cells culture, virus infection, and piRNAs transfection 

Human embryonic lung diploid fibroblast (KMB17) cells are sus
ceptible to HSV-1 and have revealed the expression pattern of circular 
RNAs in our previous study (Shi et al., 2018). Human embryonic lung 
diploid fibroblast (KMB17) cells are susceptible to HSV-1, and the 
expression pattern of circular RNAs has been revealed in our previous 
study. KMB17 cells were cultured in MEM medium supplemented with 
10% fetal bovine serum (FBS), 1% penicillin, and streptomycin in a 
humidified atmosphere containing 5% CO2/ 95% air at 37 ◦C. The 
HSV-1 strain 17 was used to infect KMB17 cells at a multiplicity of 
infection (MOI) of 1 for sample preparation. piRNA mimics, which were 
used to overexpress piRNAs, were synthesized by the GenePharma 
(Shanghai, China). For piRNA mimic transfection, KMB17 cells were 
seeded uniformly in 6-well plates at 50,000 cells per well; after 12 h, 
piRNA mimics transfection was performed using Lipofectamine 3000 
(Cat no. L3000008, Thermo Fisher, USA) according to the manufac
turer’s protocol. 

2.2. Immunofluorescence 

At 48 h after infection with HSV-1 at a MOI of 1, KMB17 cells in cell 
climbing slices in 12-well plates were fixed with 4% paraformaldehyde 
for 20 min at room temperature (RT) , permeated with 0.1% Triton X- 
100, blocked with 5% BSA, and incubated with HSV-1 ICP5 antibody 
(Cat no. ab6508, 1:500, Abcam, UK) overnight at 4 ◦C. Fluorescein 
(FITC)-Conjugated Affinipure Goat Anti-Mouse IgG (Cat No. 
SA00003–1, 1:200, Proteintech Group, USA) was used as a secondary 

antibody. Finally, the nuclei were stained with DAPI at RT for 10 min. 
The images were captured using a panoramic MIDI digital scanner (3D 
HISTECH, Hungary). 

2.3. Data processing and analysis 

In order to analyze the expression patterns of piRNAs during HSV-1 
infection, we used the RNA-seq dataset from our previous study (Shi 
et al., 2018), numbered GSE102470, which has been uploaded to the 
public database GEO (https://www.ncbi.nlm.nih.gov/geo/). There were 
six samples and three biological replicates for each of the HSV-1 infec
tion and the control groups. The Cutadapt (version 1.14) (Marcel, 2011) 
software was used to remove the connector sequences from the original 
data and filter the sequence length (sequences lengths 〈 15 nt and 〉 41 nt 
were removed). Fastx-toolkit (version 0.0.13) (Gordon and Hannon, 
2010) software was used to perform Q20 quality control on sequences, 
and the sequences whose Q20 reached 80% or more were retained. The 
reads containing N bases were then filtered out by using NGS QC Toolkit 
(version 2.3.3) (Patel and Jain, 2012)software. High-quality clean reads 
were finally obtained and used for subsequent analysis. Fastx-toolkit 
(Version 0.0.13) (Gordon and Hannon, 2010) software was used to 
count the types of clean reads and obtain unique reads. 

2.4. Alignment of small RNAs and identification of piRNAs 

Bowtie (Langmead, 2010) software was used to annotate and identify 
small RNAs, while clean reads were compared with the Rfam (version 
10.0) (Griffiths-Jones et al., 2003)database. The rRNA, snRNA, Cis-reg, 
tRNA, and other sequences were annotated and removed as far as 
possible and were not used for subsequent known piRNAs alignment. 
The filtered reads were matched with the transcript sequences without 
error, and the transcript sequences could be completely aligned; the 
sequences longer than 26 nt were considered degraded fragments of 
mRNA, and this part of the sequences was filtered. Then, the miRBase 
(version 22.0) (Griffiths-Jones et al., 2006, 2008) database was used to 
make zero base mismatch matching between the sequences without 
aligned transcripts, and the miRBase database was used to filter out the 
miRNAs. Finally, the sequences with 18–34 nt in the filtered reads were 
matched with piRNAs of this species in piRBase (version 1.0) (Wang 
et al., 2019) database using Bowtie software. The aligned sequences 
were considered as known piRNAs. Based on this, the expression of 
piRNAs was counted, and the subsequent differential expression analysis 
was carried out. 

2.5. Differential expression analysis of piRNAs 

Transcripts Per million (TPM) (Sun et al., 2014) was used to quantify 
known piRNAs. The R package DESEq2 (Anders, 2010) was applied to 
screen the differential piRNAs among different samples. For differential 
expression analysis of piRNAs, the default conditions for filtering dif
ferences had p-value < 0.05 and |log2 foldchange| ≥ 1. The expression 
level of piRNAs was used to conduct principal component analysis (PCA) 
to investigate the distribution and correlation between biological 
samples. 

2.6. Target gene prediction of piRNAs 

The miRanda (John et al., 2004) algorithm was used to predict host 
target genes of differentially expressed piRNAs. The principles of 
miRanda algorithm are as follows: (1) piRNAs and mRNAs sequences 
matching; (2) according to the energy stability of piRNA and mRNA 
binding, the target relationship between piRNA and mRNA is compre
hensively predicted. The interaction between the top 10 up-regulated 
differentially expressed piRNAs and HSV-1 major genes was analyzed 
by RNAInter (version 4.0) (Kang et al., 2022). The piRNA-target gene 
network was constructed using Cytoscape software (3.9.1) (Shannon 
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et al., 2003). 

2.7. GO and KEGG pathway analysis 

The Gene Ontology (GO) functional analysis was performed to 
annotate and classify all genes of species and target genes of differen
tially expressed piRNAs. The Kyoto Encyclopedia of Genes and Genomes 
(KEGG) is the main public database for biological pathways. Pathways 
analysis of target genes of differentially expressed piRNAs was per
formed using the KEGG database. A hypergeometric distribution test 
was used to calculate the significance of enrichment of target genes of 
differentially expressed piRNAs in each Pathway entry. 

2.8. RT-qPCR analysis of piRNAs 

To verify the expression patterns of piRNAs, 8 piRNAs (4 up- 
regulated and 4 down-regulated) were randomly selected from the top 
20 differentially expressed piRNAs (Tables 1 and 2) for RT-qPCR anal
ysis. KMB17 cells were infected with HSV-1 at a MOI of 1 in 6-well cell 
culture plates for 48 h. Then infected or uninfected cells were harvested 
from 3 wells using TRIzol Reagent, and total RNA was extracted. cDNA 
was synthesized using specific stem-loop RT primers (Table S1) and 
GoScript™ Reverse Transcription System (Cat no. A5001, Promega, 
USA). RT-qPCR was performed by designing specific forward and uni
versal reverse primers for each piRNA using GoTaq® qPCR Master Mix 
reagent (Cat no. A6002, Promega, USA) on Bio-Rad CFX96 real-time 
detection system. The RT-qPCR programs were as follow: 95 ◦C for 5 
min, 40 circles at 95 ◦C for 30 s, 50 ◦C for 30 s. All samples were 
normalized by U6 small nuclear RNA. Finally, 2− ΔΔCt method (Livak and 
Schmittgen, 2001) was used for data analysis. 

2.9. Determination of HSV-1 titer 

To investigate the roles of differentially expressed piRNAs, piRNA 
mimics were transfected into KMB17 cells. At 12 h post-transfection, the 
cells were infected with HSV-1. At 36 h post-infection, the supernatant 
of infected cells was collected and titrated with TCID50 (tissue culture 
infective dose 50%) assay. 

2.10. Statistical analysis 

Data represent the mean ± SD from at least three independent ex
periments. The differences between the two groups were compared 
using a two-tailed unpaired Student’s t-test. P-value <0.05 was consid
ered a statistically significant difference. 

3. Results 

3.1. Identification and characterization of piRNAs in HSV-1 infected 
KMB17 cells 

In order to ensure the infection efficiency of HSV-1 in KMB17 cells, 
we evaluated HSV-1-infected and uninfected cells with ordinary light 
microscopy (Fig. 1A) and immunofluorescence of HSV-1-specific protein 
ICP5 (Fig. 1B). Microscope images showed obvious cytopathic effects 48 
h after infection compared to control cells. Immunofluorescence further 
showed that HSV-1-specific green fluorescence appeared in infected 
cells. These results indicated that HSV-1 could efficiently infect KMB17 
cells. Next, we annotated and identified piRNAs. The high-throughput 
sequencing results showed that the clean reads of each sample ranged 
from 17.29 M to 21.36 M. The genome alignment rate ranged from 95.37 
to 97.85%, and the known piRNAs alignment rate ranged from 0.65 to 
3.59%. Principal component analysis (PCA) showed high repeatability 
and correlation among six biological samples (Fig. 2A). Through sRNA 
comparison and piRNA identification, the distribution of total sRNA and 
unique sRNA in each sample was analyzed (Fig. 2B, C). Among them, 
849, 849, and 737 piRNAs were identified in the HSV-1 infection group. 
The control group identified 519, 628 and 606 piRNAs. Next, we 
analyzed the bases preference of the first site and each site of the 
detected piRNAs. However, the piRNAs in each sample did not show a 
strong preference for specific bases of the first position (1 U) and 10 
position (10A) (Fig. S1, S2). At the same time, the sequence length 
statistics of all piRNAs showed obvious peaks at 17 nt, 23 nt, and 26 nt 
(Fig. 2D), which is consistent with the length characteristics of piRNAs 
and consistent with previous studies (Li et al., 2021; Yao et al., 2020). 

Fig. 1. At 48 h after infection with HSV-1 at a MOI of 1, HSV-1 replicated and proliferated in KMB17 cells and led to morphological changes in KMB17 cells. (A) 
KMB17 cells seen under a 200-magnification normal light microscope. Compared with normal KMB17 cells without infection, the morphology of KMB17 cells after 
HSV-1 infection was altered. (B) HSV-1 ICP5 (green) specific fluorescence under fluorescence microscopy. The blue color is DAPI. The scale bar is 50 μm. 
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3.2. Differential expression analysis of piRNAs 

To analyze the differences of piRNA expression between the two 
groups during HSV-1 infection, we used the package R DESeq2 to screen 
the differential piRNAs between HSV-1 infected and mock-infected 
group. As a results, we identified 69 piRNAs that were significantly 
differentially expressed between two groups. Among them, 52 piRNAs 
were up-regulated and 17 were down-regulated (Fig. 3A). And the|log2 
foldchange| of up regulation range from 2.10785922 to 4.56268419, the 
log2 foldchange of up regulation range from 2.110090519 to 
6.497873947. The heat map shows the piRNAs cluster analysis results, 
indicating significant expression differences among samples (Fig. 3B). In 
addition, the volcano map was drawn to show the overall distribution of 
differential piRNAs (Fig. 3C). To check the reproducibility of the 
deregulation of piRNAs, we analyzed the sequences of 12 publicly 
available data (SRA accession number: PRJNA924274) of HSV-1 infec
ted and mock-infected primary human foreskin fibroblast (HFF) from 
Zubković et al. (2022). The results showed that a large number of 
differentially expressed piRNAs were identified at 8 and 18 h after 
HSV-1 infected HFF cells, among which, a total of 12 piRNAs were 
reproducibly deregulated in HFF and KMB17 cell lines infected with 
HSV-1 and to show their biological relevance in infection (Fig. 3D and 
Table S2). Furthermore, to confirm these differentially expressed piR
NAs identified by RNA-seq analysis, we randomly selected 8 of the top 
20 differentially expressed piRNAs (4 up-regulated and 4 
down-regulated) for stem-loop RT-qPCR analysis. The result showed 
that, compared with the control group, the selected piR-hsa-24,085, 
piR-hsa-23,326, piR-hsa-18,905, and piR-hsa-28,190 were significantly 

up-regulated in the HSV-1 infected group (Fig. 3E). At the same time, the 
selected piR-hsa-28,845, piR-hsa-28,138, piR-hsa-23,230, and 
piR-hsa-27,138 were significantly down-regulated in the HSV-1 infected 
group (Fig. 3F). The RT-qPCR result of the selected piRNAs is consistent 
with the RNA-seq result. To sum up, these changes of piRNAs expression 
in host cells during HSV-1 infection may suggest that host cells have 
complex molecular behavior mediated by piRNAs in viral infection. 

3.3. Functional prediction of differentially expressed piRNAs during HSV- 
1 infection 

To better understand the potential roles of differentially expressed 
piRNAs during HSV-1 infection, we analyzed the host target genes of 
these piRNAs using the GO and KEGG databases (Table S3). Enrichment 
analysis showed that the parental genes of differentially expressed 
piRNAs are related to transcription, regulation of transcription, and 
signal transduction (Fig. 4A). The GO level 2 also indicated that differ
entially expressed piRNAs might be involved in biological processes, 
such as the immune and stimulus-response (Fig. 4B, Fig. S3). Next, we 
analyzed the functions of differentially expressed piRNAs by KEGG 
ernichment analysis. KEGG level 2 distribution showed that differen
tially expressed piRNAs were enriched in the nervous system, immune 
system, infectious diseases, and immune disease signaling pathways 
(Fig. 4C). At the same time, bubble plots showed that differentially 
expressed piRNAs are involved in the regulation of a wide range of 
signaling pathways, such as calcium signaling pathway (hsa04020), 
human papillomavirus infection (hsa05165), and basal cell carcinoma 
(hsa05217) (Fig. 4D). These results suggested that the differentially 

Fig. 2. Identification and annotation of piRNAs in KMB17 cells. (A) Principal component analysis (PCA) diagram of piRNAs expressed among samples. (B) Histogram 
of total RNA classification annotation in each sample, with the horizontal axis showing samples and the vertical axis showing the number of reads of each type of 
small RNA. (C) Bar graph of unique RNA classification annotation in each sample. The horizontal axis is the sample, and the vertical axis is the number of reads of 
each type of small RNA. (D) Global nucleotide length distribution of piRNA sequencing results. 
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expressed piRNAs involved in various biological functions, including 
viral infection and immune response. 

3.4. piRNAs induced by HSV-1 potentially affect viral replication 

To test whether differential piRNAs could affect HSV-1 replication, 
the RNAInter V4.0 (Kang et al., 2022) was used to predict the targeting 
relationship between the top 10 up-regulated piRNAs and HSV-1 major 
viral genes. Finally, we selected four piRNAs that are most likely to 
interact with HSV-1, namely, piR-hsa-28,382 (alias piR-36,233), 
piR-hsa-11,080 (alias piR-48,966), piR-hsa-23,248 (alias piR-33,082), 
and piR-hsa-28,190 (alias piR-36,041). All these four piRNAs were 
predicted to interact with at least two HSV-1 genes (Fig. 5A). After that, 
Cytoscape software (3.9.1) (Shannon et al., 2003) was used to predict 
the host target genes of these four piRNAs. The results showed that each 
piRNA could target at least 7 host genes (Fig. 5B). These target genes are 
potentially involved in several important biological processes, including 
cell growth and development, humoral immunity and protein trans
portation. Then, the corresponding piRNA mimics were transfected into 
KMB17 cells for HSV-1 infection, and the supernatant was collected 36 h 
after HSV-1 infection at a MOI of 1. The titer of HSV-1 in the supernatant 

of the cells was measured, respectively. The result showed that 
compared with the negative control group, the viral titer of the 
piRNA-hsa-28,382 mimic group significantly decreased, while the titer 
of the piRNA-has-28,190 mimic group significantly increased, and there 
was no significant difference in the other two groups (Fig. 6). These 
results suggest that these up-regulated piRNAs can affect HSV-1 repli
cation and proliferation, which may be achieved by piRNAs targeting 
the viral genes or the host cellular genes. 

4. Discussion 

In this study, we systematically analyzed the piRNA expression 
profiles of KMB17 cells in HSV-1 infected and control groups, and 
analyzed the functions of differentially expressed piRNAs. After 
ensuring the good quality of samples and sequencing data, we found that 
the expression of piRNAs in KMB17 cells was significantly altered upon 
HSV-1 infection. Sixty-nine differentially expressed piRNAs were iden
tified, among which 52 were up-regulated and 17 were down-regulated 
(Fig. 3A). Interestingly, there were more up-regulated piRNAs than 
down-regulated piRNAs, which is consistent with the study of piRNA 
expression profiles in Coxsackievirus B3 infection (Yao et al., 2020). 

Fig. 3. piRNAs are differentially expressed during HSV-1 
infection. (A) Statistical histogram of differentially 
expressed piRNAs. (B) Heatmap of cluster analysis of differ
entially expressed piRNAs. (C) Volcano map of differentially 
expressed piRNAs. Red dots represent up-regulated piRNAs 
and green dots represent down-regulated piRNAs. (D) Venn 
diagram of the common differentially expressed piRNAs in 
HFF and KMB17 cells. (E, F) Randomly selected up-regulated 
piRNAs and down-regulated piRNAs were verified by Stem- 
loop RT-qPCR. Data were presented as the mean ± SD of 
three independent experiments.   
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This indicates that viral infection is likely to induce the high expression 
of piRNAs in the host. In this study, a total of 12 differentially expressed 
piRNAs are the same as the previous study of Zubković et al., which to a 
certain extent reflects the universality of piRNA expression in the host 
cells during HSV-1 infection. Herein, we further selected 4 up-regulated 
piRNA mimics to transfect KMB17 cells and measureed the virus titer in 
the supernatant 36 h after HSV-1 infection. The results showed that 
piRNA-hsa-28,382 mimic could decrease the titer of HSV-1 in the 

supernatant of infected cells, while piRNA-hsa-28,190 mimic could in
crease the titer of HSV-1 (Fig. 6). This suggests that up-regulated piR
NA-hsa-28,382 likely has an important role in fighting HSV-1 infection. 
Moreover, combined with our previous analysis of the interaction be
tween piRNAs and major genes of HSV-1, piRNA-hsa-28,382 partici
pates in anti-virus proliferation by silencing the expression of virus 
genes. At the same time, piRNA-hsa-28,190 may promote HSV-1 infec
tion, which is not in line with our previous conjecture. It may also 

Fig. 4. GO and KEGG analysis of differentially expressed piRNAs. (A) Top 30 GO terms of differentially expressed piRNAs in biological process, cellular component, 
and molecular function. (B) GO Level2 level distribution map of differentially expressed piRNAs target genes. (C) KEGG Level2 level distribution map of differentially 
expressed piRNAs target genes. The horizontal axis is the total number of differential piRNAs target genes annotated to each Level2 pathway and the corresponding 
ratio. The vertical axis represents the name of the Level2 pathway, and the number on the right side of the column represents the number of differential piRNAs target 
genes annotated to the Level 2 pathway. (D) KEGG enrichment analysis top20 (sorted by-log10Pvalue corresponding to each entry) bubble chart. 

Fig. 5. Functional interaction analysis of differentially expressed piRNAs and their target genes. (A) piR-hsa-28,382 interacts with HSV-1 RL2, RS1, and UL54. piR- 
hsa-11,080 interacts with HSV-1 LAT and UL39. piR-hsa-23,248 interacts with HSV-1 RL2 and LAT. piR-hsa-28,190 interacts with HSV-1 LAT and UL39. (B) 
Interaction network of differentially expressed piRNAs and their cellular target genes. 
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partcipate in promoting HSV-1 infection in other ways. 
The GO annotation analysis showed that the differentially expressed 

piRNAs in HSV-1 infected cells might be involved in biological func
tions, such as biological adhesion, immune system process, and response 
to stimulus, which are very common in many viral infections and may be 
the key to the interaction with the host in some viral infections (Aoshi 
et al., 2011; Xu and Shaw, 2016). These results suggest that these 
differentially expressed piRNAs involve in the process of HSV-1 infecting 
host cells. In addition, protein binding, transcription, and regulation of 
transcription were also specifically enriched in infected cells. Some 
studies have shown that protein binding is crucial for virus infection, 
and may be involved in virus entering host cells (Qiao and Olvera de la 
Cruz, 2020; Sathiyamoorthy et al., 2017). Moreover, the differentially 
expressed piRNAs may have an important role in the process of viral 
genome replication (Dremel and DeLuca, 2019) based on the GO term 
transcription and regulation of transcription. The multiple human 
disease-related signaling pathways were enriched in the HSV-1 infected 
group compared with the uninfected group, including neurodegenera
tive diseases, infectious diseases, and immune diseases. In particular, it 
should be noted that related genes were also enriched in the human 
papillomavirus infection signal pathway, suggesting that the process of 
HSV-1 infection may be similar to that of human papillomavirus 
infection. 

KEGG level 2 distribution showed that differentially expressed piR
NAs were enriched in the nervous system, immune system, infectious 
diseases, and immune disease signaling pathways. In addition, the Wnt 
signaling pathway was enriched in KEGG analysis. A previous study 
showed that the Wnt signaling pathway is related to the toxicity of 
influenza virus (Forero et al., 2015) and participates in virus prolifera
tion and cytomegalovirus infection (Baasch et al., 2021). 

The importance of endocytosis in the process of virus infection is self- 
evident. Endocytic vesicles are conducive to transporting virus particles 
into the deep cytoplasm without being squeezed by cytoplasm and 

hindered by cytoskeleton (Cossart and Helenius, 2014). Furthermore, 
the calcium signaling pathway has been proved to play an important 
role in virus entry, virus gene expression, virus protein post-translation 
processing, and virus particle maturation and release (Zhou et al., 2009). 
In this study, we found that differentially expressed piRNAs in HSV-1 
infected cells may affect the viral life cycle by altering these signaling 
pathways. In addition to viral infection-related pathways, cancer-related 
pathways were enriched, including hepatocellular carcinoma, breast 
cancer, basal cell carcinoma, and mammalian cancer. Furthermore, 
studies have shown that Notch signaling pathway roles in cancer are 
very extensive; in cetin cancers, Notch signaling may act as a carcino
genic factor while in others as a tumor inhibitor (Aster et al., 2017). On 
the other hand, in recent years, oncolytic HSV obtained by genetic 
modification of HSV has made some progress in the research of tumor 
immunotherapy (Jahan et al., 2021; Mondal et al., 2020). At the same 
time, the differentially expressed piRNAs found in this study during 
HSV-1 infection may provide some new clues for anticancer therapy. 

In summary, we used a high-throughput RNA sequencing technique 
to analyze piRNA expression patterns and their roles in KMB17 cells 
infected by HSV-1. Our results revealed the expression characteristics of 
piRNA in HSV-1 infected cells and screened two piRNAs that potentially 
regulate HSV-1 replication. The target genes of differentially expressed 
piRNAs were predicted and their function were analyzed by GO and 
KEGG enrichment analysis. These results will help reveal the roles and 
mechanisms of piRNAs in the process of HSV-1 infection. 
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