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Abstract

New approach methodologies (NAMs) that efficiently provide information about chemical 

hazard without using whole animals are needed to accelerate the pace of chemical safety 

assessments. Technological advancements in gene expression assays have made in vitro high-

throughput transcriptomics (HTTr) a feasible option for NAMs-based hazard characterization 

of environmental chemicals. In the present study, we evaluated the Templated Oligo with 

Sequencing Readout (TempO-Seq) assay for HTTr concentration-response screening of a small 

set of chemicals in the human-derived MCF7 cell model. Our experimental design included a 

variety of reference samples and reference chemical treatments in order to objectively evaluate 

TempO-Seq assay performance. To facilitate analysis of these data, we developed a robust 

and scalable bioinformatics pipeline using open-source tools. We also developed a novel gene 

expression signature-based concentration-response modeling approach and compared the results 

to a previously implemented workflow for concentration-response analysis of transcriptomics 

data using BMDExpress. Analysis of reference samples and reference chemical treatments 

demonstrated highly reproducible differential gene expression signatures. In addition, we found 

that aggregating signals from individual genes into gene signatures prior to concentration-response 

modeling yielded in vitro transcriptional biological pathway altering concentrations (BPACs) that 

were closely aligned with previous ToxCast high-throughput screening (HTS) assays. Often these 

Correspondence to be sent to: Joshua A. Harrill, Center for Computational Toxicology and Exposure (CCTE), U.S. Environmental 
Protection Agency, 109 TW Alexander Drive, Research Triangle Park, NC 27709 harrill.joshua@epa.gov. 

Competing financial interests: The authors declare they have no actual or potential competing financial interests

Disclaimer: The views expressed in this article are those of the authors and do not necessarily represent the views or policies of the 
U.S. Environmental Protection Agency.

Supplementary Information
The source code used to conduct analyses in this work can be found https://github.com/USEPA/httrpl_pilot. Raw read data for all 
samples (FASTQ format) and probe set manifest can be found under GEO data series GSE162855. Other data files described in the 
Supplementary Material are located on FigShare (DOI: 10.23645/epacomptox.13368914).

Conflict of Interest
The authors declare no conflict of interest. This manuscript has been reviewed by the Center for Computational Toxicology and 
Exposure, Office of Research and Development, U.S. Environmental Protection Agency, and approved for publication. Approval does 
not signify that the contents reflect the view of the Agency, nor does mention of trade names or commercial products constitute 
endorsement or recommendation for use.

EPA Public Access
Author manuscript
Toxicol Sci. Author manuscript; available in PMC 2023 May 18.

About author manuscripts | Submit a manuscript
Published in final edited form as:

Toxicol Sci. 2021 April 27; 181(1): 68–89. doi:10.1093/toxsci/kfab009.E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript

https://github.com/USEPA/httrpl_pilot


identified signatures were associated with the known molecular target of the chemicals in our 

test set as the most sensitive components of the overall transcriptional response. This work has 

resulted in a novel and scalable in vitro HTTr workflow that is suitable for high throughput hazard 

evaluation of environmental chemicals.
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Introduction

Current animal toxicity testing approaches only allow for a small fraction of the thousands 

of chemicals in U.S. commerce (USEPA 2020) to be thoroughly evaluated for human 

safety. New approach methodologies (NAMs) that can efficiently provide information about 

chemical hazard and risk without using whole animals are needed to accelerate the pace 

of chemical risk assessments (USEPA 2018). Formally, NAMs have been defined as any 

technology, methodology, approach or combination thereof that can be used to provide 

information on chemical hazard and risk that avoids the use of intact animals (USEPA 

2018). This broad term can encompass many different types of in vitro bioactivity studies, 

in silico modeling of bioactivities and exposure predictions, cheminformatics and various 

combinations thereof. Recently, USEPA has made a commitment to phase out mammalian 

toxicity testing to the greatest extent possible by 2035 (Wheeler 2019), thereby increasing 

the impetus at USEPA for development and implementation of NAMs.

The USEPA has been evaluating high-throughput screening (HTS) and computational 

toxicology tools for over 10 years (Judson et al. 2010; Richard et al. 2016), resulting 

recently in the development of a NAM for screening of endocrine disrupting chemicals for 

use in a regulatory setting (USEPA 2016). Identifying and/or developing NAMs as effective 

replacements for in vivo toxicity testing is a significant challenge, but one that could be 

addressed by using a cross-disciplinary tiered toxicity testing approach as described in 

the USEPA Computational Toxicology Blueprint (i.e. EPA CompTox Blueprint) (Thomas 

et al. 2019). The success of this strategy depends on implementing “Tier 1” assays for 

hazard characterization. Toward this objective, the EPA CompTox Blueprint proposes the 

use of non-targeted high-throughput profiling (HTP) assays for initial characterization of 

the biological activity of environmental chemicals. Ideally, such profiling assays should be 

capable of being deployed in HTS format across multiple human-derived in vitro models 

while providing high content data that can be leveraged to identify potency thresholds for 

perturbation of cellular biology and predict putative mechanism of action. High-throughput 

transcriptomics (HTTr) using targeted RNA-Seq is one such assay that meets these criteria.

Gene expression profiling has long been considered an informative method for evaluating 

the biological activity and/or toxicity of chemicals (Joseph 2017). Past research focused 

on using gene expression data from in vivo animal studies to characterize the toxicity 

of environmental chemicals, to identify putative molecular mechanisms-of-action, and to 
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define transcriptional points-of-departure (PODs) through the use of concentration-response 

modeling of multiplexed gene expression measurements (Blomme et al. 2009; Cui and 

Paules 2010; Farmahin et al. 2017; Harrill et al. 2019; Thomas et al. 2013). Such 

studies were necessarily low-throughput given the use of laboratory animals. Over the 

years, advances in transcriptomics research have included technological improvements 

in transcriptomics assay platforms (i.e. increased assay reproducibility and transcriptome 

coverage), the establishment of large-scale, open-access transcriptome profiling datasets 

housing both in vivo and in vitro chemical bioactivity data (Igarashi et al. 2015; Lamb 

et al. 2006; Svoboda et al. 2019), and development of many computational strategies for 

analyzing such data. However, research efforts relating to the latter two topics have primarily 

focused on mechanism-of-action characterization and chemical clustering/read-across (De 

Abrew et al. 2016). Concentration-response data and the analysis approaches needed for 

identifying biologic potency thresholds for environmental chemicals, referred to here as 

transcriptional biological pathway altering concentrations (BPACs) (Harrill et al. 2019; 

Judson et al. 2011) have been lacking. Fortunately, increasing efficiency and declining costs 

associated with generating whole transcriptome profiles have made in vitro HTTr screening 

in concentration-response mode a feasible option for NAMs-based hazard characterization 

of environmental chemicals.

In the present study, we evaluated the Templated Oligo with Sequencing Readout (TempO-

Seq) assay (Yeakley et al. 2017) for HTTr screening of a small set of environmental 

chemicals. This assay requires small (picogram) amounts of input RNA, is scalable in 

terms of transcriptome coverage, is amenable to preparation of pooled sequencing libraries 

from many samples, yields sequencing reads of exactly 50 base pairs that can be rapidly 

aligned to generate gene counts, and is compatible with cell lysates prepared in multiwell 

(e.g. 384-well) format. This latter feature is important from an HTS perspective in that 

it eliminates the need for the time-consuming and costly process of RNA extraction. The 

version of the TempO-Seq assay we evaluated provides nearly whole transcriptome coverage 

(>20,000 genes), although lower coverage versions of the assay have been evaluated by 

other toxicology research groups (Grimm et al. 2019; Limonciel et al. 2018; Ramaiahgari 

et al. 2019). The MCF7 breast adenocarcinoma cell line was selected for use in the 

present study in order to anchor to the Connectivity Map (CMAP) database (Lamb et 

al. 2006), a large collection of whole transcriptome profiles from chemical-treated cells; 

MCF7 being the most highly represented. Our experimental design included a variety of 

reference samples and reference chemical treatments that facilitated objective evaluation 

of TempO-Seq assay performance. To facilitate analysis of these data (and data from 

potential future studies), we developed a robust and scalable bioinformatics pipeline using 

open-source tools and open-access data. Lastly, we developed a novel gene expression 

signature-based concentration-response modeling approach and compared the results to a 

previously proposed workflow for concentration-response analysis of transcriptomics data, 

as recommended by the National Toxicology Program (NTP 2018), and implemented as part 

of the BMDExpress software package (Phillips et al. 2019).

Analysis of reference samples and reference chemical treatments demonstrated highly 

reproducible differential gene expression signatures across assay plates. These signatures 

were associated with the known molecular targets and biological activity of the reference 
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samples and treatments. For the in vitro HTTr data generated in the present study, large 

effect sizes (i.e. > 2-fold expression change) were rare at the individual gene level. However, 

we found that aggregating individual gene expression changes into signature scores prior 

to concentration-response modeling yielded transcriptional BPACs that were equivalent 

to, or in many cases, more sensitive than transcriptional BPACs determined using the 

previously proposed BMDExpress workflow. The transcriptional BPACs determined using 

the gene signature approach were closely aligned with in vitro BPACs determined from 

ToxCast HTS assays (Judson et al. 2010). The gene signature approach often identified 

signatures associated with the known molecular target of the test chemicals as the most 

sensitive drivers of the overall transcriptional response. In summary, we have developed 

a scalable experimental and bioinformatic workflow that can be used to conduct in vitro 
HTTr concentration-response screening of thousands of chemicals that may be found in the 

environment.

Methods

Materials

HTB-22™ MCF7 breast adenocarcinoma cells and dimethyl sulfoxide (DMSO) used 

for cryopreservation purposes were purchased from American Tissue Culture Collection 

(Manassas, VA). MediaTech™ Dulbecco’s Modified Eagles Medium (DMEM) with glucose 

(4.5 g/L), L-glutamine (584 mg/L) and sodium pyruvate (110 mg/L), rectangular 25 cm2 

(T25), 75 cm2 (T75) 225 cm2 (T225) cell culture flasks with vented caps and barcoded 

384-well optical imaging plates were purchased from Corning, Inc., (Corning, NY). 

Gibco™ Penicillin-Streptomycin-Glutamine (PSG), LifeTech™ TrypLE™ Select Enzyme, 

Invitrogen™ Countess® Cell Counting Chamber Slides, 0.4% Trypan Blue Stain, Applied 

Biosystems™ MicroAmp® Optical Adhesive Film, Nunc™ aluminum acrylate plate sealing 

tape, Hoechst 33342 trihydrochloride trihydrate (H-33342) 10 mg/mL aqueous solution, 

propidium iodide (PI) 1 mg/mL aqueous solution and CellEvent™ Caspase 3/7 Green 

Detection Reagent were purchased from ThermoFisher Scientific (Waltham, MA). Heat-

Inactivated Fetal Bovine Serum (HI-FBS), 10X Phosphate Buffered Saline (PBS), and 

DMSO for test chemical solubilization and dilution were purchased from Millipore-Sigma 

(St. Louis, MO). Reference chemicals trichostatin A (TSA, catalog #: T8552), sirolimus 

(catalog #: R0395), genistein (catalog #: 345834), staurosporine (catalog #: S5921), 

ionomycin (catalog #: I9657), saccharin (catalog #: 240931) and sorbitol (catalog #: S1876) 

were also purchased from Millipore-Sigma. Echo® Qualified 384-Well Polypropylene 

Microplates (384PP) were purchased from Labcyte, Inc., (Sunnyvale, CA). Universal 

Human Reference RNA (UHRR, cataolog #: 636690) and Human Brain Reference RNA 

(HBRR, catalog #: 636658) were purchased from Takara-ClonTech (Mountain View, CA). 

For 1X PBS and paraformaldehyde working solutions, concentrated stocks were diluted in 

deionized water from a Dracor water purification system.

Chemical Selection

For this study, we selected a set of 44 chemicals (Table 1). For our screening design, this is 

the number of chemicals that would fit on a single 384 well plate in concentration-response 

format in addition to the reference chemical treatments, reference samples, and vehicle 
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control wells. These chemicals were selected from three classes: those with effects on 

specific molecular targets expressed in MCF7 cells, chemicals causing broad cytotoxicity, 

and a set of herbicides that are active against targets that are not expressed in MCF7 cells 

(or not present in mammalian cells at all) but only exist in fungi or plants. In the first class, 

the six specific molecular targets tested for were estrogen receptor alpha (ESR1), androgen 

receptor (AR), peroxisome proliferator activating receptor alpha and gamma (PPARα and 

PPARγ, respectively), 3-Hydroxy-3-Methylglutaryl-CoA reductase (HMGCR), and thyroid 

hormone receptor (THRA). Relative baseline expression levels from the Human Protein 

Atlas (https://www.proteinatlas.org) (Uhlen et al. 2015) for expression of these molecular 

targets in MCF7 cells are as follows: ESR1 (24.3), HMGCR (10.4), THRA (3.2), PPARG 

(2.4), PPARA (1.7), AR (1.2). These are normalized expression levels (NX), where a 

value of 1.0 is the limit of detection. Several of the selected chemicals are known to be 

broadly cytotoxic through inhibition of sulfhydryl enzyme systems, disrupting mitochondrial 

electron transport or inhibiting protein synthesis (Kleinstreuer et al. 2014; Sipes et al. 

2013). Our prior expectation was that the ESR1 agonists and antagonists should produce 

notable effects on gene expression in the MCF7 cell type. Antagonist activity should be seen 

because of the presence of estradiol in the culture media which causes the estrogen receptor 

(ER) pathway to be partially, but not fully active at baseline. In contrast, the herbicidal 

PPO inhibitors were expected to be largely inactive as they target enzymes that are only 

found in plants and have shown little activity in the broader ToxCast in vitro screening 

battery (Supplemental Material Table S1). For most of the target classes, we included 

more than one chemical to allow us to observe consistency in activity by target class. All 

literature references for the effects of the 44 chemicals used in this study are provided as 

Supplemental Material (Table S1).

Cell Culture

Five vials of cryopreserved MCF7 (HTB-22™) cells were purchased from American 

Tissue Culture Collection, designated as passage 0 (P0) and stored in vapor phase liquid 

nitrogen prior to initial thawing and expansion. A passage 3 (P3) MCF7 cryostock was 

generated by thawing and pooling all five original source vials and culturing through three 

consecutive passages in complete growth medium (DMEM + 10% FBS + 1% PSG). At each 

passage, cells from different culture vessels were pooled prior to re-seeding for subsequent 

expansion. At P3, cells were cryopreserved at 4 million cells per mL in complete growth 

medium + 5% DMSO according to manufacturer’s protocol. MCF7 cultures used in all 

phases of this study were maintained in humidified incubators with 5% CO2 atmosphere and 

internal temperature of 37°C.

For chemical screening, MCF7 cells were thawed and subjected to a uniform expansion 

protocol from P3 to P6 through increasingly larger sizes of tissue culture vessels (T25 

to T75 to T225) prior to plating in 384-well format. The three cultures were initiated on 

consecutive days and subject to uniform handling procedures to ensure that dosing and 

sample collection also occurred on consecutive days. All chemical screening experiments 

were performed on P7 cells. Cell line authentication was performed on an aliquot of P6 

cells using short tandem repeat (STR) profiling and comparison to the MCF7 (ATCC 

HTB-22) reference profile in accordance with the ANSI/ATCC ASN-0002–2011 method. 
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STR profiling demonstrated a 100% match of the P6 profile to the reference profile (data not 

shown), thereby confirming that the cells used in this study were MCF7. The P6 cells were 

also negative for mycoplasma (data not shown) as assessed using the iNtRON Biotechnology 

eMYCO Plus kit.

At the time of plating, cells were passaged and resuspended in complete growth media. A 

small aliquot (10–20 μL) of cell suspension was then labeled with Trypan Blue solution 

(1:1) and the number of live cells per volume of cell suspension determined using a 

Countess™ II Automated Cell Counter (ThermoFisher Scientific, Waltham, MA) according 

to manufacturer’s instructions. The concentration of the cell suspension was then adjusted to 

250 cells/μL. The adjusted cell suspension was then dispensed into 384-well plates (40 μL/

well) using a MultiFlo FX multi-mode dispenser equipped with a 10 μL dispensing cassette 

(BioTek, Winooski, VT). The total cell input at the time of seeding was 10,000 cells/well 

and vehicle control cultures reached a confluency of 50–60% by the time of sampling (data 

not shown). The screening experiment was performed using three independent cultures (i.e. 

biological replicates). Each biological replicate contained three assay plates of MCF7 cells 

used in: 1) the HTTr TempO-Seq assay, 2) the cell viability assay and 3) the apoptosis assay, 

respectively. The first column of each 384-well plate used in the HTTr TempO-Seq assay 

was left empty to accommodate addition of quality control samples prior to transcriptomics 

analysis (Figure 1). Cells were seeded in all wells of the cell viability and apoptosis assay 

plates. After seeding, cells were placed in an incubator and allowed a 24-hour recovery 

period prior to chemical treatments.

Chemical Treatments

DMSO-solubilized chemical stock solutions were received frozen from the US EPA ToxCast 

chemical inventory management contractor (EvoTec, Princeton, NJ) and stored at −80°C 

prior to dose plate preparation. An eight-point dilution series (1/2 log10 spacing) of test 

chemicals was prepared in a LabCyte Echo-qualified 384-well polypropylene (384PP) plate 

at 200x the desired nominal test concentration for screening (0.03 – 100 μM). Singleton 

wells of dosing solutions for each test chemical concentration were arrayed in columns 2 

through 23 of the dose plate (Figure 1A). Transcriptomics reference chemicals (genistein, 

trichostatin A, sirolimus) were solubilized as 200x dosing solutions corresponding to 

nominal test concentrations of 10, 1 and 0.1 μM, respectively. Triplicate wells of dosing 

solutions for each of the transcriptomic reference chemicals were added to the dose plate 

(column 24) along with quadruplicate wells of pure DMSO as a vehicle control. Reference 

treatments were included in the experiment in order to evaluate plate-to-plate reproducibility 

of transcriptional responses as measured using TempO-Seq, to confirm proper dispensing 

of test chemicals and optimize analysis methods by comparison with the Connectivity Map 

database (Lamb et al. 2006).

Cell viability positive control chemicals (staurosporine and ionomycin) were solubilized 

as 200x stocks corresponding to nominal test concentrations of 1 and 30 μM, 

respectively. Negative control (saccharin, sorbitol) chemicals were solubilized as 200x 

stocks corresponding to a nominal test concentration of 100 μM. Quadruplicate wells of cell 

viability positive and negative control chemicals were added to the dose plate (column 1). 
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The dose plate was then sealed with a Nunc™ aluminum adhesive plate cover and stored at 

−80°C until use. On the first day of dosing, the dose plate was brought to room temperature 

inside a desiccator, centrifuged briefly to ensure even distribution of dose solutions in each 

well and unsealed. In between each dosing session (occuring on consecutive days), the dose 

plate was resealed with an aluminum cover and stored at room temperature, in the dark, 

within a desiccator to prevent hydration of DMSO test chemical solutions during the study.

At 24 h post-plating, 200 nL of 200x dosing solutions were transferred to the assay plates 

using a LabCyte Echo 550 acoustic dispenser. The final concentration of DMSO in all 

treatment, reference treatment and vehicle control wells was 0.5%. Well coordinates on 

each assay plate were uniquely randomized with respect to treatment so that any potential 

edge-well effects were distributed in an unbiased manner across all possible treatment 

conditions. For the HTTr TempO-Seq assay, only test chemicals, transcriptomic reference 

chemicals and vehicle control (i.e. DMSO) solutions were dispensed to columns 2 through 

24 of assay plates. For the cell viability and apoptosis assays, test chemicals, transcriptomic 

reference chemicals, cell viability positive and negative control chemicals and vehicle 

control solutions were dispensed to columns 1 through 24 of the assay plates. All assay 

plates were placed back in an incubator (5% CO2, 37°C) immediately after dosing. All 

HTTr, cell viability and apoptosis experiments used a chemical exposure duration of 6 h 

prior to sampling as this was the most frequently used exposure duration for MCF7 cells in 

the CMAP database.

Cell Viability and Apoptosis Assays

The cell viability and apoptosis assays were conducted in a similar manner. For the 

cell viability assay, MCF7 cells were live-labeled with a combination of H-33342 and 

propidium iodide (PI) at nominal well concentrations of 8.1 and 3.75 μM, respectively. 

For the apoptosis assay, MCF7 cells were live-labeled with a combination of H-33342 

and CellEvent™ Caspase 3/7 (Casp3/7) at nominal well concentrations of 8.1 and 5 μM, 

respectively. For both assays, labeling reagents were dispensed from 384PP plates to assay 

plates using a LabCyte Echo 550 acoustic dispenser. Following application of labeling 

reagents, assay plates were placed in a humidified incubator (5% CO2, 37°C) and incubated 

for 30 minutes. Plates were then fixed via direct addition of 12 μL of 16% paraformaldehyde 

solution followed by incubation at room temperature for 10 min, protected from light. Assay 

plates were then washed twice with 80 μL of 1X PBS and assay wells filled with 80 μL of 

1X PBS as a storage buffer. Plates were sealed with optical adhesive film and stored at 4°C 

prior to imaging.

On the day of image acquisition, plates were removed from 4°C storage and equilibrated 

to room temperature, protected from light. Images were then acquired using a Cellomics™ 

ArrayScan XTI High-Content Screening system. For the cell viability assay, excitation/

emission filters for H-33342 and propidium iodide image acquisition were 365/535 nm and 

549/600 nm, respectively. For the apoptosis assay, image acquisition excitation/emission 

filters were 365/535 nm and 475/535 nm, respectively. For both assays, images were 

acquired using a 10X objective and 4 unique fields-of-view were imaged in each well. 

In each assay, nuclei were segmented in the H-33342 channel. Nuclei selection parameters 
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were optimized to exclude border nuclei (i.e. instances where the entirety of the nuclei was 

not visible) and potential imaging artifacts (i.e. fibers, dust, etc.). For the cell viability assay, 

the mean pixel intensity of the PI channel was calculated within each valid nucleus. For 

the apoptosis assay, the mean pixel intensity of the Casp3/7 channel was calculated within 

each valid nucleus. Cell-level data for each plate was then exported for downstream analysis 

using the R statistical computing environment. Data were analyzed on a per plate basis. Each 

cell was identified as either PI-positive or CASP-3/7 positive if their mean intensity was 

above the 95th-percentile calculated for vehicle control wells on the same assay plate. The 

percentage of PI-positive or Casp3/7-positive cells were calculated for each assay well. Z’ 

values were calculated as described (Zhang et al. 1999) on a per plate basis using ionomycin 

and staurosporine positive control treatments and DMSO as the baseline treatment. Z’ values 

for negative control chemicals saccharin and sorbitol were also calculated using DMSO as 

the baseline treatment to demonstrate lack of effects on cell viability associated with the 

chemical dispensing procedure. Concentrations of test chemicals producing either ≥ 50% 

PI-positive or ≥ 50% Casp3/7-positive cells were flagged (Supplemental Table 2) and assay 

wells corresponding to those concentrations were not included in analysis of the TempO-Seq 

data.

HTTr Assay

Aqueous solutions (100 ng/μL) of Universal Human Reference RNA (UHRR) and Human 

Brain Reference RNA (HBRR) were prepared from source vials by dilution with RNase-free 

water. UHRR and HBRR solutions were then further diluted 1:1 in 2X BioSpyder lysis 

buffer, aliquoted and frozen at −80°C until use. Bulk lysates were prepared by treating 

MCF7 cells cultured in 384-well format with 0.5% DMSO (i.e. BLDMSO) or 1 μM 

trichostatin A (i.e. BLTSA) as described above and lysing the cells using the procedure 

described below. Lysates from wells receiving the same treatment were pooled in 50 mL 

conical tubes, aliquoted and frozen at −80°C until use. The RNA standards and the bulk 

lysates are collectively referred to as ‘reference samples’ throughout this study and were 

included in the experimental design in order to evaluate performance of the TempO-Seq 

assay across plates, absent of any influence of dosing or cell culture procedures.

Six hours after chemical treatment, HTTr assay plates were removed from the incubator and 

media in each assay well was drained to a residual volume of 10 μL using MultiFlo FX 

microdispenser equipped with a vacuum-driven aspiration manifold. To create cell lysates, 

10 μL volumes of 2X BioSpyder lysis buffer were dispensed into each assay well using 

the same MultiFlo FX instrument equipped with 1 μL peristaltic pump dispensing cassette. 

Then, 20 μL volumes of UHRR, HBRR, BLDSMO, BLTSA and Lysis Buffer were manually 

dispensed into duplicate wells of column 1 of each HTTr assay plate as illustrated in Figure 

1A. The plates were sealed with an adhesive aluminum plate cover and incubated at room 

temperature, protected from light, for 30 minutes. The plates were then stored at −80°C prior 

to shipment to BioSpyder, Inc.

Plates were shipped to BioSpyder, Inc. frozen (on dry ice) using overnight priority shipping. 

MCF7 cell lysates were then analyzed by BioSpyder using a custom-attenuated version of 

the TempO-Seq human whole transcriptome version 1 (hWTv1) assay (Yeakley et al. 2017), 
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which includes 21,111 probes covering 19,287 genes (see Supplemental Material). Lysates 

were processed as described (House et al. 2017). In brief, 2 μL of each lysate was hybridized 

with 2 μL of detector oligos from the hWTv1 assay using the following thermal cycler 

protocol: 10 min at 70°C, followed by gradual decrease to 45°C over 49 min, terminating 

with 45°C incubation for 16–24 hours. Excess oligos were then removed via nuclease 

digestion (90 min at 37°C) and hybridized detector oligos were ligated (60 min at 37°) 

following respective additions of 24 μL TempO-Seq nuclease and ligation mixes. RNA/DNA 

duplexes were then heat-denatured and 10 μL of each ligation product was transferred to an 

amplification microplate containing 10 μL of PCR master mix per well. Ligation products 

were then uniquely labeled during product amplification (10 min at 37°C, 2 min at 95°C, 

6 cycles of 95°C for 30 s, 54°C for 30 s, 72°C for 120 s, 16 cycles of 95°C for 30s 

and 72°C for 120s, followed by 72°C for 60 s) with well coordinate-specific “barcoded” 

primer pairs containing universal adaptors for sequencing. Samples were then pooled into a 

series of three sequencing libraries (1 for each plate). Pooled sequencing libraries were then 

distributed across multiple lanes of a HiSeq dual flow cell and analyzed on a HiSeq 2500 

Ultra-High-Throughput Sequencing System (Illumina, San Diego, CA). The target depth for 

each test sample was 3 million sequenced reads.

HTTr data processing

Raw TempO-Seq data were provided by the vendor as individual FASTQ files for each 

sample well and were subsequently processed through a custom bioinformatics pipeline 

(Figure 1B). Each FASTQ file was aligned to the probe sequences in the hWTv1 assay 

(see Supplemental Material) using HISAT2 v2.1.0 (Kim et al. 2015; Kim et al. 2019) with 

spliced alignment disabled. Aligned reads in SAM format were processed with SAMtools 

v1.9 (Li et al. 2009) to compute the number of uniquely aligned reads for each probe. Probe 

counts and associated meta-data for each well were stored for analysis using MongoDB 

v3.6.14. Source code for all data processing steps are included in an open source package 

‘httrpl’ (https://github.com/USEPA/httrpl_pilot). The probe counts for each sample are 

provided via FigShare (DOI: 10.23645/epacomptox.13368914, see Supplemental Material).

HTTr Quality Control

Extensive quality control (QC) criteria were developed to exclude probes and samples of low 

quality. The vendor updated the hWTv1 assay annotation to mask 151/21111 (0.7%) probes 

due to low quality as ascertained by correlation with RNA-Seq data (see Supplemental 

Material). All 21,111 probes in hTWv1 were used to align the raw data, but read counts 

for these 151 probes were excluded from all further analysis. Low quality samples were 

removed based on the QC criteria listed in Table 2. Sample level QC criteria were based 

on the cell viability results for each concentration of the test chemicals (Supplemental Table 

2), and multiple well-level metrics computed from read mapping rate and count distribution 

across probes (Supplemental Table 3). The Gini coefficient (GiC) is a generalizable metric 

of overall inequality in any distribution, originally developed to measure income inequality 

but subsequently adapted to many other applications (van Mierlo et al. 2016) including 

biological data (Graczyk 2007). In this study, we computed a GiC for each sample based 

on the distribution of raw counts for all probes including those with 0 aligned reads. The 

thresholds for Fraction of Viable Cells (FrVC) and Fraction of Reads Uniquely Mapped 
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to Probes (FMR) are simple majority cutoffs (majority of cells must be viable; majority 

of reads must uniquely map to probe sequences). The threshold for Number of Uniquely 

Mapped Reads (NMR) was set at 10% of target per-sample read depth. The thresholds for 

Number of Probes with at least 5 Reads (Ncov5), Number of Probes Capturing Top 80% 

of Signal (Nsig80), and GiC were set at approximately Tukey’s Outer Fence (Tukey 1977), 

defined as 3x the inter-quartile range (IQR), of the distribution for all samples cultured 

on each plate (test sample, vehicle control, and reference chemical treatments) excluding 

those with FrVC<0.5 (>50% cell death as noted above). All samples with QC flags were 

removed from further analysis except where otherwise noted. For each well corresponding to 

a vehicle control, reference sample, or reference chemical, we also computed the D-statistic 

(House et al. 2017), which is the average correlation against all other replicate wells of the 

same type.

Differential expression analysis

Differential expression analysis was performed independently for each reference chemical 

treatment against the matched DMSO controls. In addition, BLTSA samples were compared 

to BLDMSO samples. Two separate differential expression analyses, a plate-level analysis, 

and a plate-group analysis (specific to the reference chemical treatments only), were 

performed as follows. Read counts for all probes were tabulated for all relevant samples (all 

replicates of the reference chemical treatments and corresponding vehicle controls for each 

plate for the plate-level analysis or across all 3 plates for the plate-group analysis). Probes 

with mean read count < 5 across these subsets of samples were removed. Counts for the 

remaining samples and probes were modeled using DESeq2 v1.24 (Love et al. 2014). For 

the plate-level reproducibility analysis, individual probe counts were modeled as a function 

of treatment effect (i.e. counts ~ treatment). Size factors and dispersion were estimated 

using package defaults, and model-fitting was initially performed with ‘betaPrior=FALSE’. 

We then applied fold-change shrinkage to the treatment contrast (reference chemical vs 

DMSO control) to obtain moderated log2 fold-changes (L2FC) for each probe. Differential 

expression analysis of HBRR vs UHRR samples was also run, with the sample type in place 

of treatment effect.

For the combined analysis of all plates, counts were modeled by treating the experimental 

plate and treatment effect as independent factors (i.e. counts ~ plate + treatment). Size 

factors, dispersion estimates, and fold-change shrinkage were applied similarly to the plate-

level analysis above except the moderated L2FC values were adjusted to remove any average 

plate effects. Additionally, we repeated these combined analyses without modeling plate 

effect (i.e. counts ~ treatment) and/or without applying the fold-change shrinkage step when 

computing moderated L2FC values, resulting in 4 possible DESeq2 configurations (+/− plate 

effect; +/− L2FC shrinkage).

Differential expression analysis of the 44 test chemicals was performed as described 

above, except that samples for all concentrations of the same test chemical (excluding 

samples with QC flags as noted above) were used together with all plate-matched DMSO 

wells to filter probes with mean count < 5 independently for each test chemical. The 

DESeq2 model used in this case treated plate effect and each concentration group as 
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independent factors (i.e. counts ~ plate + concentration). Fold-change shrinkage was applied 

separately for each concentration vs DMSO controls to compute moderated L2FC values. 

Alternate configurations (without plate effect and/or without shrinkage) were not run for 

test chemicals. Differential expression p-values for each probe at each concentration were 

computed using the Wald test prior to fold-change shrinkage (DESeq2 default). The p-values 

were adjusted for multiple-testing within each concentration using the Benjamini-Hochberg 

step-up method, with the “independent filtering” option in DESeq2 turned off. We computed 

differentially expressed gene (DEG) accumulation scores from the DESeq2 results as 

follows: for each chemical, we first identified the sets of probes with adjusted p-value < 

0.1 for each treatment concentration (c) vs DMSO. Second, the accumulated DEGs at each 

concentration (ci) were identified as the union of all significant probes for c ≤ ci. The 

accumulation score was defined as the number of accumulated DEGs for each concentration 

ci. Thus, for each chemical, the DEG accumulation score for the highest test concentration is 

equal to the size of the union of probes identified as differentially expressed in any pairwise 

comparison between a concentration and DMSO controls.

We summarized the DESeq2 differential expression analysis for each test chemical as a 

matrix in which the rows, columns and values correspond to the treatment concentrations, 

probes and L2FC values, respectively (which we will refer to as the probe level L2FC 

matrix). For each chemical, we then produced the gene level L2FC matrix (treatment 

conditions as rows; genes as columns) by aggregating the probe level L2FC values for 

each gene and using the highest magnitude fold change in either direction. All L2FC data for 

this study are included in the data release (see Supplemental Material). For comparison, we 

also computed “raw” L2FC values directly from the probe counts used as DESeq2 input, as 

follows: first, probe counts for each sample were converted to counts per million (CPM) and 

log2 transformed with a pseudo-count = 1. Next, we computed the mean log2(CPM) value 

for each treatment group (DMSO or individual chemical concentration). Raw L2FC values 

were then computed as the difference between mean log2(CPM) values for each treatment 

group vs the DMSO group.

Signature Gene Set Selection

A large collection of 37082 signatures, or gene sets (a list of Entrez gene symbols) was 

initially obtained from 4 major sources: Bioplanet (Huang et al. 2019) [ref v1.0, accessed 

7/29/2019], CMAP (Subramanian et al. 2017), DisGeNET (Pinero et al. 2015), and MSigDB 

(Liberzon et al. 2015; Liberzon et al. 2011; Subramanian et al. 2005) [ref v6.2, accessed 

3/8/2019]. CMAP signatures were created by taking the n most highly downregulated and 

the n most highly upregulated genes from each CMAP profile, where n=100, 200 or 300. 

For the current work only the 100 most down- and upregulated gene sets were used. For the 

current work, we included MSigDB (sub)collections C2 and H as these could be mapped 

to pathways that can be interpreted in meaningful ways with regards to molecular targets 

or processes. Signatures were annotated with a target name, indicating, for instance the 

molecular target that would elicit the response or the disease associated with the signature. 

The target names were derived from the signature names using an automated process and 

descriptions from the source database. The target names were then summarized into a 

curated set of target classes. For a few target names, such as PPAR, individual isoforms 
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were summarized into a single target class (e.g. “PPAR”). We also created 1000 random 

signatures, which are random sets of genes with the same gene co-occurrence frequency and 

signature length distribution as the collection of real signatures. For the present analysis, 

we used a subset of 6586 signatures selected to cover all target classes matching the known 

target or mechanism of action of the 44 test chemicals (Table 1), plus the 1000 random 

signatures, for a total of 7586 signatures. Signatures can be either directional (as in CMAP) 

or nondirectional. Gene set enrichment analysis (see below) was performed separately for 

the up and down set of genes for directional gene signatures, and then the results were 

combined. The 7586 signatures used in this analysis include many up/down pairs, and when 

these are combined, there are 4431 final signatures covering at least 10 genes expressed 

in the current study. The complete collection of signature gene sets is included in the 

public data release containing the gene set catalog with all annotations, and an RData file 

containing the gene sets (see Supplemental Material).

Signature Concentration Response Modeling

We performed concentration-response modeling of signature-level enrichment scores for 

all test chemicals, starting from the gene-level L2FC matrix for all test chemicals, with 

rows corresponding to conditions (one row per chemical sample concentration combination) 

and columns corresponding to genes. For a gene to be retained for subsequent analyses, 

at least 95% of the conditions must contain data. For missing values, L2FC is set to 

zero. For each chemical-concentration-signature, a signature score is created. Here we use 

the single sample gene set enrichment analysis (ssGSEA) method (Barbie et al. 2009) as 

implemented in the GSVA R package (v1.32.0) to calculate the normalized enrichment 

score (NES). For directional signatures, NES scores are derived separately for the up- and 

down-regulated gene sets and the final signature score = signature score(up) – signature 

score(down). Signature scores can be positive or negative, but the distribution is expected 

to be zero centered. Henceforth, we use “signature scores” to refer to NES scores for 

directional and non-directional signatures. Note that for the single-concentration reference 

chemical treatments and bulk lysate samples, only the signature scores were used and no 

concentration-response modeling was performed.

For each combination of test chemical and signature, the concentration-response series of 

signature scores was fit to a set of models including constant, Hill, gain-loss (a rising Hill 

curve followed by a decreasing Hill curve), 2 polynomial models, a power model and 4 

exponential models. These are ToxCast Pipeline (tcpl) (Filer et al. 2017) implementations of 

curve-fitting models included in BMDExpress (Phillips et al. 2019) except for the constant 

and gain-loss models which are specific to tcpl. Modeling was performed using the tcplfit2 
R package (Sheffield et al. in press), which selects the model with the best (lowest) AIC 

value as the final curve-fit (Akaike 1974).

A key output from the tcplfit2 modeling is a “continuous hit call” for each concentration-

response series. Whereas the original tcpl package provided “binary hit calls” to classify 

responses as either a hit (active) or a miss (inactive), continuous hit calls seek to quantify 

the strength of hits and identify borderline cases corresponding to low magnitude responses 

or highly variable (noisy) data. Calculation of the continuous hit call combines each of 
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the following probabilistic criteria: 1) the probability that at least one median response at 

any test concentration is greater than the statistically defined-noise threshold (i.e. cutoff, 

described below), 2) the probability that the maximum absolute response (i.e. top) of the 

curve fit is above the noise threshold cutoff, and 3) the probability that the winning AIC 

is less than that of the constant model. This continuous hit call value falls between zero 

and one with higher values indicative of relative greater confidence in classifying a modeled 

endpoint as a hit. Details of the probabilistic calculation are provided with the tcplfit2 R 

package (Sheffield et al. in press).

A chemical-signature combination is considered active if a model other than the constant 

model had the minimum AIC. Additionally, the top must exceed a statistically defined noise 

threshold. To estimate noise, we first generated a set of randomized null L2FC data from the 

complete data set of 44 chemicals x 8 concentrations to generate a concentration-response 

data set for N (here N=1000) “random” chemicals. For each gene in each of the random 

chemicals, 8 L2FC values were generated from the distribution of L2FC values in the 

original data set for that gene, and these were assigned as the L2FC values for the 8 

concentrations for that gene and that random chemical. Then, missing values were added 

in random locations of the random dataset to match the original fraction of missing values. 

Thus, the null data preserved the distributional properties of each gene, but any correlation 

between genes was broken. This null data set was then used to calculate null signature score 

distributions. The cutoff used to determine activity in the actual pathway data was set to the 

outer 95% confidence interval of this null distribution, corresponding to p=0.05.

For chemical-signature combinations with a model other than constant, a benchmark dose 

(BMD) was calculated as the potency estimate for the pathway. The BMD value is the 

concentration at which the winning model curve crosses the benchmark response level 

(BMR) which is set to 1.349 times the signature-specific noise level (Filipsson et al. 

2003; Thomas et al. 2007; Yang et al. 2007). BMD bounds (i.e. BMDL and BMDU) 

were computed in accordance with the profile likelihood method (Banga et al. 2002). The 

transcriptomic BPAC based on signature scoring (BPACSig) analysis for each chemical was 

reported as the 5th lowest BMD value of active signatures that have a BMDU/BMDL ratio < 

40 and a continuous hitcall >= 0.5.

Concentration-response Analysis with BMDExpress

For comparison, overall transcriptional BMD values were computed using the 

BMDExpress2 software (Phillips et al. 2019) based on a workflow described in the NTP 

approach to genomic dose-response modeling (NTP 2018). First, probe-level concentration 

response analysis was performed as follows. Probe counts for each chemical (subset to 

samples without QC flags, and probes with mean count > 5 as described for differential 

expression analysis above) were normalized to log2 counts per million (CPM) values using 

the sum of filtered probe counts as the sample depth and adding a pseudo-count of 1 before 

converting to log scale. For each test chemical, probe-level log2 CPM values were input 

to BMDExpress2 (Phillips et al. 2019) using the following parameters: pre-filtering was 

used to remove probes with fold-changes <2 at all concentrations; each pre-filtered probe 

was then fit to 8 different dose-response models (linear, poly2, power, Hill, exp2, exp3, 
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exp4, and exp5); the best-fit model for each probe was selected based on the lowest Akaike 

information criterion (AIC); the benchmark response (BMR) was set to 1.349 x standard 

deviation of replicate samples, corresponding to 10% tail in a normal distribution; and Hill 

models with k parameter <1/3 the lowest positive dose were excluded from final model 

selection.

The probe-level best fit models were then aggregated to signature-level BMD values 

using the same collection of signature gene sets described above. Briefly, probe-level 

curve-fits were filtered to only those meeting the following criteria: best fit model 

produced convergent BMD, BMDL, and BMDU values; BMD < highest measured dose; 

BMDU:BMDL ratio < 40; and probe annotated as measuring a single gene. If multiple 

probes corresponding to the same gene had valid curve fits under this criterion, the 

gene-level BMD/BMDL/BMDU were taken as the average of all probes with valid curve 

fits. The signature-level BMD was computed as the median BMD for all associated 

genes passing the filters above. Only signatures containing at least 3 valid genes and 

5% gene set coverage were retained for further analysis. The transcriptomic BPAC based 

on BMDExpress (BPACBMDX) analysis for each chemical was reported as the minimum 

signature-level BMD passing these filters. Root-Mean-Square Error (RMSE) and correlation 

coefficients between different BPAC derivation methods were computed on the log10 scale.

Results

We screened 44 chemicals in MCF7 cells in concentration-response and generated HTTr 

data using the TempO-Seq hWTv1 assay. First, we provide an outline of the quality of the 

HTTr data based on a set of QC metrics we developed for this platform. Second, we evaluate 

the reproducibility and mechanistic accuracy of the HTTr platform using inter-plate analysis 

of reference samples and comparison of reference chemical treatment effects with CMAP 

signatures, respectively. Third, we summarize the concentration-dependent HTTr responses 

for all 44 chemicals to stratify them in terms of their overall effect on the transcriptome. 

Fourth, we present a new gene signature-based concentration-response analysis that provides 

potency estimates for perturbation of cellular biology (i.e. BPACs).

A Robust, Scalable and Reproducible Workflow for High-Throughput Transcriptomics

In order to develop a screening platform that is scalable for high-throughput applications, 

we performed the TempO-Seq assay directly on cell lysates, bypassing the time-consuming 

and expensive task of RNA purification. The resulting trade-off is that some aspects of 

sample quality that would normally be assessed in low-throughput RNA-seq workflows (e.g. 

RNA integrity and concentration) can no longer be assessed prior to sequencing library 

preparation. Therefore, we developed a battery of QC metrics that can be used to identify 

and remove any low-quality TempO-Seq samples based on the resulting sequenced reads 

(Table 2).

We first assessed metrics related to the sequencing and alignment of reads to probes. Median 

number of mapped reads (NMR) for all sample types was close to the target depth of 3 

million reads per sample, although the dynamic range in depth is >10x, likely because 

measurement and adjustment of RNA concentrations prior to sample multiplexing was 
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not performed (Figure 2A). Lysis buffer blanks (sequenced as negative controls) produced 

~1,000x fewer aligned reads than most other samples. The median fraction of uniquely 

mapped reads (FMR) for all other sample types was >80% (Figure 2B), in line with 

previously published TempO-Seq results (Yeakley et al. 2017). As a final confirmation 

of reliable sequencing depth across samples, we assessed in each sample the number of 

probes meeting a minimum coverage threshold of 5 reads, a metric we denote as “Ncov5” 

(Figure 2C). We found that for most sample types in this study, the median Ncov5 value was 

~10,000 probes. We applied the principle of Tukey’s Outer Fence (Tukey 1977) to determine 

a threshold for flagging samples with Ncov5 < 5,000 probes.

We also assessed two distributional metrics designed to detect samples where low input 

RNA may have led to over-amplification and subsequent sequencing of PCR duplicates. 

The underlying principle here is that when library amplification is performed on a sample 

with low input, only a small number of hybridized probe molecules are present, and 

when the sample is sequenced deeply, these individual molecules may be sequenced and 

counted multiple times, resulting in a library with “lower complexity” compared to other 

samples (Adiconis et al. 2013). Again, due to the lack of RNA purification steps in our 

high-throughput procedure, we cannot identify and exclude low input samples prior to 

sequencing. We first defined the Nsig80 metric as the proportion of probes capturing the 

top 80% of read counts (Figure 2D). The median value for most sample types was ~2,000 

probes, and again we used Tukey’s Outer Fence principle to determine a threshold of Nsig80 

< 1,000 for flagging problematic samples by this metric. To account for the fact that Nsig80 

is based on a single percentage of read counts in each sample, we also computed the Gini 

Coefficient (GiC), a generalizable measure of overall inequality (van Mierlo et al. 2016). We 

expect inequality in read counts across probes, owing to order of magnitude differences in 

expression across genes and the dynamic range of the TempO-Seq assay. However, samples 

that stand out as high outliers by this metric relative to other samples may also indicate 

potential problems with low input material. Therefore, we flagged any samples with a GiC > 

0.95 based on the outer fence principle (Figure 2E).

In addition to identifying samples based on sequencing quality metrics, we flagged all 3 

replicates of the highest concentration for two chemicals (6 samples total), clomiphene 

citrate (1:1) and 4-hydroxytamoxifen, as each of these treatment conditions produced 

>50% cell death on average in the complementary imaging plates used to assess overall 

cytotoxicity and apoptosis. Using ionomycin as the positive control, per plate Z’-values 

for the cell viability and apoptosis assays ranged from 0.78 to 0.93 and 0.33 to 0.91, 

respectively, indicating acceptable performance of each assay. In comparison, Z’-values 

using staurosporine were substantially lower for the cell viability (−3.78 to 0.53) and 

apoptosis (0.04 to 0.39) assays, indicating that 1 μM staurosporine is inappropriate for 

use as a positive control for these assays in MCF7 cells using a 6 hour exposure duration. 

Negative control chemicals saccharin and sorbitol (100 μM) did not produce any effects on 

cell viability or apoptosis in MCF7 cells.

Samples flagged for any of the reasons described here were removed from further analysis, 

resulting in the rejection of 13 individual samples treated with test chemicals, and 98.8% of 

all test samples passing QC (Figure 2F). All blank lysis buffer samples failed QC based on at 
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least one flagging criteria, and 100% of all other control and reference samples types passed 

all QC criteria.

Evaluation of Assay Performance

The reproducibility of the sequencing platform and experimental workflows associated with 

the HTTr assay were further evaluated by examining the bulk lysate reference samples and 

the single-concentration reference chemical treatments (genistein, sirolimus, and trichostatin 

A) throughout the bioinformatics pipeline. Plate-level reproducibility for each reference 

sample type was measured by the following metrics: the correlation of sample log2 CPM 

to the median log2 CPM of all replicates (Figure 3A–B), the D-statistic (Figure 3C–D) 

(House et al. 2017), the correlation of the DESeq2 moderated L2FCs for each plate 

compared to the median L2FC across plates (Figure 3E, orange bars), and the correlation 

of signature enrichment scores to the median signature scores (Figure 3E, blue bars). CPM 

correlations for replicate samples of the same type were all > 0.9 (Figure 3A, 3B). For 

comparison, CPM correlations between bulk lysate replicates from different treatments 

(e.g. BLTSA vs BLDMSO) were all lower than 0.9 (Figure 3A), demonstrating that the 

CPM correlation between replicates is higher than the background correlation between 

samples from the same cell type subject to different experimental treatments. The D-statistic 

has been previously used in outlier detection of vehicle control samples in TempO-Seq 

data, with three standard deviations below the median D-statistic previously proposed as a 

threshold for sample removal (House et al. 2017). Here, we applied the D-statistic to all 

reference and control sample types and saw that all samples passed this filtering criteria 

(Figure 3C, 3D), with the median D-statistic > 0.9 for all sample types reflecting high 

reproducibility between replicates. Lastly, we calculated the correlations of the DESeq2 

moderated L2FCs and the signature enrichment scores for each reference treatment group 

and observed high correlations across all reference treatments except for the sirolimus 

replicates on plate 3 (Figure 3E). Correlations of the signature scores were higher compared 

to the probe-level L2FC correlations. We performed similar assessments on the UHRR and 

HBRR reference samples included on each plate and observed similar results with respect to 

overall reproducibility of the TempO-Seq assay and analysis workflow (Figure S1).

Next, we determined whether the signature scoring approach accurately identified the three 

reference chemicals genistein, sirolimus and trichostatin A as an estrogen receptor (ER) 

agonist, mammalian target of rapamycin (mTOR) inhibitor, and histone deacetylase (HDAC) 

inhibitor, respectively (references for mechanisms of reference chemicals are provided 

in Supplemental Material Table S1). This was accomplished by performing ssGSEA 

using gene-level DESeq2 moderated log2 fold changes computed across plates for each 

reference chemical treatment. ssGSEA is a modification of standard GSEA where scores are 

considered as the degree of enrichment of a given signature within an individual sample. 

Here, each sample corresponds to the rank-ordered log2 fold-changes for a single chemical 

treatment, and signature scores are calculated by integrating the difference between the 

Empirical Cumulative Distribution Functions of genes within a given signature and the 

genes not in the signature (Barbie et al. 2009). As a control, signature scores were also 

generated for the data set of 1,000 simulated chemicals derived from the null distribution 

(see methods). The absolute values of the signature scores were filtered to include only the 
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gene sets associated with the ER, mTOR/PI3K/AKT, and HDAC target classes as well as the 

1,000 randomly generated signatures.

As shown in Figure 4A, the median signature score for each reference chemical was greatest 

for its corresponding target class. Specifically, the median signature score for ER was 

greater for genistein compared to trichostatin A, sirolimus, and the simulated chemicals. 

Similarly, sirolimus had the highest scores for signatures annotated as targeting mTOR/

PI3K/AKT, and trichostatin A had the highest scores for signatures annotated as targeting 

HDAC. Importantly, all three reference chemicals and the simulated chemicals had relatively 

small and similar signature score distributions for the set of 1,000 randomly generated 

signatures as compared to the annotated signatures. These trends were robust to the specific 

parameters used in our differential expression analysis, as we observed similar results for 

different parameter choices (Figure S2). The specificity of the signature scores for correctly 

identifying the molecular target was also evident when we reviewed the top 5 signatures 

ranked by absolute signature score for each reference chemical (Figure 4B). For genistein, 

the top 5 signatures included biomarker signatures for ER (Ryan et al. 2016) as well as 

CMAP chemical treatment signatures associated with ER activity. The top 5 signatures 

for sirolimus included CMAP signatures for sirolimus as well as wortmannin, which is a 

known inhibitor of PI3K (Arcaro and Wymann 1993). The top signatures for trichostatin 

A included CMAP signatures for trichostatin A, as well as vorinostat, which are both 

hydroxamate-based HDAC inhibitors (Xu et al. 2007).

Transcriptional Perturbations in Response to Chemical Treatment Reflect Mechanism of 
Action

We first assessed overall transcriptional perturbation resulting from each test chemical 

by: 1) computing the accumulation of differentially expressed genes (DEGs) for each 

combination of chemical and concentration based on DESeq2 analysis p-values from 

pairwise comparisons (Figure 5A) and 2) plotting the distribution of absolute maximum 

L2FC and DESeq2 moderated L2FC observed at any test concentration of a chemical 

(Figure 5B). Accumulation scores across the chemicals suggest a diversity in both 

chemical potency and specificity of transcriptional response. Chemicals such as ziram and 

cycloheximide showed relatively steady escalation in transcriptional perturbation through 

the assayed concentrations, with a DEG accumulation score in excess of 1,000 and 

10,000 at 1 and 10 μM, respectively. On the other hand, chemicals such as 4-nonylphenol 

and maneb achieved an accumulation score in excess of 1,000 only at the highest 

concentration assayed. In contrast, a subset of chemicals, such as simazine, appear relatively 

transcriptionally inert in MCF7 cells with a DEG accumulation score less than 10 even 

at the highest concentration. Overall, the magnitude of gene expression changes observed 

across the chemical set was small, with few genes exceeding a L2FC of ≥2-fold at 

any test concentration. Exceptions include chemicals with the highest DEG accumulation 

scores (ziram, thiram, cycloheximide, pyraclostrobin, amiodarone hydrochloride, and 4-

nonylphenol, branched) where gene expression changes of ≥2-fold were observed with 

greater frequency. Of note, some chemicals whose known molecular targets are highly 

expressed in MCF7 cells (e.g. 4-hydroxytamoxifen, clomiphene citrate (1:1), 4-cumylphenol 
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which target ESR1; lovastatin, simvastatin which target HMGCR) did not produce large-

magnitude changes in expression for the majority of genes at 6 hours post treatment.

Cellular responses to environmental challenges (such as chemical exposures) involve the 

coordinated regulation of ensembles of transcripts to facilitate compensatory alterations 

in cellular function (Gaiteri et al. 2014; Subramanian et al. 2005; van Dam et al. 

2018). Therefore, to better understand transcriptomic responses to chemical challenge at 

a mechanistic level, we used a signature-matching approach to pair gene signatures from 

the CMAP database to gene expression profiles generated in this experiment. The result 

of matching a gene signature for fulvestrant, as derived from the CMAP database, against 

the L2FC data for a subset of estrogenic and antiestrogenic chemicals are shown in Figure 

6. The heatmap in Figure 6A is an illustrative example of the L2FC data and Figure 6B 

illustrates signature-level concentration-response results. This example uses one CMAP 

signature for a fulvestrant treatment (1E-8 M in MCF7 cells) represented by the 100 

most up-regulated and 100 most down-regulated genes. Fulvestrant is an estrogen receptor 

(ER) antagonist, so one would expect other ER antagonists to have similar responses, and 

agonists to have opposite responses, at least in some respects. The heatmap of the CMAP 

downregulated genes (Figure 6A, left) shows that the antagonists 4-hydroxytamoxifen (4HT) 

and clomiphene citrate (1:1) (Clom) produce similar responses to fulvestrant (Fulv) among 

this set of genes. In addition, the 4 ER agonists (bisphenol A (BPA), bisphenol B (BPB), 

4-nonylphenol (4NP) and 4-cumylphenol (4CP)) show a pattern of upregulation for the same 

genes that are downregulated with the antagonists. The CMAP fulvestrant upregulated genes 

(Figure 6A, right) shows less differentiation between the agonists and antagonists. Figure 6B 

shows signature-level concentration-response plots for the ER agonists and antagonists using 

the CMAP MCF7 fulvestrant 1E-8 M signature. Clear concentration-dependent enrichment 

scores for this signature and responses in opposite directions for agonists vs antagonists 

were observed. An important point is that the signal to noise is relatively low for all the 

chemicals except fulvestrant.

The concentration-dependent activity of six exemplar chemicals across thousands of 

signatures is illustrated in Figure 7. Each chemical was evaluated against 7,586 signatures, 

resulting in calls of active or inactive, and a potency (BMD) if active for each chemical × 

signature pair. Each histogram in Figure 7 shows the distribution of BMDs of the active 

signatures for a particular chemical. A selected set of signature target classes are indicated 

by colors other than gray, described in the figure legend. The color box in the top right 

hand of each panel indicates the target class of the chemical if there is a known specific 

human target. The six chemicals shown here illustrate several features seen across the 

larger chemical set. For instance, fulvestrant and bisphenol B are both active against the 

estrogen receptor (ER), indicated by green. The most potent signatures for these chemicals 

are associated with ER activity indicated by the green color in the histogram at low 

concentrations. Note that the color scheme does not distinguish agonist from antagonist 

mode. Simvastatin, an HMGCR inhibitor (indicated by purple), has among its most potent 

activities an HMGCR-related signature. Almost all chemicals, including those illustrated in 

Figure 7, show a typical large burst of activity at high concentrations which appears to be 

non-specific to any molecular target. A pair of highly toxic chemicals, cycloheximide and 

ziram show an extended tail of activity to lower concentrations without an obvious single 
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target class. These chemicals also showed the broadest perturbation of the transcriptome in 

terms of the number of genes significantly differentially expressed at any test concentration 

(Figure 5). In all cases, the activity of the chemicals against the random gene signatures 

largely occurs at concentrations above 10 μM, in the non-specific burst region. Atrazine 

and simvastatin show the most typical behavior of having significant activity in the high 

concentration region and little to no activity below 1 μM.

Transcriptomic BPACs Recapitulate HTS Screening Results

One key use of the HTTr data is defining an in vitro biological pathway-altering 

concentration (BPAC) for each chemical. The BPAC is a concentration below which 

there is little or no observed bioactivity. Figure 8 shows BPACSig as a black triangle, 

with confidence intervals being the lower and upper confidence bounds for the signature 

defining the BPACSig. The most sensitive signature potency from concentration-response 

modeling with BMDExpress was also used to define an in vitro BPAC (BPACBMDX, 

yellow diamonds) based on a workflow described in the NTP recommended approach to 

genomic dose-response modeling (see methods) (NTP 2018). We compared these results 

to previously derived in vitro BPACs from the ToxCast HTS data set. The 44 chemicals 

analyzed here were previously screened in up to 1045 HTS assays. The ToxCast BPAC 

(BPACHTS, indicated by a red diamond) is the lower 5th percentile of the active AC50 values 

for assays that passed a series of quality filters (Paul Friedman et al. 2020). The names of the 

chemicals are color-coded based on the comparison between BPACSig and BPACHTS: red 

indicates that the BPACHTS is within the BPACSig confidence intervals; black indicates that 

BPACHTS is more potent than BPACSig; and blue indicates that BPACSig is more potent than 

BPACHTS. For most test chemicals, the BPACBMDX values are above those from the other 

two methods, often by at least an order of magnitude.

Overall, BPACHTS and BPACSig are in better agreement (RMSE = 1.09; cor = 0.62) than 

BPACHTS and BPACBMDX (RMSE = 1.84; cor = 0.45). However, there are some notable 

chemicals for which BPACHTS is markedly more potent than BPACSig. In most of these 

cases BPACHTS is also more potent than BPACBMDX. The majority of these cases can 

be explained by the use of ToxCast assays for the specific target of the chemical, which 

is not active/expressed in MCF7 cells. There are twelve chemicals where the BPACHTS 

is more than 10x below the BPACSig as listed in Table 3. The most extreme case is 

3,5,3’-triiodothyronine, the natural hormone T3, which is the ligand for the thyroid hormone 

receptor. The most potent activity of T3 is against the alpha and beta forms of the receptor. 

Although the alpha form is expressed in MCF7 cells, the baseline expression level is 

relatively low. There are several pan-cytochrome P450 (CYP) inhibitors (cyproconazole, 

butafenacil, prochloraz, imazalil and propiconazole) which are active against a set of cell-

free enzyme activity assays for a variety of human and rat CYP targets. Cladribine is a 

DNA synthesis inhibitor whose most potent targets are DNA repair enzymes and oxidative 

stress pathways. The remaining chemicals are lovastatin, clofibrate, maneb, lactofen, and 

vinclozolin whose most potent assay targets in ToxCast are not related to the known targets 

of those chemicals.
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Discussion

NAMs that inform chemical hazard and mechanism are needed to accelerate the pace 

of chemical risk assessments. We objectively evaluated the performance of the TempO-

Seq human whole transcriptome assay for HTTr analysis (Harrill et al. 2019) in MCF7 

cells using 44 ToxCast chemicals and 3 reference chemical treatments. We developed 

scalable and robust laboratory and bioinformatics workflows aimed at screening hundreds 

of environmental chemicals in concentration-response to provide two key pieces of 

information: 1) the potency threshold where chemicals perturb cellular biology as measured 

by changes in gene expression (i.e. BPACs) and 2) putative mechanisms of chemical 

toxicity. Overall, we found that the TempO-Seq human whole transcriptome assay was 

highly reproducible and gene signature scores used for concentration-response modeling 

yielded transcriptional BPACs that were closely aligned with in vitro BPACs determined 

from ToxCast HTS assays.

Key aspects of the TempO-Seq technology that enable whole transcriptome HTTr screening 

include compatibility with cell lysates without the need for additional RNA purification, and 

the ability to generate multiplexed sequencing libraries from picrogram amounts of RNA 

where each read can be tracked to an individual sample (Yeakley et al. 2017). The number of 

samples in this study (1,134) is small in comparison with traditional HTS screening (Pereira 

and Williams 2007; Szymanski et al. 2012) but quite large in comparison to the number of 

samples associated with even the most complex in vivo toxicology studies involving whole 

transcriptome profiling (Gong et al. 2014a; Waring et al. 2001). Unlike typical RNA-Seq 

workflows, our TempO-Seq assay implementation bypasses RNA purification, quantification 

and concentration adjustment steps to achieve high sample throughput. However, this also 

eliminates the option to exclude low quality samples prior to preparing pooled sequencing 

libraries. As such, our bioinformatics pipeline includes multiple QC filters to detect and 

remove data from low-quality samples in lieu of typical pre-sequencing quality checks. 

Several of these QC metrics evaluate the distribution of read counts in TempO-Seq data 

based on the observation that degraded or low-input RNA-Seq samples are often associated 

with characteristic changes in sample “complexity”: i.e. a lower number of detected genes 

and a higher number of duplicative reads (Adiconis et al. 2013). We observed a small 

number of samples with distributional metrics (NSig80, GiC) that differed substantially from 

most samples with 97% of samples being retained for analysis. We anticipate that these 

QC metrics can be extended to HTTr screens using cell types other than MCF7. However, 

differences in the number and relative abundance of genes expressed in diverse cell types, 

or changes in the probe sequences used in future versions of the TempO-Seq assay, may 

necessitate study-specific adjustment of QC thresholds. This factored into the decision to 

incorporate IQR-based QC thresholds for the NCov5, NSig80 and Gini metrics into the 

bioinformatics workflow as this calculation is simple to implement, robust, and flexible for 

different experimental contexts.

Important criteria for the incorporation of NAMs into chemical risk assessments include 

demonstrations of assay reproducibility and accuracy (Bal-Price et al. 2018) (A8382_Bal-

Price; OECD 2014). In this experiment, an objective evaluation of the technical 

reproducibility of the TempO-Seq assay was performed using bulk lysate reference samples 
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and the two reference RNA standards located in each assay plate. Unlike test samples, 

gene expression measurements in these samples would not be influenced by potential 

heterogeneity in the biological state of MCF7 cells across different cultures or the mechanics 

of chemical dispensing; rather variations would be strictly associated with conduct of the 

TempO-Seq assay. Using this approach, we observed that the technical reproducibility of 

the TempO-Seq assay was high, as assessed using correlation of L2FC values, correlation of 

signature scores and the D-statistic (Figure 3A, 3C, 3E; Figure S1) (House et al. 2017).

In addition to technical reproducibility, we evaluated the biological reproducibility of the 

MCF7 in vitro test system using reference chemical treatments. These reference treatments 

(i.e. trichostatin A, sirolimus, genistein) were selected based on the expression of molecular 

targets for each chemical in MCF7 cells (i.e. HDAC, mTOR/PI3K/AKT, ER) and the 

availability of transcriptomic signatures associated with these targets in the CMAP database 

and other public gene set collections. Variations in gene expression measurements observed 

in the reference treatment samples could be due to heterogeneity in independent MCF7 cell 

cultures, the mechanics of chemical dispensing, or technical variability in the TempO-Seq 

assay. We observed that the biological reproducibility of the MCF7 in vitro test system was 

high in most cases, as assessed using the same metrics employed for evaluating technical 

reproducibility (Figure 3B, 3D). This was notable given previously published reports of 

cellular and phenotypic heterogeneity observed in MCF7 cells from the same batch in 

response to chemical treatment (Kleensang et al. 2016). Responses to trichostatin A and 

genistein were highly correlated across all 3 plates. The reason for the comparatively 

lower correlations of L2FC values and ssGSEA signature scores for sirolimus in plate 

3 as compared to across plate median values (Figure 3E) is unknown, but may be due 

to heterogeneity in the response of MCF7 cells to this particular chemical as compared 

to the culture batches on the other two plates or technical variability associated with 

the TempOSeq assay or sample preparation steps for these particular samples. In spite 

of this technical variability, the combined analysis of all three plates demonstrated clear 

enrichment for mTOR/PI3K/AKT signaling pathways in our test system in response to 

sirolimus (Figure 4A, 4B) regardless of whether plate effects were directly modeled by 

DESeq2 (Supplementary Figure 2), demonstrating that our workflow is robust to occasional 

variability on a single plate.

The availability of previously established transcriptomic signatures for the reference 

treatment chemicals allowed us to evaluate the accuracy of the TempO-Seq assay in terms 

of identifying ‘correct’ biological responses. Using the signature scoring approach, strong 

associations were observed between the gene expression profiles measured by TempO-Seq 

and gene expression signatures of chemicals known to affect the same molecular targets 

as the reference chemicals (Figure 4). For example, the top five high-scoring signatures 

matching genistein, a known ER agonist, consisted of estrogenic chemicals from the CMAP 

database, estrogen-related gene sets from MSigDB and a well-characterized gene expression 

biomarker for ERα (Ryan et al. 2016). Likewise, the top signature matches for sirolimus 

and trichostatin A were either the same chemicals or those with similar biological activity 

from the CMAP database. These trends were robust to specific parameters used in our 

differential expression analysis, as we observed similar results for different parameter 

choices (Figure S2). By comparison, absolute signature score distributions were lower 
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for: 1) reference chemicals against signatures for mismatched targets, 2) null chemicals 

generated by randomly permuting the observed L2FC matrix, and 3) randomly generated 

gene signatures with the same gene number and co-occurrence frequency as the real gene 

signatures. In each case, the absolute signature scores for a reference treatment queried 

against its matching target gene signature subsets were markedly higher than all other query 

and subject combinations. Thus, the enriched biological signals observed in the MCF7 

cells appear to be non-random in nature, and accurate with respect to identification of 

characteristic gene expression responses following molecular target activation.

In this study, we compared two different approaches for deriving transcriptional BPACs. The 

first was an established workflow for concentration-response modeling of gene expression 

data based on probe-level curve fitting and mapping to gene sets (Harrill et al. 2019; 

NTP 2018) using the BMDExpress software package (Phillips et al. 2019). The second 

was a novel workflow that aggregates gene level information into signature scores (Barbie 

et al. 2009) prior to concentration-response modeling with an updated version of the 

tcpl R-package; tcplfit2 (Sheffield et al. in press). When comparing BPACs from the 

two approaches, we noted many instances where BPACBMDX was notably higher than 

BPACSig. We hypothesize that these potency differences may be driven by two factors: 

1) the low magnitude of gene expression changes observed for a majority of chemicals 

in our test set (Figure 5B) and 2) the manner in which the respective methods take into 

account subtle changes in gene expression that may be associated with true biological 

signal. The low magnitude gene expression changes we observed in MCF7 cells, including 

responses to known estrogenic and anti-estrogenic chemicals, are consistent with previous 

transcriptomics studies in this cell type (Gong et al. 2014b; Lecomte et al. 2019; Ryan 

et al. 2016; Stanislawska-Sachadyn et al. 2015) and thus appear to be an inherent feature 

of this in vitro model. The BMDExpress approach models the response for each probe 

independently. A set of filtering criteria is then applied to remove probes where the response 

does not surpass a certain threshold, where the BMD is not within the bounds of the tested 

concentration range or where the BMD is associated with a large degree of uncertainty. Any 

individual probe with a fit not meeting these criteria would not be used in the signature 

mapping step used to define the BPACBMDX. In contrast the signature modeling approach 

does not involve probe/gene level curve-fitting, but instead aggregates signals from multiple 

genes into a signature score prior to concentration-response modeling. Thus, low-magnitude 

gene responses that are coordinately regulated are included in determination of BPACSig and 

uncertainty in the potency estimate is calculated at the signature as opposed to the gene 

level.

The behavior of coordinately expressed genes has received much attention in the biological 

sciences (Gaiteri et al. 2014; Singh et al. 2018; van Dam et al. 2018). However, to our 

knowledge, methods for addressing this behavior in the context of concentration-response 

modeling and next generation risk assessment have rarely been explored. In an in vivo 
toxicity study in multiple tissues, Dean et al. implemented a modified BMDExpress 

workflow where a GSEA scoring method that takes into account expression of all genes 

(with no pre-filtering) was used to exclude gene sets where there was no evidence of a 

coordinated transcriptional response from calculation of the overall transcriptional POD 

(Dean et al. 2017). They observed that transcriptional PODs calculated in this manner 
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were within one order of magnitude of apical PODs. Further, in an in vivo study in 

the mouse liver, Parfett et al. observed that significant changes in coregulated gene sets 

as assessed via concentration-response modeling of a ‘cumulative expression difference’ 

score could be observed at lower doses / test concentrations than statistically significant 

changes in individual genes (Parfett et al. 2013). This is consistent with the trend we 

observe in the present study of BPACBMDX generally being less sensitive than BPACSig. 

The present data support that aggregating signal prior to concentration-response modeling 

can provide more conservative estimates of chemical bioactivity as compared to mapping 

statistically significant changes in individual genes to signatures. It should be noted that our 

observations regarding the comparison of BPACs derived from different methods is specific 

to the current study. More extensive comparison of methods for BPAC determination using a 

larger number of chemicals, test conditions and cell lines would be required to make definite 

conclusions regarding performance of the modeling approaches.

Aggregation of signal into gene signatures prior to concentration-response modeling yielded 

potency estimates for bioactivity that were well-aligned with those derived from the 

ToxCast suite of HTS assays (i.e. BPACHTS). In contrast, BPACBMDX was often greater 

than BPACHTS, in some cases by several orders of magnitude. This suggests that that 

BPACSig values are more reflective of the in vitro biological activity of the test chemicals as 

compared to BPACBMDX, if using the ToxCast assay suite as the benchmark. For example, 

we were able to observe signatures associated with the known molecular targets of some 

of the test chemicals, particularly estrogens, as being among the most sensitive using the 

signature scoring method (e.g. fulvestrant, bisphenol B, Figure 7). The estrogen response 

signatures were affected prior to the onset of what appears to be non-specific effects 

across many different signature types at higher test concentrations. By design, some of 

the chemicals in our test set have primary molecular targets that are either not expressed 

in MCF7 cells or not expressed in humans at all (Table 1). Therefore, transcriptional 

perturbations associated with activity at a specific molecular target was not expected for 

every chemical. Rather, we hypothesized that some chemicals would produce transcriptional 

effects associated with promiscuous bioactivity and general cell stress. This appears to be 

the case, as the distribution of signature BMDs for each of the test chemicals was skewed to 

the right, regardless of the presence or absence of mechanistically-relevant pathway hits at 

lower test concentrations. For example, the signature response of atrazine (Figure 7) appears 

to be largely associated with transcriptional perturbations of many different signature types 

at the upper end of the tested concentration range. The increased frequency of signature 

BMDs in the upper end of the tested concentration range is reminiscent of the cytotoxicity 

burst that is observed in ToxCast HTS screening data as test concentrations increase (Judson 

et al. 2016). The fact that randomly constructed signatures (Figure 7, black) are also being 

activated at concentrations greater than ~10 μM support that these transcriptional responses 

may be associated with non-specific bioactivity or cellular stress. However, we contend 

that in the absence of evidence of a clear, molecular target-driven transcriptional response, 

transcriptional changes associated with this non-specific burst are relevant for establishing 

BPACs for use in NAMs-based chemical risk assessment.

For chemicals where BPACHTS was lower than either BPACBMDX or BPACSig, the 

difference was attributable to the nature of the response within the ToxCast assay suite. 

Harrill et al. Page 23

Toxicol Sci. Author manuscript; available in PMC 2023 May 18.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Among the most sensitive HTS hits for cyproconazole, propiconazole, butafenacil and 

prochloraz were cell-free assays for cytochrome P450 inhibition (CYP2A1, CYP2B, 

CYP2C9, CYP2C1, CYP2C19), a type of biological activity unlikely to be associated with 

transcriptional changes in MCF7 cells that lack basal expression of these enzymes. For other 

chemicals whose targets are expressed in MCF7 cells (i.e. clofibrate, PFOA, lovastatin), the 

difference between BPACHTS and BPACSig or BPACBMDX may be due to the hypothesized 

increased sensitivity of cell-free assay systems as compared to cell-based assay systems, 

or an insufficient amount of time (6 hours) for transcriptional effects associated with the 

annotated bioactivity of the test chemical to manifest.

Of note, in this work we have used concentration-response modeling of TempO-Seq data 

in an objective way to identify the threshold where perturbations in gene expression begin 

to occur. In the context of this study, we make no presumptions regarding whether or not 

changes in gene expression observed for any given chemical are adverse, adaptive or benign 

in nature. A previous study by Paul-Friedman et al. concluded that in vitro bioactivity 

estimates derived from ToxCast assays (e.g. BPACHTS) could be used as a reasonable lower 

bound estimate of in vivo adverse effect levels (Paul Friedman et al. 2020). In the previous 

study of 448 substances, 89% of substances had administered equivalent doses (AEDs) 

that were less than traditional PODs determined from an extensive database of mammalian 

adverse effect values. Given that in the present study, BPACSig values were well-aligned 

with BPACHTS values, our results suggest that BPACSig would likewise provide reasonable 

lower bound estimates of in vivo adverse effect values. However, additional studies are 

needed to rigorously test this hypothesis given that our present study evaluates only a small 

number of chemicals (n = 44) in a single human-derived cell type at a single time point. In 
vitro to in vivo extrapolation (IVIVE) and comparison to in vivo effect values as described in 

Paul-Friedman et al. is of interest in the regulatory community for tiering and prioritization 

of large collections of chemicals and will be an important topic of study when larger scale 

HTTr data sets have been generated.

In summary, we have established robust experimental workflows for HTTr screening with 

a low fail rate at the individual sample level and a flexible and scalable open-source 

bioinformatics pipeline for sequence alignment, count generation, and QC flagging that 

can be applied to future HTTr screening studies. The use of reference samples and reference 

chemical treatments to evaluate the technical reproducibility of the transcriptomic assay 

and the biological reproducibility of the culture model can be carried forward to future 

large-scale HTTr screening studies. We also conclude that the signature modeling approach 

combined with curated and annotated signature collections can be used to identify putative 

molecular targets underlying transcriptional bioactivity and provide potency estimates for 

perturbation of cellular biology in the absence of large changes in gene expression. The 

present proof-of-concept study uses MCF7 cells and a single exposure duration. However, 

no single in vitro cell model can capture the diversity of biological responses that may occur 

in humans following exposure to environmental chemicals. Likewise, no single snapshot in 

time is likely to provide a complete characterization of the biological response of a cell 

to chemical exposure. In the future, we intend to apply the laboratory and bioinformatics 

workflows developed here to multiple, complementary human-derived cell types in order 

to increase the number of biological targets, pathways and temporal responses evaluated 
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beyond those that are present in the MCF7 cell model or described in the present manuscript 

(Thomas et al. 2019). The experimental and bioinformatic workflows described here can 

be used across diverse cell models and will increase the pace of hazard evaluation for 

thousands of chemicals that may be found in the environmental and inform next generation 

risk assessments.
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Refer to Web version on PubMed Central for supplementary material.
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List of abbreviations

384PP 384-Well Polypropylene Microplates

4NP 4-Nonylphenol

4CP 4-Cumylphenol

AIC Akaike Information Criterion

AR androgen receptor

BPA Bisphenol A

BPB Bisphenol B

BLDMSO Bulk Lysate DMSO-treated

BLTSA Bulk Lysate TSA-treated

BMC Benchmark Concentration

BMD Benchmark Dose

BMDL BMD Lower Bound

BMDU BMD Upper Bound

BMR Benchmark Response

BMDX BMDExpress
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BPAC Biological Pathway Altering Concentration

Clom Clomiphene Citrate (1:1)

CMAP Connectivity Map

CPM Counts per Million

DEG Differentially Expressed Gene

DMEM Dulbecco’s Modified Eagles Medium

DMSO Dimethyl Sulfoxide

ER estrogen receptor

ESR1 Estrogen receptor alpha

FMR Fraction of Reads Uniquely Mapped to Probes

FrVC Fraction of Viable Cells

Fulv Fulvestrant

GiC Gini Coefficient

GSEA Gene Set Enrichment Analysis

HBRR Human Brain Reference RNA

HDAC Histone Deacetylase

HI-FBS Heat-Inactivated Fetal Bovine Serum

HMGCR 3-Hydroxy-3-Methylglutaryl-CoA Reductase

HTP High-Throughput Profiling

HTS High-Throughput Screening

HTTr High-throughput transcriptomics

hWTv1 Human Whole Transcriptome version 1

IQR Inter-Quartile Range

L2FC Log2 Fold-Change

mTOR Mammalian Target of Rapamycin

NAMs New approach methodologies

Ncov5 Number of Probes with at least 5 Reads

NMR Number of Uniquely Mapped Reads

Nsig80 Number of Probes Capturing Top 80% of Signal
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NTP National Toxicology Program

NX Normalized Expression Levels

PBS Phosphate Buffered Saline

PI Propidium Iodide

POD Point of departure

PPARα peroxisome proliferator activating receptor alpha

PPARγ peroxisome proliferator activating receptor gamma

PSG Penicillin-Streptomycin-Glutamine

QC Quality Control

ssGSEA Single-Sample Gene Set Enrichment Analysis

tcpl ToxCast Pipeline

TempO-Seq Templated Oligo with Sequencing Readout

THRA Thyroid hormone receptor

TSA Trichostatin A

UHRR Universal Human Reference RNA
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Figure 1. Overview of high-throughput transcriptomics workflow.
(A) Diagram of initial plating of test and reference chemicals on a TempO-Seq dose plate, 

followed by randomization of chemical exposures to test plates. The first column of each 

test plate is not loaded with cells and is reserved for dispensing of QC samples. Grey 

wells on the test plate are reserved for internal positive controls added and verified by 

the contractor. (B) Diagram of bioinformatics workflow. Light yellow boxes indicate raw 

data received from contractor after targeted RNA-Seq assay completion. Light green circles 

indicate steps performed using existing open-source methods. Light blue circles indicate 

novel methods developed as part of this work. Bioinformatic analysis is generally split into 

two phases. Raw data processing up to probe-level count matrix and samplelevel QC metrics 

is performed across entire data set. Subsequent analysis is performed separately for each 

chemical against plate-matched vehicle controls. Intermediate processing results are stored 

in a database layer to facilitate analysis.
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Figure 2. Quality assessment of high-throughput transcriptomics data.
(A-E) Distributions of all sample-level QC metrics, split by sample type. Dashed lines 

indicate thresholds for masking samples from further analysis. (F) Proportion of samples 

passing all QC thresholds by type. Blank = Lysis buffer negative controls containing no 

cellular material; QC Sample = samples prepared in larger batches and added to each plate 

prior to conduct of TempO-Seq assay; DMSO Control = vehicle control for all other wells; 

Ref Chem = single dose reference chemical treatments; Test Sample = wells treated with a 

test chemical.
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Figure 3. Reproducibility of high-throughput transcriptomics data.
(A-B) Pairwise correlations of log2 CPM values by treatment group. All correlations were 

calculated between individual samples of the same treatment group as indicated. The 

BLTSA:BLDMSO group shows the correlation between samples from different treatment 

conditions. (C-D) Density distribution of the D-statistic by treatment group. (E) Correlation 

of L2FC (orange bars) and ssGSEA signature scores (blue bars) in each of the three test 

plates to median L2FC and ssGSEA signature scores across all test plates. L2FC values and 

ssGSEA scores for each treatment group were calculated relative to the bulk lysate DMSO 

(for bulk lysate TSA treatments) or DMSO (for Genistein, Sirolimus, or Trichostatin A 

treatments) controls as described in the methods. BLDMSO = bulk lysate DMSO control; 

BLTSA = bulk lysate Trichostatin A; DMSO = DMSO control; GEN = Genistein; SIRO = 

Sirolimus; TSA = Trichostatin A.
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Figure 4. Signature set enrichment of reference chemical treatments.
(A) Distributions of absolute ssGSEA signature scores, calculated from the DESeq2 

moderated log2 fold changes across the three test plates, for specific molecular target 

signatures across each treatment group. (B) Table of the top 5 highest ranked signatures 

by absolute signature score for Genistein (red), Sirolimus (green), or Trichostatin A (blue). 

GEN = Genistein; SIRO = Sirolimus; TSA = Trichostatin A; NULL = 1000 simulated 

chemicals derived from the null distribution (see methods).
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Figure 5. Transcriptional perturbations produced by chemical treatments.
(A) DEG accumulation scores for each test chemical (rows) at each concentration 

(columns). The color of each cell indicates the number of probes that were 

significantly differentially expressed at or below the corresponding concentration. Chemical 

concentrations that were masked from transcriptomic analysis due to cytotoxicity are shown 

as black with a red ‘X’ on the heatmap. (B) Distribution of gene response effect sizes. For 

each chemical, the maximum absolute L2FC value was computed for each probe across all 

concentrations and the distribution for all probes is represented as a boxplot. Blue boxplots 

indicate the distribution using “raw” L2FCs computed directly from mean log2(CPM) 

values. Red boxplots indicate the distributions of moderated L2FCs returned by DESeq2 

analysis of raw counts across all plates.
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Figure 6. Concentration-dependent transcriptomic perturbations of estrogen receptor target 
genes.
(A) Heatmaps showing the log2-fold change (log2fc) values for genes in an example 

signature (CMAP fulvestrant 1e−08 1417 100. The naming convention for the CMAP 

signatures include the chemical name, the concentration in molar units, a sequential index 

and the number of genes.). The left-hand heatmap shows the most significantly down-

regulated 100 genes and the right-hand panel shows the 100 most significantly up-regulated 

genes for this fulvestrant CMAP sample. Each horizontal block shows the results for the 

8 separate concentrations of a given chemical where concentration increases from top to 

bottom. The first 4 chemicals are ER agonists and the final 3 are ER antagonists. Chemical 

abbreviations are: BPA: bisphenol A, BPB: bisphenol B, 4NP: 4-nonylphenol, branched, 

4CP: 4-cumylphenol, 4hT: 4-hydroxytamoxifen, Fulv: fulvestrant, Clom: clomiphene citrate 

(1:1). (B) Signature-level concentration-response data for the same chemicals for this 

signature. Each panel shows the data points with 95% confidence intervals based on the 

fitting model error estimate, the winning concentration-response curve, the noise band (gray 

band spanning zero), the BMD (green vertical line) and its95% confidence interval (green 

box).The Y-axis is in arbitrary response units. Note that the response for the agonists is 

negative and for the antagonists is positive. All chemicals except 4-cumylphenol have a 

continuous hitcall > 0.9.
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Figure 7. Assigning putative molecular targets based on connectivity with CMAP chemicals and 
signatures. BMD distribution histograms for example chemicals.
Each active pathway is represented by an element of the histogram at the corresponding 

BMD value. Colors in the bar chart indicate the signature target classes: green = estrogen, 

beige = thyroid, blue = CYP P450, tan = ion channel, purple = HMGCR/cholesterol, orange 

= mitochondria, red = cell stress, yellow = PPAR, black = random, gray = other. The color 

of the rectangle in the top right indicates the target class of the chemical. Of note are (1) 

the burst of activity at high concentrations; (2) most of the stress or random activity being 

observed at high concentrations in a burst; (3) the estrogenic chemicals showing estrogenic 

pathway activity at the lower concentrations (specificity). The number of signatures with 

continuous hitcalls >0.5 and number of signatures tested is listed in each panel.
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Figure 8. Comparison of transcriptomic and HTS-derived BPACs.
The black triangle and confidence intervals correspond to BPACSig and associated upper 

and lower 95% confidence bounds of BPACSig respectively; yellow diamonds correspond to 

BPACBMDX; red diamonds correspond to BPACHTS; green up and down triangles indicate 

potencies from the EPA ER Pathway Model (https://www.epa.gov/endocrine-disruption/

endocrine-disruptor-screening-programedsp-estrogen-receptor-bioactivity). The names of 

chemicals are colored red if the BPACHTS is within the BPACSig confidence limits; colored 

black if the BPACHTS is lower than BPACSig; and colored blue if the BPACHTS is above the 

BPACSig. The BPACHTS is the lower 5th percentile of the active AC50 values for assays that 

passed a series of quality filters (Paul Friedman et al. 2020).
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Table 3:

Chemicals with BPACHTS 10x lower than BPACSig.

Chemical
Ratio 

(BPACHTS / 
BPACSig)

Target Potent ToxCast Targets MCF7 Expression level 
(log2 CPM)

3,5,3’-
Triiodothyronine 0.003 Thyroid hormone receptor Thyroid hormone receptors THRA, 

THRB
THRA=2.6 THRB=3.0

Cyproconazole 0.002 Pan-cyp inhibitor Cell-free assays for CYP2A1, 
CYP2C9, CYP2C13, CYP2C19

CYP2A, CYP2B, 
CYP2C all <1

Lovastatin 0.02 HMGCR Multiple cell-free and cell based targets 
but not HMGCR

HMGCR=7.4

Prochloraz 0.02 Pan-cyp inhibitor Cell-free assays for CYP2A2, 
CYP2C19, CYP2B1, CYP2C11

CYP2A, CYP2B, 
CYP2C all <1

Clofibrate 0.02 PPARα
Activity against cell-free assays for 
protein phosphatases PTPN2, PTPN12, 
PTPRF

PPARA=2.6

Butafenacil 0.02
Protoporphyrinogen oxidase 

(PPO) inhibition
Cell-free assays for CYP2A2, 
CYP2C19, CPP2B1, CYP2B6, 
CYP2C11

CYP2A, CYP2B, 
CYP2C all <1

Cladribine 0.02 DNA Synthesis inhibitor DNA repair, oxidative stress assays

Propiconazole 0.05 Pan-cyp inhibitor
Cell-free assays for CYP2A2, 
CYP2B1, CYP2C19, CYP2C11, 
CYP2C9

CYP2A, CYP2B, 
CYP2C all <1

Maneb 0.06
Inhibition of metal-

dependent and sulfhydryl 
enzyme systems

Cell-free assays for IRAK4, PTPN4, 
PTPN9

IRAK4=1.8, 
PTPN4=3.9, PTPN9=4.1

Lactofen 0.07 Protoporphyrinogen oxidase 
(PPO) inhibition

Cell-based assays for HMGCS2, 
PPARα

PPARA=2.6, 
HMGCS2<1

Imazalil 0.08 Pan-cyp inhibitor

Cell-free assays for PTPN11, CYP2B1, 
CYP2A2, CYP3A4, CYP2D2, 
CYP2C19 Cell-based assays for 
CYP1A2, CYP1A1

CYP2A, CYP2B, 
CYP2C, CYP1A2, 
CYP2D, CYP3A all 
<1 CYP1A2=2.3, 
PTPN11=8.8

Vinclozolin 0.08 Lipid Peroxidation
Cell-free and cell-based assays for AR 
Cell-free assay for TSPO Cell-based 
assays for CYP1A1, CYP1A2

CYP1A2 <1 
CYP1A2=2.3, 
TSPO=2.4, AR=3.8
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