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Abstract

Hyperoxia plays a significant role in the pathogenesis of lung injury, such as bronchopul-

monary dysplasia (BPD), in premature infants or newborns. BPD management aims to mini-

mize further injury, provide an optimal environment to support growth and recovery. In clinic

neonatal care, we need a new therapy for BPD. Heat shock protein 70 (Hsp70) inhibit cell

apoptosis and promote cell repair allowing cells to survive lethal injury. We hypothesized

that Hsp70 could be used to prevent hyperoxia related BPD in the neonatal rat model

through its anti-apoptotic and anti-inflammatory effects. In this study, we explored the effect

of Hsp70 on hyperoxia-induced lung injury using neonatal rats. Neonatal Wistar rats were

delivered naturally at full term of gestation and were then pooled and randomly assigned to

several groups to receive heat stimulation (41˚C for 20 min) or room temperature conditions.

The Hsp70 group received recombinant Hsp70 intraperitoneally (200 μg/kg, daily). All new-

born rats were placed under hyperoxic conditions (85% oxygen) for 21 days. Survival rates

in both heat-hyperoxia and Hsp70-hyperoxia groups were higher than those in the hyperoxia

group (p < 0.05). Both endogenous and exogenous Hsp70 could reduce early apoptosis of

alveolar cells under hyperoxia. Additionally, there were less macrophage infiltration in the

lung of the Hsp70 groups (p < 0.05). Heat stress, heat shock proteins, and exogenous

recombinant Hsp70 significantly increased the survival rate and reduced pathological hyper-

oxia induced lung injuries in the development of BPD. These results suggest that treating

hyperoxia-induced lung injury with Hsp70 may reduce the risk of developing BPD.

Introduction

Modern medicine and new technologies have significantly improved the survival rate of pre-

mature babies. However, newborns (mostly premature) and infants are prone to
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bronchopulmonary dysplasia (BPD), a chronic lung disease that results from lung damage

caused by mechanical ventilation and prolonged oxygen use [1]. The incidence of moderate to

severe BPD in premature infants born at 22–27 weeks of gestation is up to 45% [1], and the

mortality rate of very low birth weight infants with BPD within the first year after birth is 23–

36% [2]. Infants with BPD have a higher incidence of sudden infant death syndrome and are

more likely to develop malnutrition, recurrent pulmonary infection, pulmonary hypertension,

retarded intellectual development and obstructive pulmonary disease in the future [2–4].

These complications of BPD result in serious social and family burdens.

BPD is currently classified as either “old BPD” or “new BPD”. Old BPD is associated with

prominent fibroproliferation and is currently less prevalent. The new BPD is related to the dis-

ruption of distal lung growth, with prominent impairment of alveolar and vascular growth [3,

5]. Unlike mechanical ventilator barotrauma in old BPD, hyperoxia toxicity is the major con-

tributor to the development of new BPD due to the immature status of the lung antioxidant

systems in premature infants [3, 4, 6–11]. Prolonged hyperoxia causes dysplastic lungs,

increased collagen deposition, increased interstitial thickness, and induces the recruitment of

inflammatory cells into the alveolar tissue, leading to damage and apoptosis of alveolar cells

[10, 12, 13]. Unfortunately, the incidence of BPD in neonatal intensive care units worldwide

have not changed in recent decades and there is a huge need for a new strategy to prevent BPD

in neonatal care [14].

Heat shock proteins (HSPs) are produced by cells of virtually all living organisms, from bac-

teria to humans, to provide protection and facilitate cellular recovery after exposure to damag-

ing stimuli such as heat, toxins, oxidative stress [15, 16]. HSPs stabilize proteins and maintain

protein activity to inhibit cell apoptosis and promote cell repair [16–18]. They are categorized

into families based on their molecular weight and functional attributes. Among HSPs, the 70

kDa heat shock proteins (Hsp70) are the central hubs of the protein quality control network

and collaborate with co-chaperones [19]. Hsp70 interacts with a wide spectrum of molecules

and plays a cytoprotective role against various cellular stresses. Under pathophysiological con-

ditions, high expression of Hsp70 interacts at several points with apoptotic signaling pathways,

allowing cells to survive lethal injury. Hsp70 also possesses anti-inflammatory properties

through multiple mechanisms. The presence of Hsp70 in the culture medium can inactivate

dendritic cells and some reports have revealed that Hsp70 can promote the production of regu-

latory T cells (Tregs), which play a role in the development of tolerance and immunoregulation

[20]. In some animal experiments and clinical observations, the expression of HSPs are found

in lung tissue cells which imply that Hsp70 may plays an important role in the repair and pro-

tection of lung injury [21, 22].

Hsp70 has been used as an in vivo systemic intervention in several disease models [23–28].

However, there have been no clinical attempts to use Hsp70 to prevent BPD in premature

infants. We hypothesized that Hsp70 could be used to prevent hyperoxia related BPD in the

neonatal rat model through its anti-apoptotic and anti-inflammatory effects. Here, the Hsp70s

induced by heat stress and intraperitoneal injection of recombinant Hsp70 (rHsp70) were use

to explored the potential role of Hsp70 in protecting lungs from hyperoxia-induced broncho-

pulmonary dysplasia.

Materials and methods

Animal models

Timed, pregnant Wistar rats were obtained from BioLASCO (Taipei, Taiwan) and housed at

the Hospital Laboratory Animal Center in standard environmental conditions. The animal

experiments were approved by the Committee for Laboratory Animal Care and Use at
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Changhua Christian Hospital and followed the guidelines of the National Animal Research

Center. All animals were kept pathogen-free with ad libitum access to water and food under a

12 h light/12 h dark cycle. The pups were delivered naturally at term and remained with their

maternal rats. Maternal rats were swapped every 24 h between normoxic and hyperoxic

groups. Each mother received twelve pups.

Heat-shock pretreatment

Neonatal pups were randomly assigned by nest to two groups to receive whole-body heat stim-

ulation (41˚C for 20 min with a blanket) or no heat stimulation. All newborn rats were then

placed under hyperoxic conditions (85% O2) with a maternal rat.

Hsp70 treatment

The pups were treated with 200 μg/kg/day of recombinant Hsp70 or 10 ml/kg of phosphate

buffered saline (PBS) only, intraperitoneally for 21 days of hyperoxia exposure. At 3,7,14, and

21 days of age, the pups were sacrificed to obtain lung tissue.

Western blot analysis of Hsp70

Western blot analysis of Hsp70 expression were performed in murine lung tissues resected at

three, seven and fourteen days of age. Proteins were transferred to polyvinylidene difluoride

membranes (Bio-Rad Laboratories Inc., CA, USA) and immunoblotted with polyclonal rabbit

anti-Hsp70 (Enzo Life Sciences, Inc., NY, USA) or anti-β-actin antibodies (Cell Signaling

Technology, Danvers, USA). The blots were then incubated with the appropriate horseradish

peroxidase-conjugated secondary antibodies, and the bands were visualized using ImmunoS-

tar (Wako Pure Chemical Industries, Ltd., Osaka, Japan). The amount of protein on the mem-

brane was quantified using a chemiluminescence imaging analyzer (ImageQuant LAS 4000

mini, GE Healthcare, Tokyo, Japan), and the expression levels were recorded as ratios of the

level of β-actin.

Isolation and perfusion of the lungs in situ
The rats were anesthetized with an intraperitoneal injection of sodium pentobarbital (40 mg/

kg). A vertical incision was made along the midline of the thorax and abdomen. An afferent sil-

icone catheter was inserted into the left atrium. The lungs were perfused with saline at a con-

stant flow rate (2–5 ml/min) for 20 min.

Tissue preparation and morphological assessment of the lungs

After euthanasia, the right lung was embedded in optimal cutting temperature compound

(Tissue-Tek, Sakura, Japan) and frozen for immunohistochemistry. The left lungs were

inflated with 10% formaldehyde in 20 cm of H2O by clamping the trachea. Sections of forma-

lin-fixed, paraffin-embedded blocks were stained with hematoxylin and eosin (H&E) for mor-

phological evaluation. A vertical line was drawn from the center of the respiratory bronchioles

to the nearest pleurum or fibrous septum. The number of alveoli on this line is called the radial

alveolar count (RAC). A section was randomly selected from each rat and recorded under a

microscope (× 100 magnification) using a charge-coupled device camera system (Olympus

DP21; Olympus Co., Tokyo, Japan). Five visual fields were randomly selected from each sec-

tion to calculate the average number, reflecting the number of alveoli in the end-respiratory

unit.
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TUNEL assay

Terminal deoxynucleotidyl-transferase-mediated dUTP nick end labeling (TUNEL) analysis

of the lung tissue sections was performed using the In Situ Cell Death Detection Kit operation

manual. (Cat. 11684817910, Roche), according to the manufacturer’s protocol.

Immunohistochemistry staining for the distribution of Hsp70 and caspase-

3

Paraffin-embedded tissue sections were deparaffinized with xylene and hydrated using graded

percentages of alcohol. The tissues were then rinsed with 0.1 M PBS and deionized water sev-

eral times. Subsequently, the sections were incubated with a 3% hydrogen peroxide solution in

methanol for 15 min to quench endogenous peroxidase activity. The sections were incubated

with a serum blocking solution for 1 h at 25˚C. The sections were then incubated with anti-

Hsp70 and anti-caspase-3 antibodies (Sigma-Aldrich Inc., St. Louis, MO, USA) at a 1:100 dilu-

tion in primary antibody dilution buffer for 2 h at room temperature, followed by overnight

incubation at 4˚C. After rinsing three times with 0.1 M PBS containing 0.5% Triton X-100, the

sections were incubated with goat anti-rabbit HRP for 1 h at room temperature in a black box.

The sections were then dehydrated using various grades of alcohol, washed, and mounted

using anti-fade fluorescent mounting medium (Dako Cytomation, Carpinteria, CA, USA).

Images were obtained using a microscope (Olympus BX63; Olympus Co., Tokyo, Japan)

equipped.

Statistical analysis

All data are presented as the mean ± standard deviation. Differences between groups were

evaluated using two-way analysis of variance with Tukey’s post hoc test for all experiments. Sta-

tistical significance was set at p< 0.05. All statistical analyses were performed using GraphPad

Prism 6.0 software for Windows (San Diego, California, USA)

Results

Hyperoxia exposure resulted in BPD-like lung damage

Continuous exposure of newborn rats to 85% oxygen for 21 days resulted in marked changes

in alveolar development and lung growth. On the third day of hyperoxia exposure, the lung tis-

sue showed slight dilation of the small blood vessels with few foci of hemorrhage and exuda-

tion. There were no apparent structural changes after three days of hyperoxia. On the seventh

day of hyperoxia exposure, there was a decrease in alveolar numbers with irregular shapes and

small collagen deposition. After 14 days of hyperoxia exposure, the alveolar walls were severely

damaged with enlarged terminal airways, leading to large and simple acini (Fig 1A). On days

7, 14, and 21, the radial alveolar count (RAC) of the hyperoxia group was substantially lower

than that of the treatment group (Fig 1B).

A mild and progressive inflammatory response was observed in histological sections on the

third day of hyperoxia exposure. Inflammatory cells were mainly found in the perivascular and

peribronchiolar regions. Initially, neutrophils were the dominant inflammatory cells; then,

macrophages gradually became the main inflammatory cells and accumulated in the lungs. In

the hyperoxia-exposed group (compared to the normoxia group), alveolar epithelial cell apo-

ptosis occurred on the third day but was weakly expressed on the seventh day of exposure (as

indicated by immunofluorescence staining of the TUNEL assay) (Fig 2).
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Heat shock and peritoneal injection of rHsp70 reduced the mortality rates

of neonatal rats exposed to hyperoxia

The hyperoxia-exposed neonates began to die on day three. Heat shock significantly increased

the survival rate. The mortality rate was reduced from 79% to 38% after heat shock pretreat-

ment (Fig 3A). Furthermore, neonatal rats that received heat shock pretreatment exhibited less

weight loss than the hyperoxia group (Fig 3B). To prove that Hsp70 could remediate lung

damage, exogenous rHsp70 was used instead of heat shock to treat neonatal rats exposed to

hyperoxia. Similar to the effects of heat shock pre-treatment, the survival rate at 21 days

increased (22% in the hyperoxia group and 73% in the Hsp70-hyperoxia group) (Fig 3C). As

with heat shock, neonate rats receiving rHsp70 injections showed better weight gain than the

hyperoxia group (Fig 3D).

Heat shock and peritoneal injection of rHsp70 attenuated hyperoxia-

induced lung injury

Compared to the hyperoxia-exposed group, the heat-hyperoxia group had a uniform alveolar

size, smaller terminal air spaces, and more alveoli on day 7. On the 14th day, the heat-hyperoxia

Fig 1. Hyperoxia exposure induces bronchopulmonary dysplasia -like lung injury in neonate rats. Heat shock and

exogenous rHsp70 improve hyperoxia lung injury with enhancement of Hsp70. (A) Pathological changes in lung tissue

exposed to hyperoxia, heat-hyperoxia, Hsp70-hyperoxia compared to normoxia, 200×) at 3, 7, 14, and 21 days of age.

(B) The radial alveolar count (RAC) of the hyperoxia group was substantially lower than that of the treatment groups,

*P< 0.05; **P< 0.01; ***P< 0.001, ****P< 0.0001.

https://doi.org/10.1371/journal.pone.0285944.g001
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Fig 2. Exposure to hyperoxia induces apoptosis of alveolar cells in the early days. Representative images showing

immunohistochemical (IHC) staining of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) in

lung sections in experimental groups. TUNEL-positive cells are indicated by brown while the remaining cells appear

cyan with methyl green stain (200 ×).

https://doi.org/10.1371/journal.pone.0285944.g002

Fig 3. Heat shock and exogenous rHsp70 reduce the mortality and weight change of neonatal rats exposed to

hyperoxia. (A) During high concentration oxygen exposure, the survival rate of newborn rats treated with heat shock

was higher than that of the hyperoxia group (21% vs 62%, P = 0.018, n = 12). (B) Heat shock pretreatment prevented

hyperoxia-induced failure to thrive. (C) During hyperoxia exposure, the survival rate of newborn rats injected with

rHsp70 was higher than that of the untreated group (22.2% vs. 73.5%, P = 0.013, n = 12). (D) Treatment with

exogenous rHsp70 prevented hyperoxia-induced failure to thrive.

https://doi.org/10.1371/journal.pone.0285944.g003
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group continued to have better alveolar development, including intact alveolar septa and acinar

structures, good alveolar quantities, and a significantly higher RAC (Fig 1A and 1B). The histol-

ogy of lung tissue on days 3 to 7 of Hsp70-hyperoxia group revealed the same therapeutic

change as heat shock. The injection of Hsp70 increased the number of alveoli and maintained

their regular size (Fig 1A and 1B). More importantly, heat shock and exogenous Hsp70 treat-

ment significantly reduced alveolar cell apoptosis on the third day after exposure to high oxy-

gen concentrations (Fig 4A and 4B).

Heat shock and peritoneal injection of rHsp70 both enhanced Hsp70

expression in alveolar epithelial cell

Immunofluorescence staining and western blot analysis were performed in the lung tissue to

determine the expression of Hsp70 in each group. The results showed that neonatal rats receiv-

ing heat shock and exogenous Hsp70 treatment had increased Hsp70 expression in alveolar

epithelial cells (Fig 5A). Heat shock pretreatment showed substantially higher levels of Hsp70

in lung tissues, which then gradually decreased (Fig 5B). Hsp70 increased significantly in alve-

olar epithelial cells on day 3 after heat and then decreased with time. Even on day 14, a slight

increase in Hsp70 was observed compared to the normoxia group.

Heat shock and peritoneal injection of rHsp70 suppressed lung

inflammation under hyperoxia

Quantification of macrophages accumulated in lung sections revealed that heat-hyperoxia and

Hsp70-hyperoxia groups showed a significant reduction in lung tissue inflammation (Fig 6A

and 6B). Hsp70 injection also reduced the macrophages into the lung tissue (Fig 6A and 6B).

Similar to the results of heat shock pretreatment, peritoneal injection of rHsp70 protected

Fig 4. Heat shock and exogenous Hsp70 treatment attenuates hyperoxia-induced alveolar apoptosis. (A)

Representative immunohistochemical images for cleaved caspase-3 counterstained with hematoxylin in each group on

the third and seventh days of hyperoxia exposure. Red arrows indicate caspase-3-positive cells. Magnification: 630×.

Scale bars = 50 mm (B) Quantification of cleaved caspase-3 positive cells in groups. Cleaved caspase-3 was determined

by counting the number of red arrows per high-power field in five areas of the lung sections. (400×). The results are

presented as mean ± standard deviation (n = 8 in each group). *P< 0.05; **P< 0.01; ***P< 0.001, ****P< 0.0001.

https://doi.org/10.1371/journal.pone.0285944.g004
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Fig 5. Heat shock pretreatment and peritoneal injection of rHsp70 both enhances Hsp70 expression in the lungs.

(A) The panel shows the representative image of Hsp70 expression in the lungs detected by immunohistochemistry

(IHC). Strong, positive staining of Hsp70 was evident in the lungs, particularly in the epithelial cells of the pre-heat

treatment and exogenous Hsp70 groups compared to the control group (200×; IHC; 3,3’-diaminobenzidine staining).

(B) The western blot analysis of Hsp70 expression in the four groups. β-actin was used as a loading control. The results

are presented as mean ± standard deviation (n = 8 in each group). *P< 0.05; **P< 0.01; ***P< 0.001, ****P< 0.0001.

https://doi.org/10.1371/journal.pone.0285944.g005

Fig 6. Heat shock and Hsp70 treatment both suppressed lung inflammation under hyperoxia. (A) Accumulation of

macrophages in lung tissue of hyperoxia-exposed, heat-hyperoxia, Hsp70-hyperoxia compared to normoxia (400×) at

21 days of age. (B) Infiltrated macrophages in lung homogenates in various groups. Macrophage infiltration was

determined by counting the number of macrophages per high-power field in five areas of the lung sections. (400×).

(C) Schematic diagram of apoptosis and inflammation under hyperoxia and Hsp70 effect. Data are presented as

mean ± standard deviation (n = 8 in each group). *P< 0.05; **P< 0.01; ***P< 0.001.

https://doi.org/10.1371/journal.pone.0285944.g006
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against normal alveolar development and decreased lung inflammation under hyperoxic

stress.

Discussion

Hsp70 is closely related to lung biology. In 1998, Wong et al. found that hyperoxia-induced

cell damage increased Hsp70 expression, which possibly improves hyperoxia-induced lung

damage [29]. Additionally, in 2011, Rehan et al. evaluated Hsp70 expression in neonate sheep

and reported that in lung injuries caused by high airway pressure, the expression of Hsp70

increased, thus improving the inflammatory response [30]. Furthermore, extracellular Hsp70

acts as an immunogen that participates in cross-presentation of MHC-I molecules [31, 32].

Zhang et al. demonstrated that extracellular Hsp70 transduces anti-apoptotic and cytoprotec-

tive signals through the toll-like receptor 4 and Trif-nuclear factor kappa B pathways, which

induces Bcl-2 expression and inhibits caspase-3 activation [33]. Our study is the first one to

evaluate the therapeutic potential role of HSP70 in BPD.

Although oxygen therapy is essential for saving the lives of immature infants, prolonged

exposure to hyperoxia (even slightly higher oxygen concentrations) can cause lung injury

through the production of highly reactive and destructive oxygen radicals, resulting in BPD

[11]. Nowadays the pathogenesis of BPD has been gradually elucidated but there have been no

breakthroughs in the treatment of BPD. Most of new approaches such as antioxidants, growth

factors are not readily applicable to human newborns, owing to safety considerations. Hsp70 is

closely related to lung biology, with anti-inflammatory, antioxidant, and anti-apoptotic roles

in protecting and repairing lung injury [22, 29]. Since 1992, reports have suggested that an

increase in HSP concentration in the lungs can improve mortality associated with acute lung

injury in animals [22, 29, 34–40]. Furthermore, highly preserved DNA protein sequences in

different species make HSPs prone to fewer immune reactions and have a bigger chance to be

used as an exogenous medicine in the neonatal care.

Among the many animal studies investigating hyperoxia and BPD, ours was one of the few

that induced exposure to hyperoxia for up to 21 days [41]. Full-term rats are born at the saccu-

lar stage of lung development, which corresponds to human lung development between 26

and 28 weeks of gestation. Mouse lung development progresses to the alveolar stage on postna-

tal day five, which corresponds to human lung development at 32–38 weeks of gestation [42].

Rodents represent the only animal model born at the saccular stage of lung development and

are therefore suitable for simulating the hallmark symptoms of neonatal BPD [43]. In our

study model, neonatal lungs exposed to hyperoxia exhibited a severely simplified and enlarged

alveolar structure, similar to the pathological changes observed in BPD [44–46]. These results

demonstrated that the neonate rat model is suitable for BPD researches.

Our results revealed that early damage to the lung by hyperoxia exposure was apoptosis of

alveolar rather than inflammation. Alveolar apoptosis occurred mainly on first three days

which is similar to previous studies [47, 48]. Both endogenous and exogenous Hsp70 could

reduce early apoptosis of alveolar cells under hyperoxia. Although our results and other reports

showed hyperoxic stress also induced expression of Hsp70 in alveolar epithelial cells [29, 34],

however, it is apparently insufficient to protect the lungs from continuous hyperoxic toxicity.

Macrophages are distributed throughout the lung and can be classified into alveolar macro-

phages, interstitial macrophages (both are resident macrophages) and recruited macrophages.

Moreover, researches had showed that they are heterogenous with functional diversity. For

example, alveolar macrophages could produce immunoregulatory cytokines such as TGF-β
and IL-10 to keep airway in a state of relative hypo-responsiveness. Severe and persist lung

inflammation usually leads to loss of resident macrophages with the replacement, expansion of
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monocyte-derived macrophages [49, 50]. However, there are studies reported that pulmonary

alveolar macrophages are the main contributors to alveolarization arrest in bronchopulmonary

dysplasia. Increased expression of pulmonary macrophages was also observed in the lungs of

preterm infants who died of BPD [51–53]. The major limitation of our study is lack of flow

cytometry analysis to distinguish the different population of lung macrophages or other

inflammatory cells. However, from the comparation of different groups, we thought the

majority of gradually increased macrophages in hyperoxia group are most likely pro-inflam-

matory property. Both endogenous and exogenous Hsp70 could suppress macrophage infiltra-

tion then results in a reduction in the number of destructed alveoli with fibrosis. In addition to

dissect the phenotypes of lung macrophages, to evaluate cytokine expression in different group

should be conducted in the future researches.

One interesting thing is that opposed to the continuous injection of rHsp70 for 21 days, the

Heat shock induced transient, endogenous Hsp70 for 3 days then gradually decreased after the

peak. However, the heat shock group had the same protective effect including anti-inflamma-

tion as rHsp70 injection. We do not know the exact reasons of the results but have two possible

explanations. The first possibility is that early, sufficient Hsp70 expression could protect the

lung organ from hyperoxia damage and let it to develop tolerance to hyperoxic environment,

which results in the weak inflammation later even still exposure to hyperoxia. The second pos-

sibility is that not only HSP70, the heat shock triggered multiple, unassessed protective mecha-

nisms in our model.

In summary, our results demonstrated that Hsp70 protect the immature lung tissues of neo-

natal rats from damage caused by hyperoxia through anti-apoptosis in early phase and contin-

ues to reduce the inflammatory response (Fig 6C).

Supporting information

S1 File. The data that supports the findings of this study are available in the supporting
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