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Abstract

Kidney disorders are among the most common diseases and there is a scarcity of effective

treatments for chronic kidney disease. There has been a progressive improvement in spe-

cific flavonoids for protective effects against kidney diseases. Flavonoids inhibit the regula-

tory enzymes to control inflammation-related diseases. In the present study, a hybrid

approach of molecular docking analyses and molecular dynamic simulation was followed by

principal component analyses and a dynamics cross-correlation matrix. In the present

study, the top-ranked five flavonoids were reported, and the maximum binding affinity was

observed against AIM2. Molecular docking analyses revealed that Glu_186, Phe_187,

Lys_245, Glu_248, Ile_263, and Asn_265 are potent residues against AIM2 for ligand–

receptor interactions. Extensive in silico analyses suggested that procyanidin is a potential

molecule against AIM2. Moreover, the site-directed mutagenesis for the reported interacting

residues of AIM2 could be important for further in vitro analyses. The observed novel results

based on extensive computational analyses may be significant for potential drug design

against renal disorders by targeting AIM2.

Introduction

Inflammasomes are cytosolic receptors of the innate immune system that are responsible for

the protection and activation of inflammatory responses against danger signals [1]. The

inflammasomes consist of an upstream sensor protein, the apoptosis-associated speck-like

protein containing a CARD (ASC) adaptor protein, and a downstream effector protein [2].

The inflammasomes are activated by distinct kinds of cytosolic pattern recognition receptors

(PRRs) classified based on structural characterization to recognize cytosolic and nuclear path-

ogens. The activated inflammasomes further activate the caspase-1 and the activated protein
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induces inflammation and responds to harmful factors in the body. It further causes cell pyr-

optosis, and apoptosis regulates cellular pathways and plays a critical role in the innate

immune system [3].

The activation of the inflammasome is the primary innate immune event that occurs in the

host associated with several inflammatory disorders and plays a vital role in the pathogenesis

of kidney disorders. The inflammasomes are also linked to a variety of microbial and non-

microbial diseases including cardiovascular disorders, asthma, cancer, diabetes, Alzheimer’s,

and atherosclerosis that affect the heart, intestine, lungs, and liver [4]. Moreover, it also per-

forms an important role in autoimmune disorders such as psoriasis by recognizing host DNA

[5]. However, kidney diseases recently gained increasing attention [1]. Kidney diseases have

major and growing health issues worldwide. The global prevalence of kidney disease is esti-

mated to be 8–16% while the healthcare cost for the treatment of kidney disease exceeds $130

billion [6, 7]. The innate immune system is typically implicated in the initiation and spread of

inflammation in the kidneys. Inflammation plays an essential role in the pathogenesis and

development of chronic kidney diseases. Furthermore, it has a prominent role in initiating

renal fibrosis [8]. The inflammation can delay the capacity of the kidney to filter the surplus

water and waste materials. Kidney inflammation is a serious and life-threatening condition

that can result in chronic kidney disease [9]. The inflammasome is used as possible therapeutic

target for aseveralrenal diseases.

The inflammasomes are divided based on structure as NLRP1, IPAF, NOD-, LRR-, NLRC4,

NLRP3, and AIM2 inflammasomes. Interferon inducible protein 2 (AIM2) is a non-NLR pro-

tein expressed in the kidney and extensively characterized regarding renal diseases. AIM2 is a

significant inflammasome component that belongs to the PYHIN family. AIM2 is a positively

charged HIN domain that binds to cytoplasmic dsDNA through electrostatic interactions and

pyrin (PYD)the at N terminal. The protein-protein interaction is responsible for the down-

stream activation of the adapter protein ASC to promote pyroptotic cell death in cells contain-

ing caspase-1 [10, 11]. AIM2 inflammasome is linked to kidney disease and plays a key role in

regulating renal injury, inflammation, and fibrosis by assembling the multiprotein platforms

for caspase activation [1]. In the absence of dsDNA, the interaction of PYD and HIN domains

keeps the receptor autoinhibited. In the presence of cytosolic DNA, inhibition of AIM2

reduces inflammasome activation and leads to reduce inflammation-related diseases such as

renal kidney [12].

There is a progressive improvement in natural compounds and has the least side effects.

The natural products are rapidly gaining success in the treatment of renal illnesses [13]. Flavo-

noids are a class of low molecular weight phenolic compounds and are becoming increasingly

popular due to various positive health effects. Flavonoids have the ability to exert multiple bio-

logical properties including protection from kidney diseases and use in nutraceutical, pharma-

ceutical, medicinal, and cosmetic applications [14]. Flavonoids are anti-inflammatory

secondary metabolites having a 15-carbon (C6-C3-C6) backbone structure. A wide variety of

higher plants that have red, blue, or purple hues contain flavonoids, and are secondary metab-

olites with varying phenolic structures [15].

Extensive in silico analyses demonstrates molecular docking analyses and molecular

dynamic simulations to reveal novel flavonoids against kidney diseases. Extensive literature

review was performed, and flavonoids were screened by molecular docking analyses followed

by molecular dynamic simulations against kidney diseases by targeting AIM2. The inclusive

computational study may reveal the potent evidence for a reliable framework to assist

researchers to design and develop the potential compounds.

PLOS ONE Computer aided drug design to treat kidney inflammasomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0285965 May 18, 2023 2 / 14

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0285965


Materials and methods

Protein preparation

The 3D structure of the selected protein (interferon inducible protein AIM2) having PDB ID

3RN2 [12] was retrieved from Protein Data Bank (PDB) [16]. MODELLER 9.25 [17] was used

to predict the missing residues (140–146, 341–347). Swiss PDB Viewer [18] and RAMPAGE

[19] were used to optimize and minimize the protein crystal structure.

Molecular docking analyses and docking validation

The molecular docking analyses were performed by utilizing AutoDock Vina [20] and flavo-

noids were used as ligands. The 2D structures of flavonoids were generated and minimized.

High throughput virtual screening was performed and the top ranked 37 compounds of flavo-

noids were screened. The energy dissipated was calculated through AutoDock Vina and pro-

tein-ligand interactions were analyzed by employing PyMOL [21]. The 2D binding

interactions were analyzed by utilizing BIOVIA Discovery Studio [22].

The optimum scoring function was used for high throughput virtual screening to scrutinize

the suitable candidates. The highest scoring functions were generated to screen the unidenti-

fied compounds by using a decoy dataset of inactive and active ligands. A Database of Useful

Decoys Enhanced was employed to create the decoy dataset [23]. The SMILES of the decoys

were utilized to generate 2D structures of the selected compounds through Data Warrior [24].

The selected target protein was docked against active and decoys compounds. The receiver

operating characteristic curve (ROC curves) were employed to assess the reliability of the

selected scoring functions and attribute to higher points for active ligands against inactive

ligands [25]. A script written in R language is used to calculate ROC curve [26].

Toxicity analyses

Drug likeness and ADMET (adsorption, distribution, metabolism, excretion, and toxicity)

properties were calculated by using pkCSM [27] and QikProp [28]. The lead likeness proper-

ties, mutagenicity and carcinogenicity were calculated for all the selected compounds [29].

Molecular dynamic simulation

Desmond, a software from Schrödinger LLC [30], was utilized to perform Molecular Dynamic

(MD) simulations for 100 nano seconds (ns). In molecular dynamics simulation, the receptor-

ligand docking was performed to calculate the rigid binding analyses of the selected com-

pounds against target protein [31]. MD simulation analyses were performed to predict the

ligand binding status in physiological milieu by incorporating Newton’s classical equation of

motion [32, 33].

The selected proteins and ligands were optimization and minimized by utilizing Maestro’s

Protein Preparation Wizard. The steric clashes, bad contacts and distorted geometries were

removed. System Builder tool was employed to build the systems and TIP3P (Intermolecular

Interaction Potential 3 Points Transferable), an orthorhombic box was used as solvent model

having OPLS_2005 force field [34]. Counter ions were used to neutralize the models and

added 0.15M sodium chloride to simulate physiological conditions with 300K temperature

and 1 atm pressure throughout the simulation period. For inspection, trajectories were stored

after every 100 pico seconds (ps) and protein-ligand stability was confirmed by Root Mean

Square Deviation (RMSD) over time. The Principal Component Analysis (PCA) and dynamic

cross-correlation matrix (DCCM) were analyzed by using Bio3D package of R [35] A script

written in R language is used to calculate PCA and DCCM [36, 37].
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Molecular mechanics and generalized born surface area (MM-GBSA)

calculations

The molecular mechanics generalized Born surface area (MM-GBSA) module of prime was

used to determine the binding free energy (Gbind) of docked complex during MD simulations

of AIM2 complexed with CID107876. Using the OPLS 2005 force field, VSGB solvent model,

and rotamer search techniques, the binding free energy was estimated. The MD trajectory

frames were chosen at intervals of 10 ns after the MD run. The total free energy binding was

calculated using Eq 1:

dGbind ¼ Gcomplex � ðGproteinþ GligandÞ ð1Þ

Where, dGbind = binding free energy, Gcomplex = free energy of the complex,

Gprotein = free energy of the target protein, and Gligand = free energy of the ligand.

Results and discussion

The 3D structure of the target protein (3RN2) was retrieved from PDB. The total structural

weight of the selected protein was 59.60 kDa. The global symmetry of the selected protein was

cyclic-C2 and Homo 2-mer A2 was calculated as stoichiometry [12]. The missing residues

from the selected protein structure were predicted, optimized, and minimized (Fig 1) [38] for

further analyses. In this process proper bond order assigned, adequate hydrogen atoms added,

and loop refinement of target protein was performed to get the native conformation of protein

[39, 40]. The predicted structure was evaluated, and it was observed that the overall quality of

the predicted structure was 99.23%. It was observed that the residues were displayed as circles,

while glycine was plotted as triangles and proline as squares (Fig 1) [41].

The molecular docking analyses were performed for the top ranked 37 flavonoids. Before

performing docking, we remove all water molecules and ions to get accurate results. The

Fig 1. 3D structure of the selected protein retrieved from PDB along with its Ramachandran plot displaying different sections of target

protein structure.

https://doi.org/10.1371/journal.pone.0285965.g001
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docking was performed with prepared protein target. The grid box was used with center_x =

-12.3038, center_y = -3.8932, center_z = -23.6318, size_x = 62.0402586746,

size_y = 44.1229688644, and size_z = 44.4926281977 dimensions [42]. The bioinformatics

tools are of great significant and used on selected compounds for further refining of molecules

based on ADMET properties resulting in identification of top ranked 5 compounds that satisfy

the Lipinski’s rule of five and least binding energy (Table 1) [43].

The molecular weight of all the selected compounds was calculated and 130.0 to 725.0

(grams per mole) molecular weight was observed for all the selected compounds [44]. Thereaf-

ter, five top ranked compounds were analyzed on the basis of their binding affinity, ADMET

properties and least binding energy values (Table 1) revealed that the scrutinized compounds

showed significant biological properties. Hydrogen bond donor was calculated to share the

electrons of solute to water molecules. In addition, the estimated amount of hydrogen bonds

that a solute from water in aqua solutions would accept is known as a hydrogen bond acceptor.

The non-integer values having recommended range of 0.0–6.0 were selected for hydrogen

bond donor and acceptor. The selected values were as average across several different configu-

rations. The utilized values were calculated as an average over multiple states leads to be non-

integers and operates in between 2.0 and 20.0. The octanol water partition coefficient was cal-

culated in between -2.0 to 6.5as the value of inhibitory concentration (IC50) for the blockage

of HERG K+ channels. Caco2 cell permeability prediction was also calculated and observed

reliable. The gut-blood barrier was also observed by using Caco2 cells. The values of the

observed compounds ranges from 0 to 25, considered as poor however, >500 considered as

reliable for further analyses. The expected brain and blood separation ratio was also calculated.

The dopamine and serotonin were observed negative against Central Nervous System (CNS)

as the selected compounds were polar in nature to cross the blood-brain barrier. The human

serum albumin binding predicted, or QPlogKhsa, has a range of -1.5 to 1.5 [45].

The visual depictions of the relationship between the candidates of test specificity and sensi-

tivity were calculated through ROC curves. The ROC curves were generated through graphing

the percentage of genuine positives relative to the percentage of the false positives relative to

the percentage of true negatives. The designed ROC curves pattern was utilized to verify the

selected compounds for molecular docking analyses so the selected compounds should be

from active ligands instead of inactive ligands (decoys). It was also observed that the designed

pattern scrutinized the active ligands from top ranked compounds of the selected database.

0.7253 area was observed are under the curve (Fig 2) and enrichment factor was observed in

top 1% (13.88) as reliable. ROC curve is the relationship between sensitivity and specificity. It

represents true positive and false positive fractions on y-axis and x-axis, respectively. 0.7253 is

a good area under the ROC which shows that the docking tool performs significantly accurate

docking with the target protein and selected compounds compound [46].

Table 1. ADMET properties, binding affinity, and pharmacophore score of top compounds (mol_MW: Molecular Weight, donorHB: Hydrogen Bond Donor,

accptHB: Hydrogen Bond Acceptor, QPlogPo/w: Predicted octanol/water partition coefficient, QPlogHERG: Predicted IC50 value for blockage of HERG K+ chan-

nels, QPPCaco: Predicted apparent Caco-2 cell permeability in nm/sec, QPlogBB Predicted brain/blood partition coefficient, QPlogKhsa: Prediction of binding to

human serum albumin, and binding affinity from docking in kcal/mol).

PubChem ID mol_MW donorHB accptHB QPlogPo/w QPlogHERG QPPCaco QPlogBB QPlogKhsa Binding Affinity (Kcal/mol)

107876 594.528 10 11.65 0.025 -6.156 83 -4.458 -0.437 -8.6

370 170.121 4 4.25 -0.585 -1.396 10.027 -1.659 -0.987 -5.7

9064 290.272 5 5.45 0.427 -4.813 51.696 -1.91 -0.43 -7.2

72277 306.271 6 6.2 -0.203 -4.524 21.067 -2.313 -0.56 -6.9

5281855 302.197 4 8 -1.306 -3.852 7.958 -2.396 -0.663 -7.9

https://doi.org/10.1371/journal.pone.0285965.t001
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Extensive analyses revealed that Procyanidin (ID:107876) was more efficient among the

selected compounds. The scrutinized compound showed affective binding affinity and critical

binding residues Glu_186, Phe_187, Lys_245, Glu_248, Ile_263, and Asn_265, observed in

molecular docking analyses with AIM2 (Fig 3). MD simulation coupled with molecular dock-

ing analyses suggested that the selected compound must satisfy the drug properties having

least binding energy. By satisfaction of the selected parameters of binding energy, binding

affinity and ADMET properties, it is suggested that Procyanidin (ID:107876) is a potent com-

pound against kidney disease by targeting AIM2 (Table 1) [47].

Catechin and epicatechin molecules combine to generate procyanidin as an oligomeric

chemical. The de-polymerization in an oxidizing environment leads to produce cyanidin.

Polyphenols is the largest class of secondary metabolites. Proanthocyanins is condensed tan-

nins, precursor to procyanidins and type of polyphenol. Procyanidins are polyphenols preva-

lent in dietary fruits, vegetables, legumes, nuts, and grains and have a number of biological

actions including chemo preventive [47, 48]. The optimal chemical complex with the protein

target was simulated by using MD simulation analyses for 100 ns. RMSD and RMSF values

were determined by means of MD trajectory analyses.

The time-dependent variation in RMSD values for C-alpha atoms in ligand-bound proteins

showed the stability of the complex (Fig 4). The RMSD plot showed that the complex 107876-

3RN2 stabilized at 10 ns. However, there was a slight increase in RMSD of protein bound

ligand at 40 ns. This flip could be due to the conformational change in the rotatable bonds of

ligand. The two-dimensional representation of ligand in (Fig 3) shows that it has some

Fig 2. ROC curves of docking validation score.

https://doi.org/10.1371/journal.pone.0285965.g002
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Fig 3. The interaction residues of the selected compound against the selected protein along with bond length.

https://doi.org/10.1371/journal.pone.0285965.g003

Fig 4. The variation in the root mean square deviation (RMSD) between the C-alpha atoms of proteins and ligand (107876-

3RN2) over time. Protein RMSD shifts over time are plotted on the left Y axis. Differences in ligand root-mean-square deviation

(RMSD) over time are plotted along the right Y-axis.

https://doi.org/10.1371/journal.pone.0285965.g004
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rotatable bonds. Torsion angle of ligand cause these types of flips [49]. After 40 ns, no obvious

change and variation was observed throughout the simulation analyses of ligand fit on protein.

It was observed that the average RMSD of protein structure (PDB ID: 3RN2) was 1.5235 with

0.1846 standard deviation. The average RMSD of ligand with respect to protein was 1.4198

with 0.79066 standard deviation. The RMSD showed variations however, no clear variation

has been observed in the RMSD calculation of ligand after equilibrium. This showed that the

ligand remained bound to the binding pocket of the protein [50, 51].

Protein dynamics are characterized by Principal Component Analysis (PCA) [52]. The

observing collective trajectory motions during MD simulations analyses were calculated. The

graph of eigenvalues (protein) against eigenvector index (eigenmode) for the first 20 modes of

motion (rn2 = 107876) (Fig 5A) showed stability. The eigenvalues depicted the hyperspace

eigenvector fluctuations. In simulations analyses the eigenvectors having higher eigenvalues

regulates the total mobility of the target protein. The top five eigenvectors in utilized systems

showed dominant movements and had larger eigenvalues (20.3–61.3%) than the other eigen-

vectors. All changes were observed and plotted in three PCs (PC1, PC2, and PC3). PC1 clusters

had the largest variability (20.28%), PC2 showed variability (12.94%), and PC3 had the lowest

variability (9.08%) (Fig 5A). As a result of its low variability, PC3 has a more compact structure

than PC1 and PC2 and was considered as more stabilized protein ligand binding complex. The

simple clustering in PC subspace revealed conformational variations across all the groups. The

blue color exhibits the most significant mobility; white color indicates intermediate move-

ment, and red indicating less flexibility [53].

The selected ligand (ID: 107876) and the target protein (3RN2) showed significant correla-

tion through the high pairwise cross-correlation coefficient value on the cross-correlation map

Fig 5. (A) Principal Component Analysis eigenvalue plotted versus the percentage of variance (107876-3RN2). The varying areas are displayed on three

separate sections. Variations in PC1, PC2, and PC3 add up to 20.08 percent, 12.94 percent, and 9.08 percent, respectively, (B) Complex 107876-3RN2 dynamic

cross-correlation map. The positive and negative correlations of the residues are depicted by cyan and purple colors respectively.

https://doi.org/10.1371/journal.pone.0285965.g005
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(Fig 5B). The magenta color represents anti-correlated residues (-0.4), whereas cyan color rep-

resents the correlated residues (>0.8). It was observed that the large number of pairwise corre-

lated residues between the target protein (AIM2) and the selected ligand [54].

RMSF value of the protein-ligand complex was calculated (Fig 6). Based on MD trajectories,

the higher peaks of the residues in loop regions, N- and C-terminal zones (Fig 7) showed the

stability. The stability of the selected ligand binding against the target protein showed low

RMSF values. The secondary structure features including alpha-helices and beta-strands were

predicted throughout the simulation. Secondary Structure Elements graph was plotted against

the residual index to calculate the distribution across the protein structure. It was observed

that 3.98% was alpha helices, 49.14% of beta sheets 3.7% of remaining elements of the second-

ary structures and the total was observed as 53.13%. Ratio of alpha helices and beta sheets also

affect the RMSD of protein. As there are rigid region of protein so the residues in these struc-

tures showed low RMSD as compared to the residues lies in coils and loops [55, 56].

The hydrogen bonds constituted the vast majority of the significant ligand-protein interac-

tions (Fig 8). The hydrogen bonding was observed for Glu-186, Phe-187, Glu-248, Gln-258,

Ile-263 and Asn265 residues. The ligand-protein interaction was also critically observed over

the course of the simulation analyses. The molecular contacts and interactions (H-bonds,

hydrophobic, ionic, and water bridges) showed the interaction between the target protein and

the selected ligand. Each frame of the trajectory was calculated at x-axis and the interaction of

the ligand. Various independent interactions with the ligand were also observed (Fig 8) [57].

In present work, molecular docking analyses coupled with MD simulation were performed,

and missing residues from the 3D structure of AIM2 was predicted. The simulated complexes

showed a reliable degree of accuracy, specifically at the binding site of the target protein.

Molecular docking analyses and MD simulation analyses revealed the interactional residues of

the selected ligands and the receptor protein. The selected ligand showed least binding energy

and critical binding residues Glu_186, Phe_187, Lys_245, Glu_248, Ile_263, and Asn_265,

observed with AIM2. The reported compound showed least binding energy and efficient

Fig 6. Root Mean Square Fluctuation (RMSF) of the target protein residues complexed with the selected ligand.

https://doi.org/10.1371/journal.pone.0285965.g006
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properties. Molecular docking analyses and MD simulation suggested that the efficient ligand

must have affective binding affinity, reliable ADMET properties and least binding energy. In

the light of selected parameters of least binding energy and ADMET properties, it is suggested

that Procyanidin (ID:107876) are potential drug molecules. It stands to the reason that the

reported ligand has the propensity to be potent ligand [58, 59].

The MMGBSA method is frequently used to evaluate the binding energy of ligands to pro-

tein molecules [60]. The influence of additional non-bonded interaction energies as well as the

binding free energy of each AIM2-CID107876 complex were evaluated. The binding energy of

the ligand CID107876 to AIM2 is -65.7268 kcal/mol. Gbind is governed by non-bonded inter-

actions such as GbindCoulomb, GbindPacking, GbindHbond, GbindLipo, and GbindvdW (Table 2).

The S1 Table contains all the MM-GBSA results. The average binding energy was mainly influ-

enced by the GbindvdW, GbindLipo, and GbindCoulomb energies across all types of interactions.

Fig 7. Elements of protein secondary structure are dispersed across protein-ligand complexes with respect to residue

index. The alpha helices are represented by the red columns and the beta strands by the blue ones.

https://doi.org/10.1371/journal.pone.0285965.g007

Fig 8. Protein-ligand contact heatmap throughout trajectory.

https://doi.org/10.1371/journal.pone.0285965.g008
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The GbindSolvGB and Gbind Covalent energies, on the other hand, made the smallest contri-

butions to the final average binding energies. Additionally, AIM2-CID107876 complexes

showed stable hydrogen bonds with amino acid residues by their GbindHbond interaction val-

ues. As a result, the binding energy derived from the docking data was well justified by the

MM-GBSA calculations that came from the MD simulation trajectories [61].

Conclusion

In conclusion, the current work suggested that the reported compound Procyanidin

(ID:107876) are effective in kidney disease by targeting AIM2. Though extensive in silico anal-

yses including molecular docking analyses and molecular dynamic analyses seem to be enough

to conclude that Procyanidin (ID:107876) may be the potent option for kidney disease by tar-

geting AIM2. The reported compound will be useful to researchers and may lead to the devel-

opment of a new medicine for the treatment of renal inflammasomes.

Supporting information

S1 Table. MM-GBSA binding energy calculation of bonded and non-bonded interactions

of CID107876 with AIM2 after every 10 ns from MD simulation trajectories.

(CSV)

Author Contributions

Conceptualization: Muhammad Nasir Iqbal.

Investigation: Mahmoud Kandeel.

Methodology: Muhammad Nasir Iqbal.

Project administration: Saima Malik, Sheikh Arslan Sehgal.

Resources: Mahmoud Kandeel, Abbeha Malik.

Software: Muhammad Nasir Iqbal.

Supervision: Mahmoud Kandeel, Abbeha Malik.

Writing – original draft: Iqra Ali.

Writing – review & editing: Mahmoud Kandeel, Sheikh Arslan Sehgal.

References
1. Komada T., et al., Macrophage Uptake of Necrotic Cell DNA Activates the AIM2 Inflammasome to Reg-

ulate a Proinflammatory Phenotype in CKD. J Am Soc Nephrol, 2018. 29(4): p. 1165–1181. https://doi.

org/10.1681/ASN.2017080863 PMID: 29439156

Table 2. Average MM-GBSA binding energy calculation of CID107876 with AIM2 after every 10 ns from MD

Simulation trajectories.

Energies (Kcal/mol) AIM2-107876

dGbind -65.7268

dGbindLipo -17.0467

dGbindvdW -42.1463

dGbindCoulomb -49.3653

dGbindHbond -5.07422

dGbindPacking -3.5666

https://doi.org/10.1371/journal.pone.0285965.t002

PLOS ONE Computer aided drug design to treat kidney inflammasomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0285965 May 18, 2023 11 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0285965.s001
https://doi.org/10.1681/ASN.2017080863
https://doi.org/10.1681/ASN.2017080863
http://www.ncbi.nlm.nih.gov/pubmed/29439156
https://doi.org/10.1371/journal.pone.0285965.t002
https://doi.org/10.1371/journal.pone.0285965


2. Abdul-Sater A.A. and Philpott D.J., Inflammasomes, in Encyclopedia of Immunobiology, Ratcliffe M.J.

H., Editor. 2016, Academic Press: Oxford. p. 447–453.

3. Xiang H., et al., Role of Inflammasomes in Kidney Diseases via Both Canonical and Non-canonical

Pathways. Front Cell Dev Biol, 2020. 8: p. 106.

4. Zhang P., et al., Chapter 15—Novel preventive mechanisms of vitamin B6 against inflammation, inflam-

masome, and chronic diseases, in Molecular Nutrition, Patel V.B., Editor. 2020, Academic Press. p.

283–299.

5. Dombrowski Y., et al., Cytosolic DNA triggers inflammasome activation in keratinocytes in psoriatic

lesions. Sci Transl Med, 2011. 3(82): p. 82ra38. https://doi.org/10.1126/scitranslmed.3002001 PMID:

21562230

6. Jha V., et al., Chronic kidney disease: global dimension and perspectives. Lancet, 2013. 382(9888): p.

260–72. https://doi.org/10.1016/S0140-6736(13)60687-X PMID: 23727169

7. Imig J.D., Merk D., and Proschak E., Multi-Target Drugs for Kidney Diseases. Kidney360, 2021. 2(10):

p. 1645–1653. https://doi.org/10.34067/KID.0003582021 PMID: 35372984

8. Tucker P.S., Scanlan A.T., and Dalbo V.J., Chronic kidney disease influences multiple systems:

describing the relationship between oxidative stress, inflammation, kidney damage, and concomitant

disease. Oxid Med Cell Longev, 2015. 2015: p. 806358. https://doi.org/10.1155/2015/806358 PMID:

25861414

9. Turner C.M., et al., Is the inflammasome a potential therapeutic target in renal disease? BMC Nephrol-

ogy, 2014. 15(1): p. 21. https://doi.org/10.1186/1471-2369-15-21 PMID: 24450291

10. Schattgen S.A. and Fitzgerald K.A., The PYHIN protein family as mediators of host defenses. Immuno-

logical Reviews, 2011. 243(1): p. 109–118. https://doi.org/10.1111/j.1600-065X.2011.01053.x PMID:

21884171

11. Fernandes-Alnemri T., et al., AIM2 activates the inflammasome and cell death in response to cyto-

plasmic DNA. Nature, 2009. 458(7237): p. 509–513. https://doi.org/10.1038/nature07710 PMID:

19158676

12. Jin T., et al., Structures of the HIN domain:DNA complexes reveal ligand binding and activation mecha-

nisms of the AIM2 inflammasome and IFI16 receptor. Immunity, 2012. 36(4): p. 561–71. https://doi.org/

10.1016/j.immuni.2012.02.014 PMID: 22483801

13. Atanasov A.G., et al., Natural products in drug discovery: advances and opportunities. Nature Reviews

Drug Discovery, 2021. 20(3): p. 200–216. https://doi.org/10.1038/s41573-020-00114-z PMID:

33510482

14. Panche A.N., Diwan A.D., and Chandra S.R., Flavonoids: an overview. Journal of Nutritional Science,

2016. 5: p. e47.

15. Cao Y.L., et al., Flavonoids in Treatment of Chronic Kidney Disease. Molecules, 2022. 27(7). https://

doi.org/10.3390/molecules27072365 PMID: 35408760

16. Berman H.M., et al., The Protein Data Bank. Nucleic Acids Res, 2000. 28(1): p. 235–42. https://doi.org/

10.1093/nar/28.1.235 PMID: 10592235

17. Eswar N., et al., Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics,

2006. Chapter 5: p. Unit-5 6. https://doi.org/10.1002/0471250953.bi0506s15 PMID: 18428767

18. Guex N. and Peitsch M.C., SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative

protein modeling. Electrophoresis, 1997. 18(15): p. 2714–23. https://doi.org/10.1002/elps.1150181505

PMID: 9504803

19. Ho B.K. and Brasseur R., The Ramachandran plots of glycine and pre-proline. BMC Struct Biol, 2005.

5: p. 14. https://doi.org/10.1186/1472-6807-5-14 PMID: 16105172

20. Trott O. and Olson A.J., AutoDock Vina: improving the speed and accuracy of docking with a new scor-

ing function, efficient optimization, and multithreading. J Comput Chem, 2010. 31(2): p. 455–61. https://

doi.org/10.1002/jcc.21334 PMID: 19499576

21. Mura C., et al., An introduction to biomolecular graphics. PLoS Comput Biol, 2010. 6(8). https://doi.org/

10.1371/journal.pcbi.1000918 PMID: 20865174

22. Systèmes, D., BIOVIA Discovery Studio. San Diego, 2022.

23. Mysinger M.M., et al., Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for

Better Benchmarking. Journal of Medicinal Chemistry, 2012. 55(14): p. 6582–6594. https://doi.org/10.

1021/jm300687e PMID: 22716043

24. Sander T., et al., DataWarrior: An Open-Source Program For Chemistry Aware Data Visualization And

Analysis. Journal of Chemical Information and Modeling, 2015. 55(2): p. 460–473. https://doi.org/10.

1021/ci500588j PMID: 25558886

PLOS ONE Computer aided drug design to treat kidney inflammasomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0285965 May 18, 2023 12 / 14

https://doi.org/10.1126/scitranslmed.3002001
http://www.ncbi.nlm.nih.gov/pubmed/21562230
https://doi.org/10.1016/S0140-6736%2813%2960687-X
http://www.ncbi.nlm.nih.gov/pubmed/23727169
https://doi.org/10.34067/KID.0003582021
http://www.ncbi.nlm.nih.gov/pubmed/35372984
https://doi.org/10.1155/2015/806358
http://www.ncbi.nlm.nih.gov/pubmed/25861414
https://doi.org/10.1186/1471-2369-15-21
http://www.ncbi.nlm.nih.gov/pubmed/24450291
https://doi.org/10.1111/j.1600-065X.2011.01053.x
http://www.ncbi.nlm.nih.gov/pubmed/21884171
https://doi.org/10.1038/nature07710
http://www.ncbi.nlm.nih.gov/pubmed/19158676
https://doi.org/10.1016/j.immuni.2012.02.014
https://doi.org/10.1016/j.immuni.2012.02.014
http://www.ncbi.nlm.nih.gov/pubmed/22483801
https://doi.org/10.1038/s41573-020-00114-z
http://www.ncbi.nlm.nih.gov/pubmed/33510482
https://doi.org/10.3390/molecules27072365
https://doi.org/10.3390/molecules27072365
http://www.ncbi.nlm.nih.gov/pubmed/35408760
https://doi.org/10.1093/nar/28.1.235
https://doi.org/10.1093/nar/28.1.235
http://www.ncbi.nlm.nih.gov/pubmed/10592235
https://doi.org/10.1002/0471250953.bi0506s15
http://www.ncbi.nlm.nih.gov/pubmed/18428767
https://doi.org/10.1002/elps.1150181505
http://www.ncbi.nlm.nih.gov/pubmed/9504803
https://doi.org/10.1186/1472-6807-5-14
http://www.ncbi.nlm.nih.gov/pubmed/16105172
https://doi.org/10.1002/jcc.21334
https://doi.org/10.1002/jcc.21334
http://www.ncbi.nlm.nih.gov/pubmed/19499576
https://doi.org/10.1371/journal.pcbi.1000918
https://doi.org/10.1371/journal.pcbi.1000918
http://www.ncbi.nlm.nih.gov/pubmed/20865174
https://doi.org/10.1021/jm300687e
https://doi.org/10.1021/jm300687e
http://www.ncbi.nlm.nih.gov/pubmed/22716043
https://doi.org/10.1021/ci500588j
https://doi.org/10.1021/ci500588j
http://www.ncbi.nlm.nih.gov/pubmed/25558886
https://doi.org/10.1371/journal.pone.0285965


25. Empereur-Mot C., et al., Predictiveness curves in virtual screening. J Cheminform, 2015. 7: p. 52.

https://doi.org/10.1186/s13321-015-0100-8 PMID: 26539250

26. Carmona S.R. How to calculate ROC curves. 2013; Available from: http://www.ub.edu/cbdd/?q = con-

tent/how-calculate-roc-curves.

27. Pires D.E., Blundell T.L., and Ascher D.B., pkCSM: Predicting Small-Molecule Pharmacokinetic and

Toxicity Properties Using Graph-Based Signatures. J Med Chem, 2015. 58(9): p. 4066–72. https://doi.

org/10.1021/acs.jmedchem.5b00104 PMID: 25860834

28. Laoui A. and Polyakov V.R., Web services as applications’ integration tool: QikProp case study. J Com-

put Chem, 2011. 32(9): p. 1944–51. https://doi.org/10.1002/jcc.21778 PMID: 21455963

29. Iqbal M.N., et al., BMT: Bioinformatics mini toolbox for comprehensive DNA and protein analysis. Geno-

mics, 2020. 112(6): p. 4561–4566. https://doi.org/10.1016/j.ygeno.2020.08.010 PMID: 32791200

30. Bowers K.J.a.C, David E. and Xu Huafeng and Dror Ron O. and Eastwood Michael P. and Gregersen

Brent A. and Klepeis, et al., Scalable Algorithms for Molecular Dynamics Simulations on Commodity

Clusters. SC ’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. 2006: IEEE.

43–43.

31. Ferreira L.G., et al., Molecular docking and structure-based drug design strategies. Molecules, 2015.

20(7): p. 13384–421. https://doi.org/10.3390/molecules200713384 PMID: 26205061

32. Hildebrand P.W., Rose A.S., and Tiemann J.K.S., Bringing Molecular Dynamics Simulation Data into

View. Trends Biochem Sci, 2019. 44(11): p. 902–913. https://doi.org/10.1016/j.tibs.2019.06.004 PMID:

31301982

33. Rasheed M.A., et al., Identification of Lead Compounds against Scm (fms10) in Enterococcus faecium

Using Computer Aided Drug Designing. Life (Basel), 2021. 11(2). https://doi.org/10.3390/life11020077

PMID: 33494233

34. Shivakumar D., et al., Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free

Energy Perturbation and the OPLS Force Field. Journal of Chemical Theory and Computation, 2010. 6

(5): p. 1509–1519. https://doi.org/10.1021/ct900587b PMID: 26615687

35. Grant B.J., Skjaerven L., and Yao X.Q., The Bio3D packages for structural bioinformatics. Protein Sci,

2021. 30(1): p. 20–30. https://doi.org/10.1002/pro.3923 PMID: 32734663

36. Palma J. and Pierdominici-Sottile G., On the Uses of PCA to Characterise Molecular Dynamics Simula-

tions of Biological Macromolecules: Basics and Tips for an Effective Use. 2023. 24(2): p. e202200491.

37. Kitao A., Principal Component Analysis and Related Methods for Investigating the Dynamics of Biologi-

cal Macromolecules. 2022. 5(2): p. 298–317.

38. Djinovic-Carugo K. and Carugo O., Missing strings of residues in protein crystal structures. Intrinsically

Disord Proteins, 2015. 3(1): p. e1095697. https://doi.org/10.1080/21690707.2015.1095697 PMID:

28232893

39. Jha A.N., Ananthasuresh G.K., and Vishveshwara S., A search for energy minimized sequences of pro-

teins. PLoS One, 2009. 4(8): p. e6684. https://doi.org/10.1371/journal.pone.0006684 PMID: 19690619

40. Sahinidis N.V., Optimization techniques in molecular structure and function elucidation. Comput Chem

Eng, 2009. 33(12): p. 2055–2062. https://doi.org/10.1016/j.compchemeng.2009.06.006 PMID:

20160866

41. Mannige R.V., Kundu J., and Whitelam S., The Ramachandran Number: An Order Parameter for Pro-

tein Geometry. PLoS One, 2016. 11(8): p. e0160023. https://doi.org/10.1371/journal.pone.0160023

PMID: 27490241

42. Eberhardt J., et al., AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python

Bindings. J Chem Inf Model, 2021. 61(8): p. 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203

PMID: 34278794

43. Norinder U. and Bergstrom C.A., Prediction of ADMET Properties. ChemMedChem, 2006. 1(9): p.

920–37. https://doi.org/10.1002/cmdc.200600155 PMID: 16952133

44. QikProp Schrödinger, LLC New York, NY.

45. Ioakimidis L., et al., Benchmarking the Reliability of QikProp. Correlation between Experimental and

Predicted Values. 2008. 27(4): p. 445–456.

46. Safari S., et al., Evidence Based Emergency Medicine; Part 5 Receiver Operating Curve and Area

under the Curve. Emerg (Tehran), 2016. 4(2): p. 111–3. PMID: 27274525

47. Rue E.A., Rush M.D., and van Breemen R.B., Procyanidins: a comprehensive review encompassing

structure elucidation via mass spectrometry. Phytochem Rev, 2018. 17(1): p. 1–16. https://doi.org/10.

1007/s11101-017-9507-3 PMID: 29651231

48. Fine A.M., Oligomeric proanthocyanidin complexes: history, structure, and phytopharmaceutical appli-

cations. Altern Med Rev, 2000. 5(2): p. 144–51. PMID: 10767669

PLOS ONE Computer aided drug design to treat kidney inflammasomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0285965 May 18, 2023 13 / 14

https://doi.org/10.1186/s13321-015-0100-8
http://www.ncbi.nlm.nih.gov/pubmed/26539250
http://www.ub.edu/cbdd/?q
https://doi.org/10.1021/acs.jmedchem.5b00104
https://doi.org/10.1021/acs.jmedchem.5b00104
http://www.ncbi.nlm.nih.gov/pubmed/25860834
https://doi.org/10.1002/jcc.21778
http://www.ncbi.nlm.nih.gov/pubmed/21455963
https://doi.org/10.1016/j.ygeno.2020.08.010
http://www.ncbi.nlm.nih.gov/pubmed/32791200
https://doi.org/10.3390/molecules200713384
http://www.ncbi.nlm.nih.gov/pubmed/26205061
https://doi.org/10.1016/j.tibs.2019.06.004
http://www.ncbi.nlm.nih.gov/pubmed/31301982
https://doi.org/10.3390/life11020077
http://www.ncbi.nlm.nih.gov/pubmed/33494233
https://doi.org/10.1021/ct900587b
http://www.ncbi.nlm.nih.gov/pubmed/26615687
https://doi.org/10.1002/pro.3923
http://www.ncbi.nlm.nih.gov/pubmed/32734663
https://doi.org/10.1080/21690707.2015.1095697
http://www.ncbi.nlm.nih.gov/pubmed/28232893
https://doi.org/10.1371/journal.pone.0006684
http://www.ncbi.nlm.nih.gov/pubmed/19690619
https://doi.org/10.1016/j.compchemeng.2009.06.006
http://www.ncbi.nlm.nih.gov/pubmed/20160866
https://doi.org/10.1371/journal.pone.0160023
http://www.ncbi.nlm.nih.gov/pubmed/27490241
https://doi.org/10.1021/acs.jcim.1c00203
http://www.ncbi.nlm.nih.gov/pubmed/34278794
https://doi.org/10.1002/cmdc.200600155
http://www.ncbi.nlm.nih.gov/pubmed/16952133
http://www.ncbi.nlm.nih.gov/pubmed/27274525
https://doi.org/10.1007/s11101-017-9507-3
https://doi.org/10.1007/s11101-017-9507-3
http://www.ncbi.nlm.nih.gov/pubmed/29651231
http://www.ncbi.nlm.nih.gov/pubmed/10767669
https://doi.org/10.1371/journal.pone.0285965


49. Hao M.H., Haq O., and Muegge I., Torsion angle preference and energetics of small-molecule ligands

bound to proteins. J Chem Inf Model, 2007. 47(6): p. 2242–52. https://doi.org/10.1021/ci700189s

PMID: 17880058

50. Omoboyowa D.A., et al., Inhibitory potential of phytochemicals from Chromolaena odorata L. against

apoptosis signal-regulatory kinase 1: A computational model against colorectal cancer. Computational

Toxicology, 2022. 23: p. 100235.

51. Hollingsworth S.A. and Dror R.O., Molecular Dynamics Simulation for All. Neuron, 2018. 99(6): p.

1129–1143. https://doi.org/10.1016/j.neuron.2018.08.011 PMID: 30236283

52. David C.C. and Jacobs D.J., Principal component analysis: a method for determining the essential

dynamics of proteins. Methods Mol Biol, 2014. 1084: p. 193–226. https://doi.org/10.1007/978-1-62703-

658-0_11 PMID: 24061923

53. Ashraf N., et al., Combined 3D-QSAR, molecular docking and dynamics simulations studies to model

and design TTK inhibitors. Front Chem, 2022. 10: p. 1003816. https://doi.org/10.3389/fchem.2022.

1003816 PMID: 36405310

54. Yousaf N., et al., Exploiting the co-crystal ligands shape, features and structure-based approaches for

identification of SARS-CoV-2 Mpro inhibitors. Journal of Biomolecular Structure and Dynamics, 2023:

p. 1–14. https://doi.org/10.1080/07391102.2023.2189478 PMID: 36946192

55. Zhang G. and Su Z., Inferences from structural comparison: flexibility, secondary structure wobble and

sequence alignment optimization. BMC Bioinformatics, 2012. 13(15): p. S12. https://doi.org/10.1186/

1471-2105-13-S15-S12 PMID: 23046301

56. Carugo O. and Pongor S., A normalized root-mean-square distance for comparing protein three-dimen-

sional structures. Protein Sci, 2001. 10(7): p. 1470–3. https://doi.org/10.1110/ps.690101 PMID:

11420449

57. Corradi V., et al., Emerging Diversity in Lipid-Protein Interactions. Chem Rev, 2019. 119(9): p. 5775–

5848. https://doi.org/10.1021/acs.chemrev.8b00451 PMID: 30758191

58. Yu W. and MacKerell A.D. Jr, Computer-Aided Drug Design Methods. Methods Mol Biol, 2017. 1520:

p. 85–106.

59. Schneider G. and Fechner U., Computer-based de novo design of drug-like molecules. Nat Rev Drug

Discov, 2005. 4(8): p. 649–63. https://doi.org/10.1038/nrd1799 PMID: 16056391

60. Godschalk F., et al., Comparison of MM/GBSA calculations based on explicit and implicit solvent simu-

lations. Physical Chemistry Chemical Physics, 2013. 15(20): p. 7731–7739. https://doi.org/10.1039/

c3cp00116d PMID: 23595060

61. Decherchi S. and Cavalli A., Thermodynamics and Kinetics of Drug-Target Binding by Molecular Simu-

lation. Chem Rev, 2020. 120(23): p. 12788–12833. https://doi.org/10.1021/acs.chemrev.0c00534

PMID: 33006893

PLOS ONE Computer aided drug design to treat kidney inflammasomes

PLOS ONE | https://doi.org/10.1371/journal.pone.0285965 May 18, 2023 14 / 14

https://doi.org/10.1021/ci700189s
http://www.ncbi.nlm.nih.gov/pubmed/17880058
https://doi.org/10.1016/j.neuron.2018.08.011
http://www.ncbi.nlm.nih.gov/pubmed/30236283
https://doi.org/10.1007/978-1-62703-658-0%5F11
https://doi.org/10.1007/978-1-62703-658-0%5F11
http://www.ncbi.nlm.nih.gov/pubmed/24061923
https://doi.org/10.3389/fchem.2022.1003816
https://doi.org/10.3389/fchem.2022.1003816
http://www.ncbi.nlm.nih.gov/pubmed/36405310
https://doi.org/10.1080/07391102.2023.2189478
http://www.ncbi.nlm.nih.gov/pubmed/36946192
https://doi.org/10.1186/1471-2105-13-S15-S12
https://doi.org/10.1186/1471-2105-13-S15-S12
http://www.ncbi.nlm.nih.gov/pubmed/23046301
https://doi.org/10.1110/ps.690101
http://www.ncbi.nlm.nih.gov/pubmed/11420449
https://doi.org/10.1021/acs.chemrev.8b00451
http://www.ncbi.nlm.nih.gov/pubmed/30758191
https://doi.org/10.1038/nrd1799
http://www.ncbi.nlm.nih.gov/pubmed/16056391
https://doi.org/10.1039/c3cp00116d
https://doi.org/10.1039/c3cp00116d
http://www.ncbi.nlm.nih.gov/pubmed/23595060
https://doi.org/10.1021/acs.chemrev.0c00534
http://www.ncbi.nlm.nih.gov/pubmed/33006893
https://doi.org/10.1371/journal.pone.0285965

