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Abstract

AU : Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly:The updating of contextual memories is essential for survival in a changing environment.

Accumulating data indicate that the dorsal CA1 area (dCA1) contributes to this process.

However, the cellular and molecular mechanisms of contextual fear memory updating

remain poorly understood. Postsynaptic density protein 95 (PSD-95) regulates the structure

and function of glutamatergic synapses. Here, using dCA1-targeted genetic manipulations

in vivo, combined with ex vivo 3D electron microscopy and electrophysiology, we identify a

novel, synaptic mechanism that is induced during attenuation of contextual fear memories

and involves phosphorylation of PSD-95 at Serine 73 in dCA1. Our data provide the proof

that PSD-95–dependent synaptic plasticity in dCA1 is required for updating of contextual

fear memory.

Introduction

The ability to form, store, and update memories is essential for animal survival. In mammals,

the formation, recall, and updating of memories involve the hippocampus [1–3]. In particular,

formation of memories strengthens the Schaffer collateral-to-dorsal CA1 area (dCA1) synapses

through N-methyl-D-aspartate receptor (NMDAR)-dependent forms of synaptic plasticity [4–

6] linked with growth and addition of new dendritic spines (harbouring glutamatergic synap-

ses) [7–10]. Although some studies also found long-term depression of synaptic transmission

during hippocampal-dependent tasks [11,12]. Similarly, updating and extinction of memories

induces functional, structural, and molecular alterations of dCA1 synapses [13–15]. Accord-

ingly, NMDAR-dependent plasticity of dCA1 synapses is commonly believed to be a primary
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cellular learning mechanism. Surprisingly, the role of dCA1 synaptic plasticity in memory for-

mation has been recently questioned. Local genetic manipulations that impair synaptic func-

tion and plasticity specifically in dCA1 affect spatial choice and incorporation of salience

information into cognitive representations, rather than formation of cognitive maps and

memory engrams [16–20]. On the other hand, the role of dCA1 synaptic plasticity in the

updating and extinction of existing hippocampus-dependent memories has not been tested

yet. Understanding the molecular and cellular mechanisms that underlie fear extinction mem-

ory is crucial to develop new therapeutic approaches to alleviate persistent and unmalleable

fear memories.

Postsynaptic density protein 95 (PSD-95) is the major scaffolding protein at glutamatergic

synapses [21]. It directly interacts with NMDARs and with AMPARs through an auxiliary pro-

tein, stargazin [22,23]. Interaction of PSD-95 with stargazin regulates the synaptic content of

AMPARs [23–25]. Accordingly, PSD-95 affects stability and maturation as well as functional

and structural plasticity of glutamatergic synapses [26–35]. Synaptic localisation of PSD-95 is

controlled by a range of posttranslational modifications with opposing effects on its synaptic

retention as well as synaptic function and plasticity [36]. Here, in order to test the role of

dCA1 excitatory synapses in extinction of fear memories, we focused on phosphorylation of

PSD-95 at Serine 73 (S73). PSD-95(S73) is phosphorylated by the calcium and calmodulin-

dependent kinase II (CaMKII) [32,37]. Expression of phosphorylation-deficient PSD-95, with

S73 mutated to Alanine [PSD-95(S73A)], blocks the reduction in the NMDAR/PSD-95 inter-

action during chemical LTP in a manner that is dependent on CaMKII and calpain [38].

Hence, phosphorylation of PSD-95(S73) enables PSD-95 dissociation from the complex with

GluN2B, and its trafficking to regulate synaptic growth after stimulation of NMDA receptors,

and is necessary for PSD-95 protein down-regulation during NMDAR-dependent long-term

depression of synaptic transmission (LTD) [32,39]. Importantly, both authophosphorylation-

deficient αCaMKII mutant mice (αCaMKII-T286A) [40] and the loss-of-function PSD-95

mutants lacking the guanylate kinase domain of PSD-95 [26] show impaired extinction of con-

textual fear [9,41], suggesting that αCaMKII and PSD-95 interact to regulate contextual fear

extinction.

The present study tests the role of PSD-95(S73) phosphorylation in the dorsal hippocampus

in fear memory extinction by integrated analyses of PSD-95 protein expression and phosphor-

ylation, dCA1-targeted expression of phosphorylation-deficient PSD-95 protein (with S73

mutated to alanine, S73A), as well as examination of dendritic spines morphology with nano-

scale resolution enabled by electron microscopy. We show that phosphorylation of PSD-95

(S73) is necessary for contextual fear extinction-induced PSD-95 protein regulation and

remodelling of glutamatergic synapses. Moreover, it is not necessary for fear memory forma-

tion but required for fear extinction even after extensive fear extinction training. Overall, our

data show for the first time that the dCA1 PSD-95(S73) phosphorylation is required for extinc-

tion of the contextual fear memory.

Results

The contextual fear extinction affects PSD-95 protein levels and

morphology of dendritic spines in stOri dCA1

To investigate the role of dCA1 excitatory synapses in contextual fear memory extinction, we

trained Thy1-GFP(M) mice (that allow for visualisation of dendritic spines) [42] in contextual

fear conditioning (CFC). The animals showed low freezing levels in the novel context before

delivery of 5 electric shocks (US), after which the freezing levels increased during the rest of

the training session (Fig 1A). Twenty-four hours later, one group of mice wasAU : PleasenotethatasperPLOSstyle; donotusesacrificeinreferencetokillingofanimalsduringexperiments:Hence; allinstancesof }sacrificed}havebeenreplacedwith}killed}throughoutthetext:killed (5US)
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Fig 1. Extinction of contextual fear memory regulates PSD-95 protein levels and remodelling of dendritic spines in stOri dCA1. (A) Experimental

timeline and freezing levels during training. Mice underwent CFC and were killed 24 hours later (5US, n = 6) or after reexposure to the training context

without electric shocks (Ext, n = 6) (two-way repeated-measures ANOVA, effect of training: F(1, 10) = 77.86, P< 0.0001). (B, C) Dendritic spines and PSD-

95 expression were analysed in 3 domains of the dendritic tree of dCA1 pyramidal neurons (stOri, stRad, and stLM) in Thy1-GFP(M) male mice. (B)

Microphotography of dCA1 and dendritic tree domains. (C) High magnification of confocal scans showing colocalization of PSD-95 immunostaining and

dendritic spines, and the analysis in SpineMagick! and ImageJ. (D-F) Representative confocal images (maximum projections of z-stacks composed of 20

scans) of PSD-95 immunostaining, GFP and their colocalization are shown for 3 domains of dCA1. (G-I) Summary of data showing total PSD-95

expression (two-way repeated-measures ANOVA with Tukey’s multiple comparisons test (marked on the graphs), effect of training: F(2, 14) = 1.126,

P = 0.3521), density of PSD-95+ puncta (effect of training: F(2, 13) = 1.30, P = 0.305), and area of PSD-95+ puncta (effect of training: F(2, 15) = 5.653,

P = 0.015). (J, K) Summary of data showing dendritic spine density (effect of training: F(2, 44) = 2.851, P = 0.069; a region effect: F(1.983, 43.63) = 6.293,

P = 0.004; training × region interaction: F(4, 44) = 5.389, P = 0.001) and average dendritic spine area (two-way repeated-measures ANOVA with Tukey’s

multiple comparisons test; effect of training: F(2, 42) = 1.630, P = 0.208; a region effect: F(2, 42) = 46.49, P< 0.001; training × region interaction: F(4, 42) =

2.121, P = 0.095). The analyses were conducted in stOri (mouse/dendrite/spine: 5US = 6/25/650; Ext = 6/37/925). For G-I, each dot represents one mouse.
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(mice were randomly assigned to the experimental groups), and the second group was reex-

posed to the training context for 30 minutes without presentation of US for extinction of con-

textual fear (Ext). Freezing levels were high at the beginning of the session and decreased

within the session, indicating formation of fear extinction memory (t = 3.720, df = 6,

P< 0.001). Mice were killed immediately after the fear extinction session. Twenty-four hours

later, the third group of mice was reexposed to the training context (without US) to test consol-

idation of fear extinction memory (test). Freezing levels were lower during the test as com-

pared to the beginning of the extinction, indicating that our protocol resulted in efficient fear

extinction (P = 0.026) (Fig 1A). The mouse brains were sliced, the brain sections immunos-

tained to detect PSD-95 protein using specific antibodies, and imaged with a confocal micro-

scope. The scans were analysed to assess PSD-95 protein levels [total PSD-95 as mean grey

value of microphotographs; density of PSD-95–positive puncta (PSD-95+) per 1 μm of a den-

drite and mean grey value of PSD-95+ per dendritic spine] (Fig 1C). As dendritic spines

change in dCA1 after CFC in a dendrite-specific manner [10], the expression of PSD-95 pro-

tein, and its colocalization with dendritic protrusions, were analysed in 3 domains of dCA1:

stratum oriens (stOri), stratum radiatum (stRad), and stratum lacunosum-moleculare (stLM)

(Fig 1B).

The analysis of the confocal scans revealed that there were no differences between the

experimental groups in total PSD-95 levels (analysed as mean grey value of microphotographs)

in 3 strata of dCA1 (Fig 1G). However, there were less PSD-95+ puncta after fear extinction, as

compared to the 5US group, in stOri, but not in other dCA1 strata (Fig 1H). There was also a

significant effect of the training on the mean grey value of PSD-95+ per dendritic spine. In the

stOri, the mean grey value of PSD-95+ increased after extinction, as compared to the 5US

group (Fig 1I), indicating bidirectional PSD-95 changes (elimination of PSD-95+ puncta and

increased content of PSD-95 in the remaining puncta). No difference in PSD-95+ area was

observed between the groups in stRad, and an increase of mean grey value of PSD-95+ in

stLM.

Next, we checked whether the changes in PSD-95 protein levels were associated with den-

dritic spine remodelling. In stOri, dendritic spine density decreased after extinction as com-

pared to the 5US mice (Fig 1J). No changes in dendritic spine density were observed in the

stRad and stLM. Moreover, the median dendritic spine area was increased in stOri after

extinction, compared to the 5US group, resembling the changes of PSD-95 protein levels. No

changes in the median dendritic spine area were observed in the stRad and stLM (Fig 1K).

To confirm the fear extinction–induced synaptic changes in stOri, we used serial block-face

scanning electron microscopy (SBEM) that allows for reconstruction of dendritic spines and

postsynaptic densities (PSDs), representing a postsynaptic part of excitatory synapses, with

nanoscale resolution [43]. We determined dendritic spine density using unbiased brick

method [44] and reconstructed dendritic spines and PSDs to assess dendritic spine and PSD

volume (as a proxy of the accumulated synaptic proteins [45]), as well as PSDs surface area (as

a proxy of synaptic strength [46–48]) (Fig 2A–2C). In total, we calculated density of dendritic

spines for 5 animals per experimental group (3 tissue bricks per animal) and reconstructed 386

spines from the brains of C57BL/6J mice killed 24 hours after CFC (5US) (n = 3), and 447

spines from the mice killed after fear extinction (Ext) (n = 3). We observed that dendritic spine

density was significantly decreased in the Ext mice as compared to the 5US groups (Fig 2D),

while median dendritic spine volume, PSD volume and area were significantly increased after

For A and G-K, means ± SEM are shown. The data underlying this figure are available from OSF (https://osf.io/cgfa9/). CFC, contextual fear conditioning;

dCA1, dorsal CA1; PSD-95, postsynaptic density protein 95; stLM, stratum lacunosum-moleculare; stOri, stratum oriens; stRad, stratum radiatum.

https://doi.org/10.1371/journal.pbio.3002106.g001
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extinction (Fig 2E–2G, left). We also observed that the distributions of the values for dendritic

spine volume, PSD volume, and area were shifted towards bigger values in Ext group com-

pared with the 5US (Fig 2E–2G, right), confirming the dendritic spine changes observed in

stOri of Thy1-GFP(M) mice.

In a separate experiment, we found that dendritic spine changes observed in Thy1-GFP

mice were transient, as they were not observed 60 minutes after contextual fear extinction ses-

sion, and they were specific for fear extinction, as we did not find such changes in the animals

exposed to a neutral novel context (not associated with US) as compared to 5US group (S1

Fig). Overall, our data indicate that contextual fear extinction involves transient remodelling

of the stOri neuronal circuit characterised by decreased density of dendritic spines with PSD-

95 as well as up-regulation of PSD-95 protein levels, dendritic spine volume, PSD volume, and

area in the remaining dendritic spines. No significant synaptic changes of these parameters

were found in stRad, and only the increase of mean grey value of PSD-95+ puncta was

observed in stLM.

Fig 2. Extinction of contextual fear memory remodels dendritic spines and PSDs in stOri dCA1. (A) The principles for SBEM analysis of the ultrastructure

of dendritic spines and PSDs. (Left) Microphotography of a dorsal hippocampus with the region of interest for analysis and tracing of a dendritic spine and

PSD in stOri. (Middle/right) A representative trace of a dendritic spine (blue), PSD surface area (red), and volume (yellow). (B, C) Exemplary reconstructions

of dendritic spines and their PSDs from SBEM scans in stOri. (B) Dendritic spines and PSDs were reconstructed and analysed in tissue bricks (3 × 3 × 3 μm).

The grey background squares are x = 3 × y = 3 μm. (C) Exemplary reconstructions of dendritic spines and PSDs (red). PSD and dendritic spine volumes are

indicated. (D-G) Summary of SBEM data showing: (D) density of dendritic spines (t test, t(28) = 2.94, P = 0.003); (E) median volume (Mann–Whitney

U = 74,533, P< 0.001) and distribution of dendritic spine volumes (Kolmogorov–Smirnov D = 0.123, P = 0.004); (F) median volume (Mann–Whitney

U = 70,978, P< 0.001) and distribution of PSD volumes (Kolmogorov–Smirnov D = 0.152, P< 0.001); (G) median PSD surface area (Mann–Whitney

U = 70,306, P< 0.001) and distribution of values (Kolmogorov–Smirnov D = 0.151, P< 0.001). For D, each dot represents one tissue brick. For D,

means ± SEM are shown. For E-G (left), medians ± IQR are shown. The data underlying this figure are available from OSF (https://osf.io/cgfa9/). dCA1, dorsal

CA1; PSD, postsynaptic density; SBEM, serial block-face scanning electron microscopy; stOri, stratum oriens.

https://doi.org/10.1371/journal.pbio.3002106.g002
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Contextual fear extinction induces phosphorylation of PSD-95(S73) in

dCA1

Phosphorylation of PSD-95(S73) has been associated with regulation of PSD-95 levels during

LTP and LTD [37,39]. To test whether contextual fear extinction induces phosphorylation of

PSD-95(S73) in dCA1, we generated an antibody directed against this phosphorylation site

(LERGNSGLGFS sequence) (Fig 3A) [37]. Mice underwent CFC and were killed 24 hours

later (5US), or after 15 or 30 minutes of the contextual fear extinction session (Ext15’ or

Ext30’) (Fig 3B). The levels of PSD-95, phosphorylated PSD-95(S73) [phospho-PSD-95(S73)]

and their colocalization were tested on the brain sections (Fig 3C). Total PSD-95, phospho-

PSD-95(S73), and their colocalization levels were higher in the Ext15’ group, but not Ext30’

group, as compared to the 5US animals (Fig 3D–3F). Thus, our data indicate that the alteration

of PSD-95 protein levels during contextual fear extinction was accompanied by transiently

increased phosphorylation of PSD-95(S73). The important limitation of this experiment is the

fact that, using phospho-S73 antibody, we cannot exclude that other MAGUKs are detected

(due to the similar LERGNSGLGFS sequence). However, the role of phospho-PSD-95(S73) in

contextual fear extinction is supported by the fact that there is increased colocalization of

PSD-95 and phospho-PSD-95(S73) during extinction.

Fig 3. Contextual fear extinction induces transient phosphorylation of PSD-95(S73) in dCA1. (A) Western blot stained with phospho-PSD-95(S73)-specific

antibody detects in the hippocampus homogenates proteins with approximately 95 kDA molecular weight. M, molecular weight marker; N, naive mouse. (B)

Experimental timeline and freezing levels during training. Mice underwent CFC and were killed 24 hours later (5US, n = 6) or after 15 or 30 minutes of a fear

extinction session (Ext15’, n = 7; Ext30’, n = 7). (C) Representative confocal scans of the brain slices (stOri) immunostained with antibodies specific for PSD-95,

phosphorylated PSD-95(S73), and their colocalization. (D-F) Quantification of the PSD-95 (two-way ANOVA, effect of training: F(2, 17) = 2.69, P = 0.097;

effect of stratum: F(1,96, 33,3) = 3.83, P = 0.033), phospho-PSD-95(S73) (two-way ANOVA, effect of training: F(2, 17) = 2.20, P = 0.141; effect of stratum: F

(1,24, 21,0) = 24.9, P< 0.001) and their colocalization levels (two-way ANOVA, effect of training: F(2, 17) = 4.08, P = 0.036; effect of stratum: F(2, 34) = 0.169,

P = 0.845). Each dot represents one mouse. Means ± SEM are shown. The data underlying this figure and raw image for A are available from OSF (https://osf.

io/cgfa9/).CFC, contextual fear conditioning; dCA1, dorsal CA1; PSD-95, postsynaptic density protein 95; S73, Serine 73; stOri, stratum oriens.

https://doi.org/10.1371/journal.pbio.3002106.g003
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PSD-95(S73) phosphorylation regulates PSD-95 protein levels during

contextual fear extinction

To test whether phosphorylation of PSD-95(S73) regulates PSD-95 protein levels in dCA1 dur-

ing fear extinction, we used dCA1-targeted expression of phosphorylation-deficient PSD-95

(S73A). We designed and produced adeno-associated viral vectors (AAV1/2) encoding wild-

type (WT) PSD-95 protein under Camk2a promoter fused with mCherry (AAV1/2:CaM-

KII_PSD-95(WT):mCherry) (WT) or PSD-95(S73A) fused with mCherry (AAV1/2:CaM-

KII_PSD-95(S73A):mCherry) (S73A) [39] (S2 Fig). Mice underwent CFC (Fig 4A). The

animals in all experimental groups showed increased freezing levels at the end of the training.

Half of the mice were killed 24 hours after CFC (5US). The remaining half were killed after the

30-minute contextual fear extinction session (Ext). All animals showed high freezing levels at

the beginning of the session, which decreased during the session. No effect of the virus on ani-

mal behaviour was found (Fig 4A).

For each animal, half of the brain was chosen at random for confocal analysis of the total

PSD-95 protein levels, and the other half was processed for SBEM (Fig 4B). The AAVs pene-

trance did not differ between the experimental groups (5US versus Ext) and reached over 80%

of the cells in the analysed sections of dCA1 (Fig 4C). We observed a significant increase in

total PSD-95 protein levels in WT and S73A mice killed before the fear extinction session as

compared to the Control group killed at the same time point (S2A–S2C Fig). Correlative light

and electron microscopy confirmed that the exogenous PSD-95 colocalised with PSDs and

weak signal was present in dendrites (Fig 3D). Furthermore, overexpression of PSD-95 protein

(WT and S73A) resulted in decreased dendritic spines density and increased surface area of

PSDs, compared to the Control group. However, total PSD surface area per tissue brick was

not changed (S2D–S2G Fig).

As in Thy1-GFP mice, the total PSD-95 protein levels were not changed after fear extinction

in the WT group, as compared to the WT mice killed before the fear extinction session (Fig 4E

and 4F). However, PSD-95 levels were up-regulated in all strata after the extinction session in

the S73A mice, as compared to the WT Ext animals and the S73A 5US group (Fig 4F). Hence,

exogenous PSD-95(S73A) protein impaired regulation of PSD-95 levels in dCA1 during con-

textual fear extinction, indicating that phosphorylation of PSD-95(S73) controls PSD-95 levels

during this process.

Phosphorylation of PSD-95(S73) regulates stOri synapses during fear

extinction

To test whether phosphorylation of PSD-95(S73) regulates structural plasticity of excitatory

synapses during contextual fear extinction, we used SBEM. We reconstructed dendritic spines

and PSDs in the stOri. In total, we reconstructed 159 spines from the brains of the WT mice

killed 24 hours after CFC (5US, n = 3), and 178 spines from the mice killed after fear extinction

(Ext) (n = 3). For mice expressing S73A, 183 spines were reconstructed in the 5US group

(n = 3) and 160 in the Ext (n = 3). Figs 4C and 5A show reconstructions of dendritic spines

from representative SBEM brick scans for each experimental group.

Dendritic spine density was lower in the WT Ext group, as compared to the WT 5US mice

(Fig 5B). Furthermore, the median and summary (per volume of tissue) dendritic spine vol-

ume, PSD surface area, and PSD volume were higher after the extinction training in the WT

group, as compared to the WT 5US mice. These changes were also indicated as shifts in the fre-

quency distributions towards bigger values of all analysed metrics (Fig 5D-5F). Overall, the

pattern of synaptic changes observed in the WT mice after contextual fear extinction resem-

bled the changes found in C57BL/6J animals (Fig 2). In addition, field excitatory postsynaptic
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Fig 4. PSD-95(S73) is phosphorylated during fear extinction and this process is required for regulation of PSD-95 protein levels. (A) Experimental

timeline and freezing during training. C57BL/6J male mice were stereotactically injected in the dCA1 with AAV1/2 encoding PSD-95(WT) (WT, n = 12) or

PSD-95(S73A) (S73A, n = 12). Twenty-one days later, they underwent CFC (two-way repeated-measures ANOVA, effect of training: F(1, 30) = 269.4,

P< 0.001, effect of virus: F(2, 30) = 2.815, P = 0.076) and were killed 1 day after training (5US) or they were reexposed to the training context without

footshock and killed (Ext) (two-way repeated-measures ANOVA, effect of training: F(1, 15) = 65.68, P< 0.001; effect of virus: F(2, 15) = 0.993, P = 0.393).

(B) Microphotography of a brain with dCA1 PSD-95(WT):mCherry expression with illustration of the brain processing scheme. (C) Summary of data

showing the viruses penetrance in dCA1 (sections used for confocal and SBEM analysis) (mice: 5US/Ext, WT = 6/5; S73A = 6/6). (D) Correlative confocal-

electron microscopy analysis showing that exogenous PSD-95(WT) colocalizes with PSDs. Single confocal scan of an exogenous PSD-95(WT) in dCA1,

SBEM scan of the same area, superposition of confocal (orange) and SBEM images based on measured distances between large synapses (1 and 2), and

thresholded synaptic PSD-95(WT) signal. Measurements: (confocal image) 1: 3.12 μm, 2: 4.97 μm; (SBEM image) 1: 2.98 μm, 2: 4.97 μm. (E, F) Analysis of

total PSD-95 expression after fear extinction training. (E) Representative confocal scans of the PSD-95 immunostaining and (F) summary of data showing

total PSD-95 levels (tree-way ANOVA with LSD post hoc tests for planned comparisons, effect of training × virus interaction, F(1, 19) = 4.603, P = 0.0451).

Means ± SEM are shown. The data underlying this figure are available from OSF (https://osf.io/cgfa9/). CFC, contextual fear conditioning; dCA1, dorsal

CA1; PSD-95, postsynaptic density protein 95; S73, Serine 73; SBEM, serial block-face scanning electron microscopy; WT, wild-type.

https://doi.org/10.1371/journal.pbio.3002106.g004
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Fig 5. Phosphorylation of PSD-95(S73) regulates excitatory synapses during fear extinction. Male mice were stereotactically

injected in the dCA1 with AAV1/2 encoding PSD-95(WT) (WT, n = 12) or PSD-95(S73A) (S73A, n = 12). Twenty-one days

later, they underwent CFC and were killed 1 day after training (5US) or they were reexposed to the training context for fear

extinction (Ext). (A) Exemplary reconstructions of dendritic spines and their PSDs from SBEM scans in stOri tissue bricks (3 × 3

× 3 μm). The grey background rectangles are x = 3 × y = 3 μm. (B) Summary of data showing mean density of dendritic spines

(two-way ANOVA with LSD post hoc tests for planned comparisons, effect of training × genotype interaction: F(1, 18) = 9.42;

P = 0.007). Each dot represents one tissue brick. (C) Exemplary reconstructions of dendritic spines and PSDs (red). PSD and

dendritic spine volumes are indicated for each dendritic spine. (D-F) Summary of data showing: (D) median dendritic spine

volume (Mann–Whitney test, WT: U = 9,766, P< 0.001; S73A: U = 13,217, P = 0.141), distributions of dendritic spine volumes

(numbers of the analysed dendritic spines/mice are indicated) (Kolmogorov–Smirnov test, WT: D = 0.239, P< 0.001; S73A:

D = 0.109, P = 0.265) and summary dendritic spine volume per tissue brick (two-way ANOVA with LSD post hoc tests for

planned comparisons; effect of training, F(1, 8) = 14.6, P = 0.005; effect of genotype, F(1, 8) = 1.41, P = 0.269); (E) median PSD

surface area (Mann–Whitney test, WT: U = 9,948, P< 0.001; S73A: U = 46,678, P = 0.024), distributions of PSD surface areas
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potentials (fEPSPs) were measured in stOri of the acute hippocampal slices of the WT Ext and

5US mice when Shaffer collaterals were stimulated by monotonically increasing stimuli. The

input–output curves showed significant increase in the amplitude of fEPSP in the WT mice

killed after fear extinction as compared to the WT 5US group (S3C Fig). As no changes in

fibre volley were observed, our data indicate that contextual fear extinction resulted in global

increase in synaptic strength in stOri of WT mice.

On the other hand, S73A mutation impaired fear extinction–induced down-regulation of

dendritic spine density (Fig 5B). We also found no significant changes of median dendritic

spine volumes and PSD volumes (Fig 5D and 5F), and only a minor increase in the median

PSD surface area in the S73A Ext group as compared to the S73A 5US animals (Fig 5E). These

impairments were confirmed by the analyses of the distributions of metrics values (Fig 5D–

5F). We also found that mutation prevented an increase of summary PSD volume and surface

area, while the increase of summary dendritic spine volume after fear extinction was preserved

(Fig 5D–5F, right panels). In addition, we observed no difference in fEPSP and fibre volley

between the S73A mice killed before versus after fear extinction session (S3D Fig). Altogether,

our data indicate that PSD-95(S73) phosphorylation regulates density, size, and strength of the

excitatory synapses in stOri during contextual fear extinction.

PSD-95(S73) phosphorylation in dCA1 is required for extinction of

contextual fear

To test whether phosphorylation of PSD-95(S73) is necessary for consolidation of fear extinc-

tion memory, we used dCA1-targeted expression of S73A, WT, or control AAV1/2 encoding

mCherry under Camk2a promoter (Control). Two cohorts of mice with dCA1-targeted

expression of the Control virus, WT, or S73A underwent CFC and fear extinction training.

The first cohort underwent a short extinction training with one 30-minute extinction session

(Ext) and 5-minute test of fear extinction memory (Test) (Fig 6A), while the second under-

went an extensive fear extinction training with three 30-minute contextual fear extinction ses-

sions on the days 2, 3, 4 (Ext1 to 3), followed by spontaneous fear recovery/remote fear

memory test on day 18, and further 3 extinction sessions on the days 18 to 20 (Ext4 to 6). Next,

fear generalisation was tested in a context B (CtxB, day 22) (Fig 6D). The posttraining analysis

showed that the viruses were expressed in dCA1. The control virus was expressed in 85% of

the dCA1 cells, WT in 88%, and S73A in 87% (Fig 6I and 6J).

The analysis of the short extinction training (data pooled from 2 cohorts) showed that in all

experimental groups freezing levels were low at the beginning of the training and increased

after 5US delivery (Fig 6B). Furthermore, mice in all groups showed high freezing levels at the

beginning of the Ext indicating similar levels of contextual fear memory acquisition. However,

freezing measured during the Test was significantly decreased, as compared to the beginning

of Ext, only in the Control and WT groups, not in the S73A animals (Fig 6C).

(numbers of the analysed dendritic spines/mice are indicated) (Kolmogorov–Smirnov test, WT: D = 0.157, P< 0.001; S73A:

D = 0.128, P = 0.010), and summary PSD surface area per tissue brick (two-way ANOVA with LSD post hoc tests for planned

comparisons; effect of training, F(1, 8) = 5.71, P = 0.044; effect of genotype, F(1, 8) = 1.31, P = 0.285); (F) median PSD volume

(Mann–Whitney test, WT: U = 9,462, P< 0.001; S73A: U = 13,621, P = 0.431), distributions of PSD volumes (numbers of the

analysed dendritic spines/mice are indicated) (Kolmogorov–Smirnov test, WT: D = 0.278, P< 0.001; S73A: D = 0.145,

P = 0.054), and summary PSD volume per tissue brick (two-way ANOVA with LSD post hoc tests for planned comparisons;

effect of training, F(1, 8) = 9.56, P = 0.015; effect of genotype, F(1, 8) = 2.35, P = 0.164). The data underlying this figure are

available from OSF (https://osf.io/cgfa9/). CFC, contextual fear conditioning; dCA1, dorsal CA1; PSD, postsynaptic density;

PSD-95, postsynaptic density protein 95; S73, Serine 73; SBEM, serial block-face scanning electron microscopy; stOri, stratum

oriens; WT, wild-type.

https://doi.org/10.1371/journal.pbio.3002106.g005
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The analysis of freezing levels during the extensive fear extinction training showed high lev-

els of freezing at the end of training and beginning of Ext1 for all experimental groups (Fig 6E

and 6F). In the Control and WT groups, the freezing levels decreased over consecutive extinc-

tion sessions (Ext2 to 6) and were significantly lower as compared to Ext1, indicating

Fig 6. Phosphorylation of PSD-95(S73) in dCA1 is required for contextual fear extinction. (A) Experimental timeline of the short fear extinction training.

C57BL/6J male mice were stereotactically injected in the dCA1 with AAV1/2 encoding mCherry (Control, n = 17), PSD-95(WT) (WT, n = 17) or PSD-95

(S73A) (S73A, n = 15). Twenty-one days after surgery mice underwent CFC. One day after CFC, they were reexposed to the training context in the absence of

foot shock (Extinction). Consolidation of fear extinction memory was tested 1 day later in the same context (Test). (B, C) Summary of data showing percentage

of freezing during (B) CFC, (C) extinction and test of the mice with dCA1-targeted expression of Control, WT, or S73A (two-way repeated-measures ANOVA

with Šı́dák’s multiple comparisons test, effect of time: F(1, 46) = 26.13, P< 0.001, genotype: F(2, 46) = 0.540, P = 0.586; time x genotype: F(2, 46) = 1.25,

P = 0.296). (D) Experimental timeline of the extensive fear extinction training. Mice with dCA1-targeted expression of Control (n = 10), WT (n = 10), or S73A

(n = 9) underwent CFC, followed by six 30-minute fear extinction sessions (Ext1–6) and one exposure to novel context without footshock (CtxB). (E-H)

Summary of data showing freezing levels (E) during CFC, (F) after extensive fear extinction training (two-way repeated-measures ANOVA with Dunnett’s

multiple comparisons test, effect of time: F(3.681, 95.70) = 13.01, P< 0.001; genotype: F(2, 26) = 1.23, P = 0.306; time x genotype: F(10, 130) = 1.49, P = 0.147),

(G) the difference in freezing between Ext1 and Ext6 (one-way ANOVA with Tukey’s multiple comparisons test, F(2, 24.94) = 4.98, P = 0.016), and (H) during

the test in the context B (Brown–Forsythe ANOVA test, F(2, 17.56) = 0.902, P = 0.428). (I) The extent of viral infection. (J) Single confocal scans of the stratum

pyramidale of dCA1 of the mice expressing Control, WT, and S73A and penetrance of the viruses. Means ± SEM are shown. The data underlying this figure are

available from OSF (https://osf.io/cgfa9/). CFC, contextual fear conditioning; dCA1, dorsal CA1; PSD-95, postsynaptic density protein 95; S73, Serine 73; WT,

wild-type.

https://doi.org/10.1371/journal.pbio.3002106.g006
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formation of long-term fear extinction memory. We also found no spontaneous fear recovery

after 14-day delay (Ext4 versus Ext3; Control, P = 0.806; WT, P = 0.248). In the S73A group,

the extensive contextual fear extinction protocol did not reduce freezing levels measured at the

beginning of Ext6 sessions, as compared to Ext1, indicating no fear extinction (Fig 6F).

Accordingly, we found significantly larger reduction of freezing after fear extinction training

(ΔExt6-Ext1) in the controls and WT animals, as compared to the S73A group (Fig 6G). The

freezing reaction was specific for the training context, as it was very low and similar for all

experimental groups in the context B (Fig 6H). Thus, our data indicate that expression of the

S73A in dCA1 does not affect fear memory formation, recall, or generalisation but prevents

contextual fear extinction even after extensive fear extinction training.

αCaMKII autophosphorylation regulates contextual fear extinction and

PSD-95 protein levels during contextual fear extinction

PSD-95(S73) is phosphorylated by αCaMKII [32,37]. To test the role of αCaMKII in fear

extinction and PSD-95 protein regulation during fear extinction, autophosphorylation-defi-

cient αCaMKII mutant mice (T286A) [40] and their WT littermates (males and females, in

sex-balanced groups) were trained in CFC. They had similar and low levels of freezing in the

novel context and freezing increased after 5US delivery (Fig 7A). Mice of both genotypes also

showed high levels of freezing in the training context on the next day (Ext1), indicating contex-

tual fear memory formation. However, when the mice were reexposed to the training context

for fear extinction (Ext2 to 3), the freezing levels of WT mice were significantly lower, as com-

pared to Ext1, while the T286A mutants showed still high freezing. Thus, we confirmed that

αCaMKII autophosphorylation is required for contextual fear memory extinction.

Next, a second cohort of WT and T286A mice was trained, and the animals were killed 24

hours after training (5US) or after fear extinction session (Ext). The total levels of PSD-95 were

not affected by the fear extinction session in WT mice (Fig 7C). However, PSD-95 levels were

higher in all strata of dCA1 in the T286A Extinction group, as compared to WT animals killed

after extinction, and T286A mutants killed before extinction. Thus, these experiments support

the hypothesis that αCaMKII autophosphorylation is required for fear extinction and extinc-

tion-induced regulation of PSD-95 levels in dCA1.

Discussion

We have investigated the role of dCA1 PSD-95(S73) phosphorylation in contextual fear extinc-

tion. Our study showed that (1) contextual fear extinction induces transient changes of dCA1

PSD-95 protein levels and dendritic spines in a stratum-specific manner, and these changes

are observed mostly in stOri; (2) contextual fear extinction induces phosphorylation of PSD-

95(S73) in all dCA1 strata; (3) expression of the exogenous, phosphorylation-deficient PSD-95

(S73A) in dCA1 deregulates PSD-95 protein levels and synaptic plasticity (both structural and

functional) induced by extinction of fear memories; (4) dCA1 PSD-95(S73A) impairs contex-

tual fear extinction memory, but not fear memory formation or recall; and (5) phosphoryla-

tion-deficient αCaMKII(T286A) impairs contextual fear extinction and regulation of dCA1

PSD-95 protein levels during fear extinction.

We demonstrate that contextual fear extinction transiently increases phospho-PSD-95(S73)

levels and induces rapid down-regulation of the synapses with PSD-95 as well as growth of the

remaining synapses in stOri. Such synaptic plasticity alludes to the previously reported Heb-

bian strengthening of activated synapses and heterosynaptic weakening of adjacent synapses

[49,50]. To our knowledge, our studyAU : PleasenotethatasperPLOSstyle; ifthereisapriorityclaim; thephrase}toourknowledge}shouldbeadded:Hence; thisphrasehasbeenaddedtothesentence}Toourknowledge; ourstudyisthefirstdemonstrationof :::}is the first demonstration of such synaptic plasticity dur-

ing attenuation of fear memories. To study the role of this plasticity in fear memory extinction,
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we used dCA1-targeted overexpression of PSD-95(WT) and PSD-95(S73A). Interestingly,

although PSD-95(WT) overexpression reduced dendritic spine density and increased median

spine and PSD volume before fear extinction, the extinction-induced synaptic processes were

preserved in PSD-95(WT) mice and fear extinction resulted in elimination of dendritic spines,

as well as global increase of dendritic spine volume, PSD size, and strengthening of synaptic

transmission. Hence, our research contradicts the earlier in vitro studies showing that PSD-95

overexpression results not only in synaptic growth, but also increased density of dendritic

spines and impaired LTP [28,51]. These differences between our study and in vitro experi-

ments may result from the spatial constraints that are imposed on the neurons in the brain,

but not in vitro, as well as the fact that neurons in vivo coexist in complex networks that may

induce homeostatic/compensatory mechanisms. Still, taking into account significant changes

of dendritic spine morphology induced by PSD-95 overexpression in vivo, it is likely that

computational power of such neurons is affected [52]. As we found no effect of PSD-95(WT)

overexpression on fear memory formation, recall, extinction, or generalisation, future studies

are needed to discover whether any cognitive processes are affected by this presumed limita-

tion of computational properties of the dCA1 neurons. It is also possible that our study further

supports the notion that synaptic plasticity in dCA1 is not required for the formation of long-

term memory [16,19].

Fig 7. Autophosphorylation of αCaMKII is required for extinction of contextual fear and regulation of PSD-95 levels during fear extinction training. (A)

Experimental timeline [WT and T286A underwent CTC and 3 fear extinction sessions (Ext1–3)] and percentage of freezing during CFC (two-way repeated-

measures ANOVA, effect of time: F(1, 10) = 13.06, P = 0.005; effect of genotype: F(1, 10) = 1.66, P = 0.226) and Ext1–3 (WT/T286A = 7/8; sex-balanced groups)

(two-way repeated-measures ANOVA with Šı́dák’s multiple comparisons test, effect of training: F(1.430, 18.59) = 14.96, P< 0.001; effect of genotype: F(1, 13)

= 9.30, P = 0.009). (B) Representative confocal scans of the WT and T286A brain slices immunostained to detect PSD-95. (C) Quantification of the total PSD-

95 protein levels (three-way repeated-measures ANOVA with with Tukey’s post hoc test, effect of genotype x training: F(1, 22) = 15.03, P< 0.001); Mice: 5US/

Ext, WT = 7/7; T286A = 6/6. Means ± SEM are shown. The data underlying this figure are available from OSF (https://osf.io/cgfa9/). CFCAU : AbbreviationlistshavebeencompiledforthoseusedinFigs1 � 7:Pleaseverifythatallentriesarecorrectlyabbreviated:, contextual fear

conditioning; PSD-95, postsynaptic density protein 95; WT, wild-type.

https://doi.org/10.1371/journal.pbio.3002106.g007
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On the other hand, extinction-induced down-regulation of stOri synapses, as well as regula-

tion of PSD-95 protein levels, synaptic growth, and strengthening, are impaired by the expres-

sion of phosphorylation-deficient PSD-95(S73A) and αCaMKII-T286A mutation, which

prevents phosphorylation of PSD-95(S73). Moreover, the local genetic manipulation pre-

vented contextual fear extinction. These observations indicate that phosphorylation of PSD-95

(S73), and PSD-95-dependent synaptic plasticity, are important steps in the regulation of the

dCA1 circuit during fear extinction. Importantly, using ex vivo analyses, we cannot unequivo-

cally indicate whether PSD-95(S73A) prevents extinction-induced elimination of dendritic

spines and PSD-95 proteins or changes the balance of the synapses by enhancing synaptogen-

esis and protein synthesis. We believe, however, that the first scenario is more likely and that

this conclusion is supported by several observations. Firstly, PSD-95(S73) phosphorylation

allows for dissociation of PSD-95 from the complex with GluN2A, destabilisation and remod-

elling of PSD [32,37,38], as well as NMDA-induced down-regulation of PSD-95 levels [39].

Secondly, both dCA1 phosphorylation of PSD-95(S73) and protein degradation, but not pro-

tein synthesis, are necessary for contextual fear extinction [53,54].

To our knowledge, our experimentsAU : PleasenotethatasperPLOSstyle; ifthereisapriorityclaim; thephrase}toourknowledge}shouldbeadded:Hence; thisphrasehasbeenaddedtothesentence}Toourknowledge; ourexperimentsarethefirsttoshow:::}are the first to show that phosphorylation of PSD-95

(S73) in dCA1 is required for extinction of contextual fear memories. Strikingly, the contextual

fear memory cannot be updated even when the animals with dCA1 PSD-95(S73A) mutation

undergo six 30-minute extinction sessions. We also show that dCA1 PSD-95(S73A) does not

affect mice activity, long-term fear memory formation and recall, context-independent fear

generalisation or fear recovery after 14-day delay, pointing towards engagement of PSD-95

(S73) phosphorylation only during extinction of contextual fear. This conclusion seemingly

contradicts the study demonstrating that ligand binding-deficient PSD-95 knock-in mice have

enhanced contextual fear memory formation and impaired long-term memory retention

[41,55]. However, even though the behavioural phenotype of PSD-95 KI mice was supported

by LTP analysis in dCA1 [41,55], it is unknown whether the mouse phenotype relies on the

CA1 plasticity as the mutation was global. Furthermore, it is possible that PSD-95 KI and

PSD-95(S73A) impact different stages of contextual fear memory. In agreement with our find-

ings, the signalling pathways downstream of NMDAR-PSD-95 complex in the dorsal CA3 and

DG regulate contextual fear extinction [56,57]. In particular, translocation of PSD-95 from

NMDAR to TrkB, and increased PSD-95-TrkB interactions, promote extinction, while com-

peting NMDAR-PSD-95-nNOS interactions hinder contextual fear extinction [56]. Since

PSD-95(S73A) mutation prolongs NMDAR-PSD-95 interactions [37], it may limit interactions

of PSD-95 with TrkB and fear extinction. To support this hypothesis, we also show that autop-

hosphorylation of αCaMKII, the key enzyme activated by NMDAR, is required for extinction-

induced regulation of PSD-95 levels and fear extinction.

Our data show that the extinction of contextual fear affects PSD-95 protein levels and den-

dritic spines predominantly in the stOri. This indicates that the extinction-induced synaptic

remodelling is strikingly different from the changes observed immediately after contextual fear

memory encoding where transient synaptogenesis is observed in the stRad [9]. These observa-

tions support the idea that different CA1 inputs are involved in memory formation and extinc-

tion. CA3 neurons project to the stRad and stOri regions of CA1 pyramidal neurons; the

nucleus reuniens (Re) projects to the stOri and stLM; and the entorhinal cortex (EC) projects

to the stLM [58–61]. Thus, the pattern of synaptic changes induced by contextual fear extinc-

tion colocalizes with the domains innervated by the Re and EC, suggesting that these inputs

are regulated during contextual fear extinction. In agreement with our observations, previous

data showed that the EC is activated during and required for contextual fear extinction in ani-

mal models [1,62]. Human studies also showed that EC-CA1 projections are activated by cog-

nitive prediction error (that may drive memory extinction), while CA3-CA1 projections are
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activated by memory recall without prediction errors [63]. The role of the Re in fear memory

encoding, retrieval, extinction, and generalisation has been demonstrated [64–66]. Still, it has

to be established whether the plasticity of dCA1 synapses is specific to Re and/or EC

projections.

Our findings add up to the previous studies investigating the molecular processes in dCA1

that are specific and required for contextual fear extinction, but not for fear memory consoli-

dation, including regulation of ERK, CB1, and CBEP [67–72]. Interestingly, other processes,

such as protein synthesis and c-Fos expression, are necessary for contextual fear consolidation

and reconsolidation, but not extinction [53,67,73,74]. Thus, although it is not surprising that

distinct molecular cascades and cell circuits contribute to fear memory formation/recall and

extinction [67,75], it remains puzzling how synaptic plasticity, without concomitant transla-

tion, contributes to contextual fear extinction. This observation points towards the role of pro-

tein synthesis-independent short-term plasticity, or protein degradation [54], in contextual

fear extinction memory. The role of short-term plasticity in contextual fear extinction is sup-

ported by the observations that PSD-95(S73) phosphorylation and synaptic remodelling

induced by fear extinction are transient. Similar short plasticity was observed by other groups

upon recall of drug-paired memories [76,77]. Still, it has to be clarified in the future studies

how short-term dCA1 plasticity can support long-term fear extinction memory.

Conclusions

Our study demonstrates that extinction of contextual fear memories relies on rapid and tran-

sient synaptic plasticity in dCA1 that requires PSD-95(S73) phosphorylation. Thus, our study

supports the hypothesis that NMDAR-dependent plasticity in dCA1 is required to detect and

resolve contradictory or ambiguous memories when spatial information is involved [17], the

comparator view of hippocampal function [78,79] as well as the observations that the hippo-

campus processes surprising events and prediction errors [63,80–82]. Since new or long-last-

ing memories may be repeatedly reorganised upon recall [83,84], the molecular and cellular

mechanisms involved in extinction of the existing fearful memories provide excellent targets

for fear memory impairment therapies. In particular, understanding the mechanisms that

underlie contextual fear extinction may be relevant for posttraumatic stress disorder

treatment.

Materials and methods

Detailed information about key resources is available in S1 Table.

Animals

C57BL/6J male mice were purchased from Białystok University, Poland. Thy1-GFP(M) (The

Jackson Laboratory, JAX:007788, RRID:IMSR_JAX:007788) mutant mice were bred as hetero-

zygotes at Nencki Institute, and PCR genotyped as previously described [42]. αCaMKII-T286A

mutant mice were bred as heterozygotes at Nencki Institute, and PCR genotyped as previously

described [40]. All mice in the experiments were 10-week old at the beginning of the experi-

ments. The mice were housed in groups of 2 to 6 and maintained on a 12-hour light/dark cycle

with food and water ad libitum. All experiments with transgenic mice used approximately

equal numbers of males and females. The experiments were undertaken according to the Ani-

mal Protection Act of Poland and approved by the I Local Ethics Committee (261/2012 and

829/2019 Warsaw, Poland).
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Contextual fear conditioning (CFC)

The animals were trained in a conditioning chamber (Med Associates, St Albans, USA) in a

soundproof box. The chamber floor had a stainless steel grid for shock delivery. Before train-

ing, the chamber was cleaned with 70% ethanol, and a paper towel soaked in ethanol was

placed under the grid floor. To camouflage background noise in the behavioural room, a white

noise generator was placed inside the soundproof box.

On the conditioning day, the mice were brought from the housing room into a holding

room to acclimatise for 30 minutes before training. Next, mice were placed in the training

chamber, and after a 148-second introductory period, a foot shock (2 seconds, 0.7 mA) was

presented. The shock was repeated 5 times, at 90-second intertrial intervals. Thirty seconds

after the last shock, the mouse was returned to its home cage. Contextual fear memory was

tested and extinguished 24 hours after training by reexposing mice to the conditioning cham-

ber for 30 minutes without US presentation, followed by the second 5-minute test session on

the following day. During extensive contextual fear extinction, 30-minute fear extinction ses-

sions were repeated on days 2, 3, 14, 15, and 16. Moreover, mice activity and freezing were

tested in context B (Ctx B) on day 17. A video camera was fixed inside the door of the sound

attenuating box for the behaviour to be recorded and scored. Freezing behaviour (defined as

complete lack of movement, except respiration) and locomotor activity of mice were automati-

cally scored. The experimenters were blind to the experimental groups.

Stereotactic surgery

Mice were fixed in a stereotactic frame (51503, Stoelting, Wood Dale, IL, USA) and kept under

isoflurane anaesthesia (5% for induction, 1.5% to 2.0% during surgery). Adeno-associated

viruses, serotype 1 and 2 (AAV1/2), solutions were injected into the dorsal CA1 area at coordi-

nates in relation to Bregma (AP, −2.1 mm; ML, ±1.1 mm; DV, −1.3 mm). Around 450AU : PleasenotethatasperPLOSstyle; numeralsarenotallowedatthebeginningofasentence:Pleasecheckandconfirmthattheedittothesentence}Around450nlofAAVsolutionswereinjectedintothe:::}iscorrect; andamendifnecessary:nl of

AAV solutions were injected into the CA1 through a bevelled 26 gauge metal needle, and 10 μl

microsyringe (SGE010RNS, WPI, USA) connected to a pump (UMP3, WPI, Sarasota, USA),

and its controller (Micro4, WPI, Sarasota, USA) at a rate 50 nl/min. The needle was then left

in place for 5 minutes, retracted +100 nm DV, and left for an additional 5 minutes to prevent

unwanted spread of the AAV solution. Titers of AAV1/2 were as follows: αCaMKII_PSD-95

(WT):mCherry (PSD-95(WT)): 1.35 × 109/μl, αCaMKII_PSD-95(S73A):mCherry (PSD-95

(S73A)): 9.12 × 109/μl), αCaMKII_mCherry (mCherry): viral titer 7.5 × 107/μl (obtained from

Karl Deisseroth’s Lab). Mice were allowed to recover from anaesthesia for 2 to 3 hours on a

heating pad and then transferred to individual cages where they stayed until complete skin

healing, and next, they were returned to the home cages. The viruses were prepared at the

Nencki Institute core facility, Laboratory of Animal Models. After training, the animals were

perfused with 4% PFA in PBS, and brain sections from the dorsal hippocampus were immu-

nostained for PSD-95 and imaged with Zeiss Spinning Disc confocal microscope (magnifica-

tion: 10×) to assess the extent of the viral expression and PSD-95 expression.

Immunostaining

Mice were anaesthetised and perfused with cold phosphate buffer (pH 7.4), followed by 0.5%

4% PFA in phosphate buffer. Brains were removed and postfixed o/n in 4˚C. Brains were kept

in 30% sucrose in PBS for 72 hours. Coronal brain sections were prepared using cryosection-

ing (40 μm thick, Cryostat CM1950, Leica Biosystems Nussloch GmbH, Wetzlar, Germany)

and stored in a cryoprotecting solution in −20˚C (PBS, 15% sucrose (Sigma-Aldrich), 30% eth-

ylene glycol (Sigma-Aldrich), and 0.05% NaN3 (Sigma-Aldrich). Before staining, sections were

washed 3 × PBS and blocked for 1 hour at room temperature (RT) in 5% NDS with 0.3%
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Triton X-100 in PBS and then incubated o/n, 4˚C with PSD-95 primary antibodies (1:500,

Millipore, MAB1598, RRID:AB_11212185) and/or rabbit anti-mCherry primary antibodies

(1:500, Abcam, ab167453, RRID:AB_2571870) and/or rabbit P-Ser73_PSD-95 primary anti-

bodies (1:12, Davids Biotechnology, A061). On the second day, slices were washed 3 × PBS

with 0.3% Trition X-100 and incubated for 90 minutes with secondary antibodies conjugated

with anti-mouse Alexa Fluor 555 (1:500, Invitrogen, A31570, RRID:AB_2536180) and/or anti-

rabbit Alexa Fluor 555 (1:500, Invitrogen, A31572, RRID:AB_162543) and/or anti-rabbit

Alexa Fluor 647 (1:500, Invitrogen, A31573, RRID:AB_2536183). Slices were then mounted on

microscope slides (Thermo Fisher Scientific) and covered with coverslips in Fluoromount-G

medium with DAPI (00-4959-52, Invitrogen).

Phospho-PSD-95(S73)-specific antibody

Phospho-epitope–specific serum against phosphorylated PSD-95(S73) was raised in a rabbit

using the synthetic phosphopeptide LERGN(Sp)GLGFS. The antibody was prepared and affin-

ity-purified by Davids Biotechnologie (Regensburg, Germany).

Confocal microscopy and image quantification

The microphotographs of dendritic spines in the Thy1-GFP(M) mice, fluorescent PSD-95, and

phospho-PSD-95(S73) immunostaining were taken on a Spinning Disc confocal microscope

(63 × oil objective, NA 1.4, pixel size 0.13 μm × 0.13 μm) (Zeiss, Göttingen, Germany). We

took microphotographs (16 bit, z-stacks of 12 to 48 scans; 260 nm z-steps) of 6 dendrites per

region per animal from stOri, stRad, and stLM (in the middle of the strata) of dCA1 pyramidal

neurons (AP, Bregma from −1.7 to 2.06). The PSD-95 fluorescent immunostaining after AAV

overexpression was analysed with Zeiss LSM 800 microscope equipped with Airy-Scan detec-

tion (63× oil objective and NA 1.4, pixel size 0.13 μm × 0.13 μm, 8 bit) (Zeiss, Göttingen, Ger-

many). A series of 18 continuous optical sections (67.72 μm × 67.72 μm), at 0.26 μm intervals,

were scanned along the z-axis of the tissue section. From every sixth section through dCA1, 6

to 8 z-stacks of microphotographs were taken per animal per region. Each dendritic spine was

manually outlined, and the spine area was measured with ImageJ 1.52n software measure tool.

Custom-written Python scripts were used to analyse total PSD-95 (mean gray value of the

microphotographs: all experiments); PSD-95+ puncta density (per μm of a dendrite) and

mean grey value per dendritic spine in Thy1-GFP(M) (Fig 1).

Serial block-face scanning electron microscopy (SBEM)

Mice were transcardially perfused with cold phosphate buffer (pH 7.4), followed by 0.5% EM-

grade glutaraldehyde (G5882 Sigma-Aldrich) with 2% PFA in phosphate buffer (pH 7.4) and

postfixed overnight in the same solution. Brains were then taken out of the fixative and cut on

a vibratome (Leica VT 1200) into 100-μm slices. Slices were kept in phosphate buffer (pH 7.4),

with 0.1% sodium azide in 4˚C. For AAV-injected animals, the fluorescence of exogenous pro-

teins was confirmed in all slices by fluorescent imaging. Then, slices were washed 3 times in

cold phosphate buffer and postfixed with a solution of 2% osmium tetroxide (#75632 Sigma-

Aldrich) and 1.5% potassium ferrocyanide (P3289 Sigma-Aldrich) in 0.1 M phosphate buffer

(pH 7.4) for 60 minutes on ice. Next, samples were rinsed 5 × 3 minutes with double distilled

water (ddH2O) and subsequently exposed to 1% aqueous thiocarbohydrazide (TCH) (#88535

Sigma) solution for 20 minutes. Samples were then washed 5 × 3 minutes with ddH2O and

stained with osmium tetroxide (1% osmium tetroxide in ddH2O, without ferrocyanide) for 30

minutes in RT. Afterward, slices were rinsed 5 × 3 minutes with ddH2O and incubated in 1%

aqueous solution of uranium acetate overnight in 4˚C. The next day, slices were rinsed 5 × 3
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minutes with ddH2O, incubated with lead aspartate solution (prepared by dissolving lead

nitrate in L-aspartic acid as previously described [85]) for 30 minutes in 60˚C and then washed

5 × 3 minutes with ddH2O, and dehydration was performed using graded dilutions of ice-cold

ethanol (30%, 50%, 70%, 80%, 90%, and 2 × 100% ethanol, 5 minutes each). Then, slices were

infiltrated with Durcupan resin. A(17 g), B(17 g), and D(0,51 g) components of Durcupan

(#44610 Sigma-Aldrich) were first mixed on a magnetic stirrer for 30 minutes, and then 8

drops of DMP-30 accelerator (#45348 Sigma) were added. Part of the resin was then mixed 1:1

(v/v) with 100% ethanol, and slices were incubated in this 50% resin on a clock-like stirrer for

30 minutes in RT. The resin was then replaced with 100% Durcupan for 1 hour in RT, and

then 100% Durcupan infiltration was performed o/n with constant slow mixing. The next day,

samples were infiltrated with freshly prepared resin (as described above) for another 2 hours

in RT and then embedded between flat Aclar sheets (Ted Pella #10501–10). Samples were put

in a laboratory oven for at least 48 hours at 65˚C for the resin to polymerise. After the resin

hardened, the Aclar layers were separated from the resin-embedded samples, and the dCA1

region was cut out with a razorblade. Caution was taken for the piece to contain minimal

resin. Squares of approximately 1 × 1 × 1 mm were attached to aluminium pins (Gatan metal

rivets, Oxford Instruments) with very little amount of cyanacrylamide glue. After the glue

dried, samples were mounted to the ultramicrotome to cut 1-μm thick slices. Slices were trans-

ferred on a microscope slide, briefly stained with 1% toluidine blue in 5% borate and observed

under a light microscope to confirm the region of interest (ROI). Next, samples were grounded

with silver paint (Ted Pella, 16062–15) and pinned for drying for 4 to 12 hours, before the

specimens were mounted into the 3View2 chamber.

SBEM imaging and 3D reconstructions

Samples were imaged with Zeiss SigmaVP (Zeiss, Oberkochen, Germany) scanning electron

microscope equipped with 3View2 chamber using a backscatter electron detector. Scans were

taken in the middle portion of dCA1 stOri. From each sample, 200 sections were collected

(thickness 60 nm). Imaging settings: high vacuum with EHT 2.9 to 3.8 kV, aperture: 20 μm,

pixel dwell time: 3 μs, pixel size: 5 to 6.2 nm. Scans were aligned using the ImageJ software

(ImageJ -> Plugins -> Registration -> StackReg) and saved as.tiff image sequence. Next,

aligned scans were imported to Reconstruct software, available at http://synapses.clm.utexas.

edu/tools/reconstruct/reconstruct.stm (Synapse Web Reconstruct, RRID:SCR_002716). Den-

dritic spine density was analysed from 3 bricks per animal with the unbiased brick method

[44] per tissue volume. Brick dimensions 3 × 3 × 3 μm were chosen to exceed the length of the

largest profiles in the data sets at least twice. To calculate the density of dendritic spines, the

total volume of large tissue discontinuities was subtracted from the volume of the brick. The

density of dendritic spines was normalised to AAV1/2 penetrance.

A structure was considered to be a dendritic spine when it was a definite protrusion from

the dendrite, with electron-dense material (representing postsynaptic part of the synapse,

PSD) on the part of the membrane that opposed an axonal bouton with at least 3 vesicles

within a 50-nm distance from the cellular membrane facing the spine. For 3D reconstructions,

PSDs and dendritic spines in one brick were reconstructed for each sample. PSDs were first

reconstructed, and, second, their dendritic spines were outlined. To separate dendritic spine

necks from the dendrites, a cutoff plane was used approximating where the dendritic surface

would be without the dendritic spine. PSD volume was measured by outlining dark, electron-

dense areas on each PSD-containing section [45]. The PSD area was measured manually

according to the Reconstruct manual. All nonsynaptic protrusions were omitted in this analy-

sis. For multisynaptic spines, the PSD areas and volumes were summed.
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Correlative light-electron microscopy (CLEM)

CLEM workflow was based on a previously established protocol with some modifications [86].

Mice infused with PSD-95(WT) in the CA1 were perfused as described above. Brains were

then removed and postfixed o/n in 4˚C. Approximately 100AU : PleasenotethatasperPLOSstyle; numeralsarenotallowedatthebeginningofasentence:Pleasecheckandconfirmthattheedittothesentence}Approximately100mmthickbrainsliceswerecutona:::}iscorrect; andamendifnecessary:μm thick brain slices were cut on a

vibratome and embedded in low melting point agarose in phosphate buffer and mounted into

imaging chambers. mCherry fluorescence in the stRad was photographed using Zeiss LSM800,

z-stacks of 60 images (60 μm thick) at 63× magnification. Next, the slice was transferred under

the 2P microscope (Zeiss MP PA Setup), where a Chameleon laser was used to brand mark the

ROI (laser length 870 nm, laser power 85%, 250 scans of each line). Then, SBEM staining was

performed as described above. The resin-embedded hippocampus was then divided into 4

rectangles, and each was mounted onto metal pins to locate the laser-induced marks. SBEM

scanned within the laser-marked frame. The fluorescent image was overlaid onto the SBEM

image using dendrites and cell nuclei as landmarks using ImageJ 1.48k software (RRID:

SCR_003070).

Electrophysiology

Mice were deeply anaesthetised with Isoflurane, decapitated, and the brains were rapidly dis-

sected and transferred into ice-cold cutting artificial cerebrospinal fluid (ACSF) consisting of

(in mM): 87 NaCl, 2.5 KCl, 1.25 NaH2PO4, 25 NaHCO3, 0.5 CaCl2, 7 MgSO4, 20 D-glucose,

75 sacharose equilibrated with carbogen (5% CO2/95% O2). The brain was cut to 2 hemi-

spheres, and 350-μm thick coronal brain slices were cut in ice-cold cutting ACSF with Leica

VT1000S vibratome. Slices were then incubated for 15 minutes in cutting ACSF at 32˚C. Next,

the slices were transferred to recording ACSF containing (in mM): 125 NaCl, 2.5 KCl, 1.25

NaH2PO4, 25 NaHCO3, 2.5 CaCl2, 1.5 MgSO4, 20 D-glucose equilibrated with carbogen and

incubated for minimum 1 hour at RT.

Extracellular field potential recordings were recorded in a submerged chamber perfused

with recording ACSF in RT. The synaptic potentials were evoked with a Stimulus Isolator (A.

M.P.I Isoflex) with a concentric bipolar electrode (FHC, CBARC75) placed in the stOri of CA2

on the experiment. The stimulating pulses were delivered at 0.1 Hz, and the pulse duration

was 0.3 ms. Recording electrodes (resistance 1 to 4 MO) were pulled from borosilicate glass

(WPI, 1B120F-4) with a micropipette puller (Sutter Instruments, P-1000) and filled with

recording ACSF. The recording electrodes were placed in stOri of dCA1. Simultaneously, a

second recording electrode was placed in the stratum pyramidale to measure population

spikes. For each slice, the recordings were done in stOri. Recordings were acquired with Multi-

Clamp 700B amplifier (Molecular Devices, California, USA), digitised with Digidata 1550B

(Molecular Devices, California, USA) and pClamp 10.7 Clampex 10.0 software (Molecular

Devices, California, USA). Input/output curves were obtained by increasing stimulation inten-

sity by 25 μA in the range of 0 to 300 μA. All electrophysiological data were analysed with Axo-

Graph 1.7.4 software (Axon Instruments, USA). The amplitude of fEPSP, relative amplitude of

population spikes and fibre volley were measured.

Statistics

Data are presented as mean ± standard error of the mean (SEM) for populations with normal

distribution or as median ± interquartile range (IQR) for populations with nonnormal distri-

bution. An animal was used as a biological replication in all experiments except for the den-

dritic spine size distribution analysis. When the data met the assumptions of parametric

statistical tests, results were analysed by one- or repeated measures two-way ANOVA, followed

by Tukey’s or Fisher’s post hoc tests, where applicable. Data were tested for normality by using
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the Shapiro–Wilk test of normality and for homogeneity of variances by using the Levene’s

test. For repeated-measure data with missing observation, a linear mixed model was used to

analyse the results, followed by pairwise comparisons with Sidak adjustment for multiple com-

parisons. Areas of dendritic spines and PSDs did not follow normal distributions and were

analysed with the Kruskal–Wallis test. Frequency distributions of PSD area to the spine vol-

ume ratio were compared with the Kolmogorov–Smirnov test. Correlations were analysed

using Spearman correlation (Spearman r (sr) is shown), and the difference between slopes or

elevation between linear regression lines was calculated with ANCOVA. Differences between

the experimental groups were considered statistically significant if P< 0.05. Analyses were

performed using the Graphpad Prism 9. Mice were excluded from the analysis only if they did

not express the tested virus in the target region.

Supporting information

S1 Fig. Synaptic plasticity induced by exposure to neutral context. Dendritic spines were

analysed in 3 domains of dendritic tree of dCA1 area in Thy1-GFP(M) male mice: stOri,

stRad, and stLM. (A) Experimental timeline and freezing levels of mice from 3 experimental

groups: 5US (mice killed 1 day after CFC; n = 6), Ctx (mice killed immediately after the second

exposure to novel context, no foot shocks were delivered, n = 5) and Ext 60’ (mice killed 60

minutes after contextual fear extinction session, n = 6). (B) Representative confocal images of

dendrites (GFP) (maximum projections of z-stacks composed of 20 scans) are shown for 3

domains of the dendritic tree. (C) Summary of data showing dendritic spine density

(repeated-measures ANOVA, effect of training: F(2, 14) = 1.620, P = 0.233). (D) Summary of

data showing average dendritic spine area (repeated-measures ANOVA, effect of training: F(2,

14) = 3.162, P = 0.074). For C, D, each dot represents 1 mouse. (E) Representative confocal

images of PSD-95 immunostaining (maximum projections of z-stacks composed of 20 scans)

are shown for 3 domains of the dendritic tree. (F) Summary of data showing total PSD-95 lev-

els (repeated-measures ANOVA with post hoc Tukey test, effect of training: F(2, 14) = 2.72,

P = 0.100; effect of region: F(1.34, 18.7) = 25.1, P< 0.001; training × region interaction: F (4,

28) = 2.79, P = 0.045). For C, D, F means ± SEM are shown. The data underlying this figure

are available from OSF (https://osf.io/cgfa9/). CFC, contextual fear conditioning; dCA1, dorsal

CA1; PSD-95, postsynaptic density protein 95; stLM, stratum lacunosum-moleculare; stOri,

stratum oriens; stRad, stratum radiatum.

(TIF)

S2 Fig. Validation of the viral vectors encoding PSD-95(WT) and PSD-95(S73A). (A)

Experimental timeline. C57BL/6J male mice were stereotactically injected in the dCA1 with

AAV1/2 encoding mCherry (Control, n = 11) PSD-95(WT) (WT, n = 11) or PSD-95(S73A)

(S73A, n = 11). Twenty-one days later, they were killed. (B) Representative confocal scans of

the PSD-95 immunostaining in dCA1 strata and (C) summary of data showing PSD-95 levels

(two-way ANOVA with Tukey’s post hoc test, effect of virus: F(2, 30) = 13.1, P< 0.001). (D)

Exemplary reconstructions of dendritic spines and their PSDs from SBEM scans in stOri. The

grey background rectangles are x = 3 × y = 3 μm. Dendritic spines and PSDs were recon-

structed and analysed in tissue bricks (3 × 3 × 3 μm). (E-G) Summary of SBEM data showing:

(E) mean density of dendritic spines (one-way ANOVA with post hoc Tukey test, effect of

virus: F(2, 6) = 34.6, P< 0.001); (F) median PSD surface area (Kruskal–Wallis test with

Dunn’s multiple comparisons test, Kruskal–Wallis statistic = 109, P< 0.001), and (G) total

PSD area per tissue brick (one-way ANOVA, effect of virus: F(2, 6) = 0.0135, P = 0.9870). The

data underlying this figure are available from OSF (https://osf.io/cgfa9/). dCA1, dorsal CA1;

PSD, postsynaptic density; PSD-95, postsynaptic density protein 95; S73, Serine 73; SBEM,
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serial block-face scanning electron microscopy; stOri, stratum oriens; WT, wild-type.

(TIF)

S3 Fig. Synaptic plasticity induced in dCA1 during contextual fear extinction training is

compensatory. (A) Experimental timeline. C57BL/6J male mice were stereotactically injected

in the dCA1 with AAV1/2 encoding PSD-95(WT) (WT, n = 11) or PSD-95(S73A) (S73A,

n = 11). Twenty-one days later, they were trained and killed 24 hours after CFC or immediately

after the Extinction session. (B) Microphotographs of the brain sections with AAVs expression

in dCA1. (C, D) Representative fEPSPs evoked by stimuli of different intensities and summary

of data in WT and S73A mice after and before fear extinction. (C) Input–output functions for

stimulus intensity in WT mice (repeated-measures ANOVA, effect of virus × stimulus interac-

tion, F(12, 456) = 2.73, P = 0.001) and fibre volley recorded in response to increasing intensi-

ties of stimulation (repeated-measures ANOVA, effect of virus × stimulus interaction, F(12,

384) = 0.467, P = 0.933). (D) Input–output functions for stimulus intensity in S73A mice

(repeated-measures ANOVA, effect of virus × stimulus interaction, F(12, 456) = 1.50,

P = 0.120) and fibre volley recorded in response to increasing intensities of stimulation

(repeated-measures ANOVA, effect of virus × stimulus interaction, F(12, 441) = 0.412,

P = 0.959). The numbers of the analysed sections/mice per experimental group are indicated

in the legends. Means ± SEM are shown on the graphs. The data underlying this figure are

available from OSF (https://osf.io/cgfa9/). CFCAU : AbbreviationlistshavebeencompiledforthoseusedinS1 � S3Figs:Pleaseverifythatallentriesarecorrectlyabbreviated:, contextual fear conditioning; dCA1, dorsal

CA1; fEPSP, field excitatory postsynaptic potential; PSD-95, postsynaptic density protein 95;

S73, Serine 73; WT, wild-type.

(TIF)

S1 Raw Image. The original picture for Fig 3A of the western blot stained with phospho-

PSD-95(S73)-specific antibody detects in the hippocampus homogenates proteins with

approximately 95 kDA molecular weight. M, molecular weight marker; N, naive mouse;

5US, mouse that underwent CFC and was killed 24 hours later, Ext15’, mouse that underwent

CFC and was killed after 15 minutes of a fear extinction session; x, sample not related to the

study.

(PDF)

S1 Table. Key resources. The table includes information about key materials used in the

study.

(DOCX)
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