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Abstract

B and T cells are integral parts of the immune system and are implicated in many diseases, e.g. autoimmunity. Towards understanding
the biology of B and T cells and subsets thereof, their transcriptomes can be analyzed using single-cell RNA sequencing. In some
studies, the V(D)] transcripts encoding the variable regions of the B- and T-cell antigen receptors have been removed before the analyses.
However, a systematic analysis of the effects of including versus excluding these genes is currently lacking. We have investigated the
effects of these transcripts on unsupervised clustering and down-stream analyses of single-cell RNA sequencing data from B and T
cells. We found that exclusion of the B—/T-cell receptor genes prior to unsupervised clustering resulted in clusters that represented
biologically meaningful subsets, such as subsets of memory B and memory T cells. Furthermore, pseudo-time and trajectory inference
analyses of early B-lineage cells resulted in a developmental pathway from progenitor to immature B cells. In contrast, when the
B—/T-cell receptor genes were not removed, with the PCs used for clustering consisting of up to 70% V-genes, this resulted in some
clusters being defined exclusively by V-gene segments. These did not represent biologically meaningful subsets; for instance in the
early B-lineage cells, these clusters contained cells representing all developmental stages. Thus, in studies of B and T cells, to derive
biologically meaningful results, it is imperative to remove the gene sequences that encode B- and T-cell receptors.
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Introduction among the billions of B and T cells and their immune repertoire.
Multiple studies have excluded BCR- and TCR-genes from the
analyses of scRNA-seq data to prevent dimensionality reduction
and clustering to be influenced by individual clones [4-8]. How-
ever, a systematic analysis of the impact of BCR- and TCR-genes
in scRNA-seq data analysis is lacking. Here, we have investigated
whether the BCR-genes and TCR-genes influence unsupervised
clustering and down-stream analyses of scRNA-seq data obtained
from peripheral blood B cells and T cells, as well as bone marrow
(BM) early B-lineage cells, with implications for our understanding
of the biology of these cell types.

B cells express on their cell surfaces a B-cell antigen receptor
(BCR). The fact that each B cell expresses a unique BCR—in
its secreted form an antibody—ensures that we have immune
protection against invading pathogens. The BCR is composed of
antibody heavy and « or x light chains, each containing a variable
region, which together determine the antigen specificity, and a
constant region, whereby the heavy chain, e.g. IgM or IgG, is
responsible for the effector function. However, the number of
genes in the genome (2 x 10%) does not correspond to the number
of B cells in the human body. Instead, a sophisticated system is in
place whereby immunoglobulin (Ig) V(D)J gene segments, which
encode the respective variable regions, undergo recombination

[1, 2]. In theory, this gives rise to more than 10! specificities Results

[3]. By analogy, T cells express on their cell surfaces a T-cell
receptor (TCR), which is composed of a- and B- or y- and §-
chains, in which the respective variable regions are generated by
V(D)J recombination. The recombination process ensures diversity
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(sc-RNAseq) data, we first analyzed sorted peripheral blood (PB)
memory B cells (n =4085). To exclude the BCR-genes, all the count
data related to IGH and IGL genes, i.e. V(D)] and constant regions
(Figure S1), were removed from the dataset. As clustering and PCA
reduction are calculated from the highly variable genes (HVGs),
an alternative to excluding all BCR-genes would be to exclude
BCR transcripts from the list of HVGs. The exclusion of all BCR
genes, as in our case, does not prevent the analyses of these genes,
as the count data for BCR transcripts can be added back and be
analyzed, as shown below. Using an Elbow plot, we set the number
of principal components (PCs) to 35, to cover the elbow with
reasonable margin, and using a Clustree plot the resolution was
set to 0.25 (Figure 1A and B). Unsupervised clustering with these
settings resulted in five distinct clusters (Figure 1C). The top-10
up-regulated differentially expressed genes (DEGSs) per cluster are
shown in a heat map (Figure 1D, Table S1). Plotting a few of the
DEGs revealed high levels of expression of CD69 in cluster O,
COCH in cluster 1 and CRIP2 in cluster 2 (Figure 1E), as expected
from the heat map. To determine whether the unsupervised
clustering resulted in biologically relevant clusters, we utilized
the VDJ-sequencing data from the same sample to assess BCR
isotype expression. As the analyzed cells represented memory
B cells, we would expect some of the cells to express IgM, rep-
resenting unswitched memory B cells, and other cells to have
undergone class-switch recombination, such that they expressed
isotypes other than IgM and representing switched memory B
cells. The VDJ data are more reliable, as they allow one to assess
the expression of productively rearranged VDJ-genes, i.e. those
that result in a protein. This contrasts with the transcriptomics
data, which do not distinguish between productive and unpro-
ductive transcripts (albeit with a relatively similar expression
pattern for this isotype), where the unproductive transcripts do
not result in proteins (Figure 1F, Figure S2). Nevertheless, display-
ing cells that expressed IgM showed that most of these were
found in clusters 0 and 4. Thus, the cells in these two clus-
ters represented unswitched memory B cells, whereas clusters
1-3 represented switched memory B cells. TEX9 and TOX are
two genes that are expressed mainly in switched memory B
cells [9], which fits well with their observed expression in IgM-
negative, switched cells (Figure 1G; data not shown). Moreover,
we have shown that cell surface expression of the Bl-integrin
CD29 (ITGB) is higher in switched than in unswitched memory
B cells [10], and is consistent with the expression pattern of
ITGB1 in our single-cell analyses. Based on these results, we
conclude that unsupervised clustering after excluding the BCR-
genes gives rise to biologically relevant B-cell subsets that sepa-
rate the cells into clusters of switched and unswitched memory
B cells.

To determine whether inclusion of the BCR-genes resulted in
any major differences, we analyzed the same dataset using the
same settings as described above (Figure 2A and B). Unsupervised
clustering resulted in 12 clusters (Figure 2C), as compared to the
five clusters that emerged when the BCR-genes were excluded.
Furthermore, analysis of the top-10 up-regulated DEGs per clus-
ter revealed a completely different pattern, with fewer than 10
DEGs per cluster (Figure 2D, Table S1). In fact, in most of the 12
clusters, it was possible to identify only 1, 2 or 3 DEGS, rather
than 10 DEGs. For instance, in cluster 0, NFKBIA was the only gene
that distinguished this cluster from the other clusters. However,
plotting the expression of this gene in a UMAP projection did
not generate a distinct pattern (Figure 2E). Moreover, in 8 of the
12 clusters, we identified mainly BCR-genes, including Ig heavy
(IGH) and Ig «- and A-light (IGK/IGL) chain V-genes (Figure 2D).

For instance, clusters 4, 5 and 6 contained fewer than 10 DEGs,
with atleast 1 out of the 1-3 genes being a BCR-gene, e.g. IGHV3-7,
IGKV4-1, and IGLV2-14, indicating that some clusters were defined
exclusively by a few BCR-genes. Plotting the expression of the
afore-mentioned BCR-genes in a UMAP projection revealed that
each of these was localized primarily to a single cluster, i.e. to
cluster 4, 5 or 6 (Figure 2F). To investigate the basis for this, we
identified the 50 genes that accounted for most of the variance
in each PC, for PCs 1-50. For the dataset analyzed here, the first
35 PCs were used for the unsupervised clustering (Figure 2A).
When we analyzed the variance observed for many of the PCs,
we found that it was defined by having more than 50% BCR-genes
(Figure 2G). In fact, the proportion of BCR-genes was >20% from
PC4 to PC50, with the exception of PC10. Thereafter, we analyzed
the expression patterns of the three DEGs identified after exclu-
sion of the BCR-genes (Figure 1E). We found that they no longer
exhibited a distinct expression pattern but instead had a pattern
whereby some cells in almost every cluster expressed these genes,
with this being most evident for CD69 and COCH (Figure 2H).
In addition, IgM (from the VDJ-seq data), as well as TEX9 and
ITGB1 characterized both positive and negative cells in almost
every cluster (Figure 2I and J). Next, we wanted to determine
whether the cells that expressed IGHV3-7, IGKV4-1, and IGLV2-
14, which were localized to clusters 4, 5 and 6 (Figure 2F), still
clustered together after excluding the BCR-genes. We could still
analyze the expression pattern of these genes by adding back the
count data for all the BCR-genes. If they represented a particular
subset of cells defined by their BCR-genes, we would expect them
to still cluster together. However, our analysis showed that the
cells that expressed IGHV3-7, IGKV4-1, and IGLV2-14 were now
distributed across the clusters (Figure 2K). Since B cells express a
large repertoire of V-genes, irrespective of whether they are naive
B, memory B or plasma cells, this is the pattern that would be
expected. Thus, when the BCR-genes are retained, they influence
the unsupervised clustering, as it results in many clusters being
defined exclusively by a few BCR-genes. In contrast, excluding the
BCR-genes results in clusters that are defined by other genes, and
allows separation of the cells into biologically relevant subsets,
distinguishing, for instance, between switched and unswitched
memory B cells.

TCR-genes influence clustering of peripheral
blood T cells

As T cells express a TCR with a variable region that consists
of V(D)J-gene segments (Figure S1), we investigated whether the
TCR-genes influence the unsupervised clustering of T cells. To
this end, we analyzed a public scRNA-seq dataset obtained from
PB CD8" T cells (see Materials and methods section), applying
the same workflow as above (Figure S3). Following removal of all
the TCR-genes, unsupervised clustering of the cells (n=13 309)
resulted in 11 clusters (Figure 3A, Figure S3). Moreover, the top-
10 up-regulated DEGs supported the notion that they represent
different CD8+ T-cell subsets, such that for instance CD160 is
prominently expressed in cluster 1, FGFBP2 in cluster 2 and
KIR3DL1 in cluster 8 (Figure 3B, Table S2). Next, we performed
unsupervised clustering after inclusion of the TCR genes, using
the same parameters as above (Figure S3), which resulted in 29
clusters (Figure 3C, Figure S3). Analyzing the up-regulated DEGs
for each cluster revealed that, to an even greater extent than
was observed for the memory B cells, several of the clusters
contained relatively few cells and many of the up-regulated DEGs
were TCR-genes, including TCR « (TRA) and TCR B (TRB) chain
V-genes (Figure 3D, Table S2). For instance, TRAV39 and TRBV9
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Figure 1. Unsupervised clustering of peripheral blood memory B cells after removal of the BCR-genes, with results for five clusters. A-G, Analyses of
single-cell RNA sequencing data from sorted PB memory B cells after the BCR-genes were removed. A, Elbow plot showing the standard deviation
explained by each PC; the dashed line depicts the number of PCs used for the unsupervised clustering. B, Clustree plot showing the size and the
number of clusters for different values of the Seurat::FindClusters resolution parameter. C, UMAP projection and unsupervised clustering of PB
memory B cells. D, Heat map displaying the scaled relative expression of the top-10 significantly up-regulated genes for each cluster (Bonferroni-
adjusted P-values <0.05 of the Seurat negative binomial generalized linear model). Gene list in Table S1. Asterisks indicate genes plotted in E, and the
black horizontal lines indicate which DEGs are found in each cluster. E-G, UMAP projection of all the cells: E, colour scheme according to the scaled
level of gene expression; F, cells expressing a productively re-arranged IgM are highlighted; and G, colour scheme according to the scaled level of gene
expression.
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Figure 2. Unsupervised clustering of peripheral blood memory B cells retaining the BCR-genes, with results for 12 clusters. A-J, Analyses of single-cell
RNA sequencing data for sorted PB memory B cells with the BCR-genes retained. A, Elbow plot showing the standard deviation explained by each PC;
the dashed line depicts the number of PCs used for the unsupervised clustering. B, Clustree plot showing the size and the number of clusters for
different values of the Seurat::FindClusters resolution parameter. G, UMAP projection and unsupervised clustering of PB memory B cells. D, Heat map
displaying the scaled relative expression of the top-10 significantly up-regulated genes for each cluster (Bonferroni-adjusted P-values <0.05 of the
Seurat negative binomial generalized linear model). Gene list in Table S1. The asterisks indicate genes plotted in E and F, the black horizontal lines
indicate which DEGs are found in each cluster, and the arrows indicate the BCR-genes. E, F, H and J, UMAP projection of all the cells, coloured
according to the scaled level of gene expression. G, Lollipop plot displaying the percentages of BCR-genes among the top-50 genes in the first 50 PCs;
PCs used for unsupervised clustering are indicated by black stems. I, UMAP projection of all cells, with cells expressing a productively re-arranged IgM
highlighted in red. K, UMAP projection of PB memory B cells clustered without BCR-genes, whereby the BCR-genes were then added back, and their
scaled levels of gene expression are shown.
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pre-dominated in cluster 13, and the latter pre-dominated also
in cluster 14, while TRBV20-1 pre-dominated in clusters 15 and
16 (Figure 3E). Analyzing the CD8+ T cells in a manner similar
to that used for the memory B cells, we found that also here the
variance observed for many of the PCs was explained by more
than 50% TCR-genes, and for PC5 to PC50 (with the exceptions
of PC6 and PC7) more than 20% were TCR-genes (Figure 3F).
Thereafter, we added back the count data for the TCR-genes
and analyzed their expression pattern in the cells clustered after
exclusion of the TCR genes. This showed that the expression
patterns of TRAV39, TRBVY and TRBV20-1, previously assigned to
clusters 13-16, were now distributed across most of the clusters
(Figure 3G). To determine whether clustering in the absence of the
TCR-genes was biologically relevant, we analyzed the expression
patterns of TBX21 (Tbet) and GZMK (granzyme K). These represent
two genes that are expressed by some but not all CD8+ memory
T cells, and not by naive CD8+ T cells [11, 12]. This showed that
the levels of TBX21 were for instance, relatively high in cluster 2
but not in cluster 1 whereas GZMK was expressed in cluster 1 but
not as strongly in cluster 2 (Figure 3H). The expression of these
two genes was barely detectable in clusters 0, 6 and 7, whereas
these clusters expressed CCR7, a gene with the highest expression
levels in naive CD8+ T cells. These results demonstrate that not
only the genes that encode a BCR, but also those encoding a
TCR influence the unsupervised clustering of lymphoid cells. The
results also demonstrate that excluding the TCR-genes results in
biologically relevant clusters, such as CD8+ memory T cells.

BCR-genes influence down-stream analyses

To understand the developmental pathway and cell fate, cluster-
ing analyses are often followed by down-stream analyses such as
pseudo-time and trajectory inference. Since the presence versus
absence of BCR-genes and TCR-genes had such a strong effect
on the clustering of B and T cells, respectively, we hypothe-
sized that these types of down-stream analyses would also be
affected, and not just the gene expression patterns. As earlier
work based on cell surface markers and the recombination status
of the BCR (Ig) genes uncovered a developmental pathway from
progenitor to precursor to immature B cells [13], we focused
on BM early B-lineage cells. Accordingly, these cells would be
optimal for down-stream pseudo-time and trajectory inference
analyses, in contrast to subsets of PB memory B and CD8+ T
cells, where these pathways are not as well-known and the sub-
ject of investigation. Thus, we analyzed BM early B-lineage cells
(progenitor, precursor and immature B cells). After analyzing
the cells (n=5016 cells) using an Elbow plot and Clustree plot
(Figure S4), regressing cell cycle genes and removing the BCR-
genes, we performed unsupervised clustering, which yielded 8
clusters (Figure 4A). These were all well-defined, as evidenced by
a heat map showing the top-10 DEGs per cluster, exemplified by
the expression of IGF2.1 mainly in cluster 0, HMHBI1 in cluster 2
and LY9 in cluster 5 (Figure 4B, Table S3). In contrast, when the
BCR-genes were retained, the unsupervised clustering resulted in
11 clusters, with some of these being defined by only a couple
of genes, including BCR-genes (Figure 4C and D). For instance,
clusters 6, 7 and 10 showed only one or two up-regulated DEGs
each, of which at least one was a BCR V-gene (IGHV4-34, IGHV3-
23 or IGHV3-33, respectively). Plotting their expression patterns
showed that most of the cells that expressed these genes were
localized to clusters 6, 7 and 10, respectively (Figure 4E). As was
observed in the other datasets, some of the PCs in this dataset
contained around 40% BCR-genes, and at least 10% were identified

in PC12-PC50 (Figure 4F). The slightly smaller proportion of BCR-
genes in the PCs in this dataset is likely due to the presence of
cells that do not express BCR-genes, as they have not undergone
VDJ (progenitor B cells) or VJ (precursor B cells) recombination
of the IGH and IGL loci, respectively. Nevertheless, adding back
the count data for the BCR genes on the cells clustered in their
absence, demonstrated that the expression of IGHV4-34, IGHV3-
23, and IGHV3-33 was spread throughout all the clusters, except
for clusters 2 and 6, which did not express any of these three genes
(Figure 4G).

Previous work has shown that progenitor B cells express CD34,
and that progenitor and precursor B cells consist of both resting
and cycling (large) cells, whereas immature B cells are resting cells
(Figure 5A) [13]. Consistent with the above observation that clus-
ters 2 and 6 did not express the analyzed IGHV genes (Figure 4G),
these cells expressed CD34 and, thus, represent progenitor B cells
(Figure 5B). Analyzing the expression of MKI67 (Ki67), which is
linked to proliferation, showed that it was expressed in clusters
6, 3 and 4 (Figure 5C). Moreover, the gene for CXCRS5, a chemokine
receptor that is indicative of cells migrating to the spleen, was
expressed in cluster 5. Taken together, this suggested that clusters
2 and 6 represented resting and cycling progenitor cells, respec-
tively, and that clusters 3 and 4 represented cycling precursor B
cells, whereas the remaining cells would be resting precursor B
and immature B cells, with the most-mature of the immature
B cells being assigned to cluster 5. To analyze these early B-
lineage cells for a developmental pathway, we used Monocle 3.
Inference of the pseudo-time values and developmental trajec-
tory, starting with the resting progenitor B cells, revealed that all
the clusters were part of the developmental trajectory, following
a pathway from resting to cycling progenitor B cells, to cycling
precursor B cells via resting precursor B to immature B cells, and
ending in cluster 5 (Figure 5D), which are the cells expressing
CXCRS (Figure 5C). Thus, a pathway from progenitor via precur-
sor to immature B cells would be consistent with the current
literature.

Next, we performed the same analyses but with retention of
the BCR-genes. The expression pattern of CD34 was similar to that
described above, detecting two clusters (Figure 5E). Consistent
with this, one of these two clusters expressed MKI67, suggesting
that this represented the cycling progenitor B cells. MKI67 was also
expressed in clusters 8 and 3, as well as in some of the cells in clus-
ters 6 and 7 (Figure 5F). When inferring the pseudo-time values
and developmental trajectory, starting with the resting progenitor
B cells, we found that some of the cells/clusters were close to the
developmental trajectory, while others were not, as if they were
not part of the developmental pathway (Figure 5G). Among the
latter were clusters 6, 7 and 10, which were defined by expression
of the IGHV-genes (Figure 4E). Moreover, the developmental path-
way seemingly had three end-points, of which two were defined
by the expression of IGHV3-23 and IGHV3-33, i.e. clusters 7 and 10,
respectively. The cells in the third end-point did express CXCR5
but did not represent the most mature of the immature B cells
according to the pseudo-time analysis. Next, we focused on the
cells in clusters 6, 7 and 10 that were found among the most-
mature cells according to the pseudo-time values (Figure 5G) and
projected these onto the clusters obtained in the absence of BCR
genes. This showed that these cells were now spread throughout
all the clusters having undergone VDJ-recombination, i.e. except
for the progenitor B cells, and were thus found at all stages in the
developmental pathway (Figure 5H and I). Thus, the BCR-genes
interfere also with down-stream analyses of sScRNA-seq data, such
as analyses of developmental pathways and cell fate.
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significantly up-regulated genes in each cluster (Bonferroni-adjusted P-values <0.05 of the Seurat negative binomial generalized linear model). Gene
list in Table S3. The black horizontal lines indicate which DEGs are found in each cluster. C-F, Unsupervised clustering with BCR-genes retained. C,
UMAP projection and unsupervised clustering. D, Heat map displaying the scaled relative expression levels of the top-10 significantly up-regulated
genes in each cluster (Bonferroni-adjusted P-values <0.05 of the Seurat negative binomial generalized linear model). The asterisks indicate genes
plotted in E, the arrows indicate the BCR-genes, and the black horizontal lines indicate which DEGs are found in each cluster. Gene list in Table S3. E,
UMAP projection of all the cells, coloured according to scaled gene expression level. F, Lollipop plot displaying the percentages of BCR TCR-genes
among the top-50 genes in the first 50 PCs; PCs used for unsupervised clustering are indicated by black stems. G, UMAP projection of BM early
B-lineage cells clustered without BCR-genes, whereby the BCR-genes were added back, and their scaled gene expression is shown.
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Discussion

Taken together, these results demonstrate that BCR-genes and
TCR-genes interfere with scRNA-seq analyses of B and T cells, and
this has implications for subsequent analyses. This is a crucial
issue, as the initial clustering often forms the basis for down-
stream analyses, for instance, comparison of DEGs in different
clusters to identify cell subsets, cell fate and trajectories, and
gene-set enrichment for pathway analyses. The validity of the
clustering also affects the identification of disease-specific char-
acteristics, treatment responses, and diagnostic and prognostic
biomarkers based on scRNA-seq analyses.

A broad immune repertoire is essential for a healthy immune
system, with BCRs and TCRs established according to the pairing
of heavy and light chains, each of which uses unique combina-
tions of V(D)J gene segments. Although the V(D)J-recombination
process is to some extent random, it is evident from the VH-
usage patterns observed in naive B cells (and T cells) that usage is
not proportional to the number of VH-genes in the genome [14,
15]. For instance, the Ig genes VH1-69 and VH4-34 are used in
around 5%, respectively, while other VH-genes are used in smaller
or even larger proportions. Nevertheless, there are some stereo-
typed receptors that use particular Ig V-genes, although these
are mainly found in B-cell tumours and certain autoimmune
diseases, e.g. mixed cryoglobulinemia and chronic B-lymphocytic
leukaemia where VH1-69 and VH4-34 are frequently used, and
in systemic lupus erythematosus where the usage of VH4-34 is
particularly high. In terms of T cells there exist, for instance,
MAIT cells that are defined by a semi-invariant TCR, and another
example is the INKT cells that use TRAV24 recombined with JA18,
and often in combination with a certain TRBV11. In most of these
cases, we would expect the cells to show similar transcriptomics
profiles, which means that they would be assigned to the same
cluster when analyzed in the absence of TCR/BCR gene tran-
scripts.

The importance of excluding the BCR-/TCR-genes before the
analysis of scRNA-seq datasets is perhaps best illustrated by our
analyses of the BM early B-lineage cells. These represent the
cells that after maturation form the pool of naive B cells, so it
is essential that they express as broad as possible a repertoire
of BCRs. Our data show that when analyzing the early B-lineage
cells in the presence of BCR transcripts they form clusters that
express particular IGHV, IGKV and/or IGLV transcripts (e.g. IGHV4-
34, IGHV3-23, and IGHV3-33). These clusters consist of relatively
mature cells, according to the pseudo-time analysis, and in the
trajectory inference analysis, they are found either outside of
the developmental pathway or forming separate branches. How-
ever, when analyzed in the absence of BCR-transcripts, these
same cells are found in all developmental stages, consistent
with the formation of a large repertoire of BCRs, and biologically
relevant.

Our results show that it is mostly the V-genes that dominate
the clustering when retaining the BCR-/TCR-genes, although
constant region genes from both BCR- and TCR-loci were found
in several PCs and among the top-10 DEGs. We also found
that if we excluded only the IGHV-gene transcripts that pre-
dominated in the clustering, other BCR transcripts became
dominant (data not shown). As a consequence, we chose to
exclude all the BCR-/TCR-genes. In many instances, sc-RNAseq
analyses are based on 2000-3000 HVGs. As the BCR-genes could
correspond to as much as 5% of the HVGs, the BCR- (and
TCR) genes were excluded before calculating the number of
HVGs.
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Conclusion

In order to answer with confidence scientific questions based
on analyses of scRNA-seq data, the BCR-/TCR-genes need to be
excluded from the clustering analyses.

Materials and methods

Sample collection

Human peripheral blood memory B cells

Frozen peripheral blood mononuclear cells (PBMCs) from a patient
with rheumatoid arthritis were thawed as for the BM. CD20*
memory B cell subpopulations were sorted as one population
containing CD27+1gD*, CD27*IgD~ and CD27-IgD~ cells to high
purity with a Sony SH800. Dead cells were excluded by staining
with a Fixable Viability Dye eFluor™ 506 (Invitrogen).

Human peripheral blood CD8+ T cells

Described at: https://www.10xgenomics.com/resources/datasets/
cd-8-plus-t-cells-of-healthy-donor-1-1-standard-3-0-2.

Human early B-lineage bone marrow cells

Frozen bone marrow (BM) cells from two healthy donors were
thawed and resuspended in RPMI-1640 10% FCS (ThermoFisher).
CD24M CD38M early B-lineage cells were sorted to high purity with
a Sony SH800. Dead cells were excluded by staining with a Fixable
Viability Dye eFluor™ 506 (Invitrogen).

Single-cell RNA sequencing

Sorted cellular suspensions were loaded into the Chromium appa-
ratus (10x Genomics Inc., Pleasanton, CA, USA) to generate single-
cell GEMs (Gel Bead-In EMulsions). The single-cell GEMs were
then processed following the Chromium Single Cell V(D)J Reagent
Kits Protocol (10x Genomics). Sequencing was performed using
NextSeq (Illumina).

Analysis of single-cell RNA sequencing data
Early B-lineage BM cells and peripheral blood memory B
cells

Raw base-calling files from the sequencing data were de-
multiplexed, trimmed, filtered, and aligned to the GRCh38
genome assembly using the software suite Cell Ranger (v. 3.1.0;
10x Genomics). Gene expression count matrices were imported
into the R package Seurat [16] (v. 4.0.4) using R (v. 4.0.4), where
further quality control was performed. Genes found in fewer
than 3 cells, and cells with fewer than 200 expressed genes
were excluded. BCR-genes were removed from the count data
using regular expression commands with the following patterns:
‘IG[HKL]V’, ‘IG[KL])J’, IGIKL]|C’, IGH[ADEGM]'. Counts were log-
normalized, scaled and centred. The 2000 most-variable features
were calculated with variance-stabilizing transformation and
used for the principal component (PC) analysis. The 10 first
PCs (decided by Seurat::ElbowPlot) were used to construct
an approximate nearest-neighbour graph, and clustering was
performed with Seurat:FindClusters with the resolution set
to 0.8 decided by Clustree [17]. Dimensionality reduction was
performed with uniform manifold approximation and projection
[18] (UMAP). A cluster with a high proportion of mitochondrial
transcripts was identified and removed before the down-stream
analyses. The single-cell transform wrapper [19] in Seurat (v.
0.3.2) was implemented using the first 20 PCs, and with the
resolution parameter set to 0.8, decided by Clustree, as well
as regression of ‘G2M.Score’ and ‘S.Score’ obtained from the
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Seurat::CellCycleScoring function. Ig-genes were added back by
importing the count data again as a new assay to the Seurat
object, without the filtering step to remove the Ig-genes. The two
BM datasets were integrated using the SelectIntegrationFeatures,
PrepSCTIntegration, FindIntegrationAnchors and IntegrateData
functions from the Seurat package. Due to the larger number
of cells, we detected two clusters with a high proportion
of mitochondrial transcripts, which were removed from the
downstream analyses. To identify genes that were differentially
expressed between the clusters, we used a negative binomial
generalized linear model with the Seurat Seurat::Findallmarkers
function. The resulting list was filtered by selecting the lowest
adjusted P-value (Bonferroni-corrected P-value <0.05), so as
to identify the top 10 statistically significantly up-regulated
genes for each cluster (although, for some clusters fewer than
10 genes were identified). Monocle 3 [20-22] (v. 0.2.3.0) was
used for calculating pseudo-time values and inferring the
developmental trajectory. The Seurat object was imported using
the SeuratWrappers::as.cell_data_set (v. 0.3.0) programme and
further analyzed using default settings with the root node set to
the cluster that contained cells expressing CD34, as these were
the earliest B-lineage cells in the dataset. For the analyses with the
BCR-genes retained, we performed the same steps as described
above.

Peripheral blood CD8+ T cells

Count data matrices were retrieved from the 10x Genomics web-
site (https://www.10xgenomics.com/resources/datasets/cd-8-
plus-t-cells-of-healthy-donor-1-1-standard-3-0-2). The analyses
were performed in a manner similar to that used for the BM
samples. However, cells for which >5% of the total transcripts
were of mitochondrial origin were excluded. Seurat::FindClusters
was run with the resolution set to 0.4. TCR-genes were removed
from the count data using a regular expression command with
the following pattern:'*TR[ABDG][VJC]. A cluster containing cells
positive for CD3E, CD19 and CD14 was discarded.

Key Points

e The analyses of scRNA-seq datasets derived from vari-
ous sources of B cells show that the genes that encode
B-cell antigen receptors interfere with the process of
unsupervised clustering, as well as the down-stream
analyses of these cells.

e The analyses of a publicly available T-cell scRNA-seq
dataset show that the genes that encode T-cell receptors
interfere with the unsupervised clustering of these cells.

» This interference is likely due to the high frequencies
of B- and T-cell receptor genes among the genes that
account for most of the variance in each of the PCs used
for the clustering.

e The effects of the B-cell and T-cell receptor genes are
abrogated upon their exclusion before clustering is
undertaken.
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