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Abstract

In typical in vitro tests for clinical use or development of antibiotics, samples from a bacterial 

population are exposed to an antibiotic at various concentrations. The resulting data can then be 

used to build a mathematical model suitable for dosing regimen design or for further development. 

For bacterial populations that include resistant subpopulations—an issue that has reached alarming 

proportions—building such a model is challenging. In prior work, we developed a related 

modeling framework for such heterogeneous bacterial populations following linear dynamics 

when exposed to an antibiotic. We extend this framework to the case of logistic dynamics, 

common among strongly resistant bacterial strains. Explicit formulas are developed that can 

be easily used in parameter estimation and subsequent dosing regimen design under realistic 

pharmacokinetic conditions. A case study using experimental data from the effect of an antibiotic 

on a gram-negative bacterial population exemplifies the usefulness of the proposed approach.

Keywords

antibiotic resistance; nonlinear dynamics; logistic growth; bacterial population; modeling; 
cumulant

Introduction

The accelerated emergence of bacterial strains that resist attacks by antibiotics was observed 

as early as a decade after the initial widespread use of penicillin.1 In fact, naturally occurring 

resistant bacteria have existed long before antibiotics were used for therapeutic purposes.2 

Widespread use of antibiotics has greatly accelerated this adverse natural selection. By now, 

bacterial resistance to antibiotics has reached such alarming proportions 3–9 that a task-force 

was formed in 2014 by US Government executive order to coordinate efforts for addressing 

this critical public-health issue.10
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Effective clinical use or development of antibiotics typically requires a series of tests, one 

of which involves in vitro exposure of samples from a bacterial population to an antibiotic 

at various concentrations (time-kill test). From the outcomes of such tests conclusions are 

drawn on how to design effective antibiotic dosing regimens to accommodate the antibiotic’s 

pharmacokinetics in vivo. A mathematical model is often employed to assist the process by 

capturing the dynamics of the antibiotic’s bactericidal activity.

Because a bacterial population may contain bacteria that cannot be killed by an antibiotic, it 

is common to model the population as two subpopulations, one resistant and one susceptible 

to the antibiotic.11,12 Experimental evidence for the presence of resistant bacteria in a 

population is easily provided in a time-kill test when, for some antibiotic concentrations, 

the bacterial population initially declines, due to killing of susceptible bacteria, and 

subsequently starts growing, owing to resistant bacteria taking over.

While this resistant/susceptible modeling dichotomy is conceptually valuable, it may 

yield models that provide misleading quantitative information regarding what antibiotic 

concentrations would eradicate an entire bacterial population (by preventing eventual growth 

of its most resistant subpopulation).13–18 In previous work,18 we ascribed that modeling 

deficiency to the fact that the bacterial rate of killing by the antibiotic (i.e., susceptibility 

or resistance) can take a multitude of values spread over the bacterial population, 

rather than two distinct values corresponding to resistant or susceptible subpopulations. 

Correspondingly, we developed a mathematical modeling approach that accounts for this 

fact. In particular, we showed that the proposed approach can make useful longterm 

predictions in cases where the two-subpopulation approach fails.

The modeling approach in our previous work relied on the assumption of linear dynamics 

for physiological growth of a bacterial population. As we explain in the section Background 

and Motivation, this assumption is reasonable for a bacterial population in decline caused 

by exposure to an antibiotic. However, the assumption is not accurate when a population is 

not in decline, particularly not far from the population’s saturation point. Such a situation 

may easily arise in practice, when an antibiotic shows weak bactericidal activity against 

strongly resistant strains. In such a situation, full nonlinear description of the bacterial 

population logistic dynamics not far from population saturation would offer better accuracy. 

The objective of this article is to develop the corresponding modeling approach. Specifically, 

the main idea is to develop for the logistic-dynamics case the counterpart of results 

developed earlier for the linear-dynamics case. While pursuing the main idea, we present 

newly discovered results that bear significance for the linear case as well.

In the rest of the article, background and motivation for this work is presented in more 

detail in the section Background and Motivation. The main theoretical results are presented 

in the section Results. A Case Study section that illustrates the usefulness of the formulas 

developed based on laboratory experimental data is presented next, followed by a Discussion 

section. All proofs and experimental details are presented in appendices.
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Background and Motivation

As mentioned above, standard in vitro time-kill experiments expose samples of a bacterial 

population to an antibiotic at various concentrations (usually twofold or fourfold dilutions) 

that remain constant over time. Starting with a population of N0 similar bacterial cells in 

an environment of an antibiotic at a time-invariant concentration C, a standard population 

balance assuming logistic physiological growth yields

dN
dt = KgN t 1 − N t

Nmax

logistic physiological growth rate 

− r C N t
kill rate 

 dut  to antribiotic 

, N 0 = N0 (1)

where the bacterial population size N t  is treated as a continuous variable; Kg is the specific 

growth rate of the bacterial population; Nmax is the saturation size of a bacterial population, at 

which further growth stops; and r C  is the specific bacterial kill rate due to an antibiotic at 

concentration C, assumed to be the same for all bacterial cells. A typical form of r C  is the 

Hill expression 11,19,20

r C = KkCH

CH + C50H
(2)

where Kk is the asymptotic maximum value of the specific kill rate as C ∞ ; C50 is the 

antibiotic concentration at which the kill rate reaches 50% of its asymptotic maximum value; 

and H is the Hill exponent,21 which determines how sigmoidal (inflected) the shape of r C
is.

It is clear that for a population size far from its saturation point (i.e. N t ≪ Nmax  Eq. 1 has 

the solution N t = N0exp   Kg − r C t , which corresponds to a straight line in a plot of 

log   N t  vs. t. Unfortunately, as already mentioned, such a straight line is seldom observed 

in experimental data, as shown in Figure 1. This suggests that corresponding bacterial 

populations are not homogeneous, namely they consist of subpopulations that experience 

different killing rate constants r C . (The growth rate constant Kg is assumed to be the same 

for all subpopulations, due to common physiology among bacteria of the same species, 

barring small fluctuations due to bio-fitness cost incurred by resistant strains.) Consequently, 

Eq. 1 is no longer valid and must somehow be modified, to account for the distribution of 

r C  over the bacterial population.

Starting with Eq. 1 for N t ≪ Nmax, Nikolaou and Tam18 developed explicit expressions 

for N t  and for the distribution of r C  over the population as a function of time. The 

distribution of r C  is important for the following reasons:

• The smallest value of r C  must be larger than Kg for complete eventual 

eradication of the entire bacterial population, including its most resistant 

subpopulation.
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• Knowledge of r C  as a function of C for the most resistant subpopulation is 

essential for determining whether a dosing regimen is effective under realistic 

pharmacokinetic conditions, when repeated cycles of antibiotic injection and 

exponential decline of C over time during each cycle are encountered. It turns 

out22 that when the antibiotic is injected every T  time units, then the quantity 

D ≙ 1
T ∫0

T r C t dt for the most resistant subpopulation must be larger than Kg for 

complete eradication of all bacteria.

• An explicit formula for N t  would be useful for convenient estimation of the 

model parameters.

Now, as Figure 1 indicates, experimental data may well be available for a population not 

far from its saturation point, in which case the population dynamics is nonlinear. For similar 

reasons as in the linear case, it would be desirable to have an explicit formula for N t  and 

for the distribution of r C  over the population as a function of time. Quite remarkably, it 

turns out that corresponding explicit formulas can be developed for the nonlinear case as 

well. This is discussed in the next section.

Results

General case

Consider a heterogeneous bacterial population for which the bacterial kill rate induced by 

an antibiotic at time-invariant concentration C varies among bacteria, with more resistant 

(less susceptible) bacteria corresponding to lower values of the kill rate constant r C . This 

setting is plausible from a physiological viewpoint, given that variability is expected within 

any given bacterial species, whether such variability is mild or pronounced. Therefore, the 

entire bacterial population can be split into a number of subpopulations indexed by k, each 

subpopulation having size Nk t , with

k
Nk t = N t (3)

Each subpopulation of size Nk t  satisfies the counterpart of Eq. 1, namely

dNk

dt = Kg 1 − N t
Nmax

− rk C Nk t , k = 1, 2, 3, … (4)

Note that the term 1 − N t /Nmax is common for all subpopulations, because it refers to 

competition among bacteria for common resources. Note also that it is important to

In contrast to Eq. 1, of Bernoulli type with the standard closed-form solution

N t = N0

r C
Kg

− 1

− N0
Nmax

+ e r C − Kg t r C
Kg

− 1 + N0
Nmax

(5)
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the set of equations in Eq. 4 does not admit a standard solution for N t . Furthermore, 

measuring each subpopulation size Nk t  is practically infeasible; rather, only measurements 

of N t  can reasonably be obtained. Therefore, a formula is needed for N t  as a function 

of time for model parameter estimation. In addition, it is of paramount importance to 

estimate the kill rate rk C  of the most resistant subpopulation, to ensure that an antibiotic 

concentration C is identified that guarantees eradication of the entire population, including 

its most resistant subpopulation under in vitro or in vivo pharmacokinetic conditions. It 

should also be noted that the exact distribution of rk C  over the population is of secondary 

importance.

Explicit formulas for N t  and estimate of rk C  for the most resistant subpopulation are 

provided next. Note that index k eventually drops out from all results.

Theorem 1. Aggregate dynamics of heterogeneous bacterial population with logistic growth

Assume that a heterogeneous population of N0 bacteria is exposed to an antibiotic at time-

invariant concentration C. The population has a number of subpopulations, each of which 
satisfies Eq. 4. Then the aggregate growth or decline of the entire bacterial population is 
characterized by the following equations

dN
dt = Kg 1 − N t

Nmax
− μ t N t (6)

dμ
dt = − σ t

2
(7)

dσ2

dt = − κ3 t (8)

dκn

dt = − κn + 1 t , n ≥ 3 (9)

where

μ t =∧
k

rk C Nk t
N t (10)

and

σ2 t =∧
k

rk C − μ t 2Nk t
N t (11)

are the average and variance, respectively, of the kill rate constant over the entire population 
at time t; and κn t  are the cumulants.23, p. 928 of the kill rate constant distribution function
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f rk C , t =∧ Nk t
N t (12)

at time t, defined through the moment- and cumulant-generating functions, M s, t  and 
Ψ s, t , respectively, as follows

M s, t =∧
k

esrk C f rk C , t (13)

Ψ s, t =∧ ln   M s, t =
n = 1

∞ 1
n!κn t sn (14)

κn t =∧ ∂nΨ s, t
∂sn

s = 0
, n = 1, 2, … (15)

with κ1 t = μ t  and κ2 t = σ t 2

Proof. See Appendix B.

Remark 1. Comparison of linear and logistic growth dynamics

Interestingly enough, the equations resulting from Theorem 1, proved for logistic-growth 
dynamics, are remarkably similar to these in Theorem 1 of Nikolaou and Tam.18 In fact, 
Eqs. 7–9 turn out to be similar, whereas Eq. 6 is of the same nature, that is, it is the 
logistic-growth dynamics counterpart of the linear-growth dynamics equation

dN
dt = Kg − μ t N t (16)

Consequently, the following remarks can be made, which are the counterparts of the linear-
growth dynamics case.

• The first four cumulants κn t ,   n = 1, …, 4, are directly related to the average, μ, 

variance, σ2, skewness, 
μ3

σ3 , and kurtosis excess, 
μ4

σ4 − 3, of the kill rate constant 

distribution, namely

κ1 = μ, κ2 = σ2, κ3 = μ3,  and κ4 = μ4 − 3σ4 (17)

where μℓ t  are the central moments defined as

μl t =
k

rk − μ t lf rk C , t , l ≥ 0 (18)

for the kill rate constant distribution function f.
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• Because −σ t 2 ≤ 0, Eq. 7 implies that the average kill rate constant μ t  (a 
measure of susceptibility or inverse measure of resistance) of a heterogeneous 
bacterial population will decrease monotonically with time. Furthermore, 
because μ t ≥ 0, μ t  will converge to a non-negative value. This is because more 
susceptible bacteria will be preferentially eradicated by the antibiotic over more 
resistant bacteria, until only the most resistant bacteria, if any, remain in the 
population.

Theorem 1 can be used to derive closed-form expressions for the time-dependence of the 

bacterial population size as well as of the average and variance of the kill rate constant 

distribution, as indicated next.

Theorem 2. Closed-form expressions for time-dependence of population characteristics

Under the assumptions of Theorem 1, the total bacterial population, kill rate constant 
average, and kill rate constant variance depend explicitly on the moment- and cumulant-
generating functions of the initial distribution of the kill rate constant r C  as

ln   N t
N0

= Kgt + Ψ − t, 0 − ln   1 + Kg
N0

Nmax
∫

0

t

eKgτM − τ, 0 dτ (19)

μ t = ∂Ψ s, 0
∂s s = − t

= μ 0 − σ2 0 t + 1
2!κ3 0 t2 − 1

3!κ4 0 t3 + … (20)

σ t
2

=
∂2Ψ s, 0

∂s2
s = − t

= σ 0
2

− κ3 0 t + 1
2!κ4 0 t2 − 1

3!κ5 0 t3 + … (21)

respectively. Moreover, the higher-order cumulants satisfy

κn t = ∂nΨ s, 0
∂sn

s = − t

= κn 0 − κn + 1 0 t + 1
2!κn + 2 0 t2 

− 1
3!κn + 3 0 t3 + …, n ≥ 3

(22)

Proof. See Appendix C.

Remark 2. Implications of Theorem 2

• For a population size far from its saturation point, Nmax, corresponding to 

approximately linear-growth kinetics, Eq. 19 generalizes the result obtained by 
Nikolaou and Tam18 as

ln   N t
N0

= Kgt + Ψ − t, 0 (23)
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• The terms Ψ − t, 0  and M − τ, 0  of Eq. 19, defined in Eqs. 13 and 14, 

respectively, refer to the cumulant-generating function and to the moment-
generating function of the initial bacterial population (they depend on the initial 
values of the cumulants κn 0 .

• While the initial values κn 0  of the cumulants may be practically impossible 

to estimate from experimental data alone, it is demonstrated in the following 
section that approximations of the initial distribution of the kill rate constant, 
r C , over the bacterial population results in convenient expressions that 
explicitly contain only a few parameters, which can be estimated from standard 
experimental data, namely from the size of the bacterial population at a few 
distinct points in time, measured during time-kill experiments.

Explicit formulas for specific distributions of the kill rate constant

It is interesting to examine the following two special cases of the above results, namely 

when the initial r C  approximately follows the normal or Poisson distribution, because 

closed-form expressions can be derived.

Normally Distributed Initial Kill Rate Constant.—Strictly speaking, it is impossible 

to have a distribution of the initial kill rate constant r C  that is exactly normal, because 

that would entail negative values for r C . Nevertheless, it is interesting to consider an 
approximately normally distributed r C , because, excluding the first two cumulants (average 

and variance), all higher-order cumulants of the normal distribution are identically23

κn 0 = 0, n ≥ 3 (24)

In that case, the following explicit formulas can be developed with applicability over limited 

time t.

Theorem 3. Explicit formulas for normally distributed initial kill rate constant

For initially normally distributed r C  with average μ and variance σ2, it follows that

ln   N t
N0

= Kg − μ t + 1
2σ2t2

  − ln   1 + Kg
N0

Nmax

π
2σ2exp   − Kg − μ 2

2σ2

× erfi   Kg − μ 0
2σ2 , Kg − μ + σ2t

2σ2

(25)

where erfi   z ≙ erf   iz /i, erf   z ≙ 2
π ∫0

z e−t2dt

μ t = μ − σ2t (26)

and
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σ t 2 = σ2 (27)

for a time period not exceeding

tmax = μ
σ2 (28)

In addition, for the same time period,

κn t = 0, n ≥ 3 (29)

that is, the distribution of r C  will remain normal for the same time period.

Proof. See Appendix D.

The above normality assumption yields simple explicit formulas and provides reasonable 

predictions for relatively short time periods, as has been demonstrated for linear growth 

dynamics by Nikolaou and Tam.18 However, the normal distribution assumption is 

problematic when predictions over longer periods of time are sought, for example, because 

μ t  Eq. 26, becomes negative. A better alternative is presented next, using a Poisson 

distribution.

Poisson-Distributed Initial Kill Rate Constant.—Assuming an underlying Poisson 

distribution for the kill rate constant r C  over the initial bacterial population yields explicit 

formulas that are valid over arbitrarily long time periods and, because they are explicit, 

they are convenient for parameter identification from total bacterial population time-kill data 

alone. Specifically, the initial kill rate distribution function is assumed to be

f rk C , 0 =∧ P r C − rmin

a
X

= k = λke−λ

k! , k = 0, 1, 2, … (30)

where the average and variance, λ > 0, of the Poisson-distributed variable X are related to 

the average, μ, and variance, σ2, of the kill rate constant, r C =∧ aX + rmin, as

μ = aλ + rmin ≥ 0 (31)

σ2 = a2λ = a μ − rmin ≥ 0 (32)

The parameter λ > 0 roughly determines the shape of the discrete unimodal distribution f, as 

can be visualized in Figure 2.

Given λ > 0, the parameters σ2, Eq. 32 and μ, Eq. 31, determine the spread and location of f, 

respectively. Equivalently, the parameters rmin ≥ 0 and a > 0 in Eq. 30 are the corresponding 

parameters for translation and dilation of r C , respectively.
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Within the above framework, the following explicit formulas can be developed.

Theorem 4. Explicit formulas for Poisson-distributed initial kill rate constant

Given Eq. 30, Eqs. 19, and 21 yield

ln N t
N0

= Kg − rmin t + λ e−at − 1

  − ln 1 + Kg
N0

Nmax
∫
0

t

exp Kg − rmin τ + λ e−aτ − 1 dτ

  = Kg − rmin t + λ e−at − 1
  − ln 1 + Kg

N0

Nmax

e−λ

a λ
Kg − rmin

a ∫
λe−at

λ

z
rmin − Kg

a − 1ezdz

(33)

μ t   = rmin + μ − rmin exp   − μ − rmin

λ t

  = rmin + λae−at
(34)

and

σ t 2   = μ − rmin
2

λ exp   − μ − rmin

λ t

  = λa2e−at
(35)

respectively, where the parameters rmin, a, μ, and λ = μ − rmin
a  depend on C. Note the 

connections between the integral in Eq. 33 and the incomplete gamma function, defined 
as

Γ c, z0, z1 ≙ ∫
z0

z1

zc − 1e−zdz (36)

Proof. See Appendix E.

Remark 3. Implications of Theorem 4

• The entire bacterial population will be eradicated if and only if rmin > Kg.

• The entire population will eventually be dominated by the most resistant 
subpopulation, as Eq. 34 implies that limt ∞ μ t = rmin.

• The logarithmic part on the right-hand side of Eq. 33 is negligible when the 

population size N t  is far from Nmax, but becomes significant when Nmax is close 

to Nmax (Figure 1).

• Following the convention that a declining bacterial population will be completely 
eradicated if there exists a time t > 0 such that N t = 1, Eq. 33 implies that such 
time will satisfy the equation
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ln   N0 + Kg − rmin t + λ e−at − 1 = 0 (37)

whose solution is

λ − ln   N0

Kg − rmin
− 1

a ProductLog 
aλexp   a λ − ln   N0

Kg − rmin

Kg − rmin
(38)

where the function Product log   z  is defined24 as the principal solution, w, of the 

equation z = wew.

• Estimating the dependence of rmin as a function of the antibiotic concentration 

C (e.g., Eq. 2) is crucial for determining whether a bacterial population will be 
eventually eradicated or grow, even if there is an initial decline due to elimination 
of the more susceptible subpopulations.

Case Study

The mathematical framework developed in the previous Theorem 4 was applied to time-kill 

data collected for populations of Escherichia coli exposed to the antibiotic moxifloxacin, 

referred to in Figure 1. Details of the experiments performed are provided in Appendix A.

The parameters Kg and Nmax were estimated from the population growth data, corresponding 

to antibiotic concentration C = 0, as shown in Figure 2.

Using the above estimates of the parameters Kg and Nmax, time-kill data for antibiotic 

concentrations C = 0.5 × MIC through C = 128 × MIC were fit by Eq. 33, as shown in Figure 

3. The corresponding estimates of the parameters rmin, λ, and a that appear in the model of Eq. 

33 are shown in Table 1, for each value of C.

The estimates of rmin for C = 0.5 × MIC through C = 128 × MIC can be fitted by Eq. 2 as 

shown in Figure 4, with corresponding parameter estimates shown in Table 2.

An important outcome of the above results is that an estimate of the antibiotic concentration 

C can be easily calculated that ensures eradication of the entire bacterial population, 

including its most resistant subpopulation. Indeed, eradication is guaranteed if rmin C = Kg, 

which, by Eq. 2, implies

C = C50
Kk − Kg

Kg

−1/H
= 2 . 2 × MIC (39)

as can be visualized in Figure 4. Thus, for this bacterial population, the antibiotic 

concentration that would ensure complete eradication is more than double the conventional 

minimum inhibitory concentration (MIC), because of the subpopulations comprising 

resistant strains.
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Discussion

A mathematical modeling framework was developed to describe the effect of antibiotics on 

heterogeneous bacterial populations (entailing subpopulations of nonuniform susceptibility 

or resistance to antibiotics). The essence of the framework is captured by Theorem 2, which 

generalizes and expands prior work developed for antibiotic/bacteria systems following 

linear dynamics18 to the case of logistic dynamics. From a practical viewpoint, Theorem 

4 offers convenient expressions that can be easily used for parameter estimation based on 

measurements of an entire bacterial population in time-kill experiments.

Because of its generality, Theorem 2 makes it possible to study the outcomes of various 

cases, including bimodal distributions.
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Appendix A: Details on Experiments Performed for Time-Kill Data 

Collection

Time-kill studies were performed with a wild-type Escherichia coli strain (MG 1655) with 

an inoculum of approximately 1 × 108 CFU/mL at baseline. Apart from the placebo control 

C = 0, five concentrations of moxifloxacin in Mueller-Hinton broth were used with fourfold 

increase between subsequent concentrations. All concentrations were normalized to fraction/

multiples of the MIC, equal to 0.0625 μg
mL , from 0.5 × MIC to 128 × MIC. The experiments 

were performed in a shaker water bath set at 35°C. Serial samples (0.5 mL) were obtained in 

duplicate over 24 h at baseline, 2, 4, 8, 12 and 24 h; viable bacterial burden was determined 

by quantitative culture. Before being cultured quantitatively, the bacterial samples were 

centrifuged (10,000 × G for 15 min at 4°C) and reconstituted with sterile normal saline 

to minimize the drug carryover effect. Total bacterial populations were quantified by spiral 

plating 10× serial dilutions of the samples 50μL  onto Mueller-Hinton agar plates. The 

media plates were incubated at 35°C for up to 24 h in a humidified incubator, then bacterial 

density from each sample was enumerated visually.

Appendix B: Proof of Theorem 1

Summation of Eq. 4 over all k yields

dN
dt = ∑

k
Kg 1 − N t

Nmax
− rk C Nk t

= Kg 1 − N t
Nmax

− μ t N t
(B1)

which is Eq. 6.

Taking derivatives of Eq. 12 with respect to time and combining it with Eqs. 4 and 6 yields
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d
dtf rk C , t = dNk

dt
1

N t − Nk t
N(t)2

dN
dt

  = Kg 1 − N t
Nmax

− rk C Nk t 1
N t

  − Nk t
N(t)2 Kg 1 − N t

Nmax
− μ t N t

  = μ t − rk C f rk C , t

(B2)

Taking derivatives of the moment-generating function, Eq. 13, with respect to time, and 

combining the resulting equation with Eq. B2 yields

∂M s, t
∂t = ∑

k
esrk C df rk C , t

dt = ∑
k

esrk C μ t − rk C f rk C , t

  = μ t M s, t − ∑
k

esrk C rk C f rk C , t
(B3)

Taking derivatives of the cumulant-generating function, Eq. 14, with respect to time, and 

combining the resulting equation with Eq. B2 yields

∂Ψ s, t
∂t = 1

M s, t
∂M s, t

∂t
  = 1

M s, t μ t M s, t − ∑
k

esrk C rk C f rk C , t

= μ t − 1
M s, t

∂M s, t
∂s

= μ t − ∂ln M s, t
∂s

= μ t − ∂Ψ s, t
∂s

(B4)

Expanding Ψ s, t  around s = 0 using Taylor series as

Ψ s, t Ψ 0, t
0

+ Ψ / 0, t s
κ1 t

+ 1
2!Ψ / / 0, t s2

κ2 t
+ 1

3!Ψ / / / 0, t s3

κ3 t
+ …

= κ1 t s + 1
2!κ2 t s2 + 1

3!κ3 t s3 + …
(B5)

and using the definition of cumulants in Eq. 15 yields

Ψ s, t
∂t = dκ1

dt s + 1
2!

dκ2

dt s2 + 1
3!

dκ3

dt s3 + … (B6)

and

Ψ s, t
∂s = κ1 t + κ2 t s + 1

2!κ3 t s2 + 1
3!κ4 t s3… (B7)
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Substituting the expansions of Eqs. B6 and B7 into Eq. B4 implies

dκ1

dt s + 1
2!

dκ2

dt s2 + 1
3!

dκ3

dt s3 + … =

μ t − κ1 t
= 0

− κ2 t s − 1
2!κ3 t s2 − 1

3!κ4 t s3 − …
(B8)

Equating like powers of s in the above equation yields

dκn

dt = − κn + 1 t , n ≥ 1 (B9)

which is Eq. 7 for n = 1, Eq. 8 for n = 2, and Eq. 9 for n ≥ 3

Appendix C: Proof of Theorem 2

Eq. B9 implies

dκ1/dt
dκ2/dt
dκ3/dt

⋮
dκ/dt

=

0 −1 0 ⋱
⋱ 0 −1 ⋱
⋱ ⋱ 0 ⋱
⋱ ⋱ ⋱ ⋱

J

κ1 t
κ2 t
κ3 t

⋮
κ t

(C1)

The corresponding solution of the above system of Eq. C1, which is in Jordan form, is

κ t = exp   Jt κ 0 =
k = 0

∞ 1
k!Jkκ 0 tk

(C2)

from which

κ1 t = κ1 0 − κ2 0 t + 1
2!κ3 0 t2 − 1

3!κ4 0 t3 + … (C3)

Or

μ t = μ 0 − σ2 0 t + 1
2!κ3 0 t2 − 1

3!κ4 0 t3 + … = ∂Ψ s, 0
∂s s = − t

(C4)

which is Eq. 20. Similarly,

κ2 t = κ2 0 − κ3 0 t + 1
2!κ4 0 t2 − 1

3!κ5 0 t3 + … (C5)

or

σ t
2

= σ 0
2

− κ3 0 t + 1
2!κ4 0 t2 − 1

3!κ5 0 t3 + … =
∂2Ψ s, 0

∂s2
s = − t

(C6)
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which is Eq. 21, and

κn t = κn 0 − κn + 1 0 t + 1
2!κn + 2 0 t2 − 1

3!κn + 3 0 t3

+ … = ∂nΨ s, 0
∂sn

s = − t
, n ≥ 3

(C7)

which is Eq. 22.

Next, integration of the Bernoulli differential equation in Eq. 6 implies

ln   N t
N0

= G t − ln   1 + Kg
N0

Nmax 0

t

exp   G τ dτ (C8)

where

G t =∧
0

t

Kg − μ θ dθ (C9)

which, by Eq. 20, becomes

G t = Kgt + Ψ − t, 0 (C10)

Therefore, substituting G t  from the above Eq. C10 into Eq. C8 results in

ln N t
N0

= Kgt + Ψ −t, 0

− ln 1 + Kg
N0

Nmax
∫

0

t

exp Kgτ + Ψ −τ, 0 dτ

= Kgt + Ψ −t, 0 − ln 1 + Kg
N0

Nmax
∫

0

t

eKgτM −τ, 0 dτ

(C11)

which is Eq. 19

Appendix D: Proof of Theorem 3

Equations 27 and 26 follow immediately from Eqs. 20 and 21, along with Eq. 24.

Combining Eqs. 19 and B5 with Eq. 24 yields

ln   N t
N0

= Kgt + μ − t + 1
2!σ2 − t

2

− ln   1 + Kg
N0

Nmax
∫

0

t

exp   μ − τ + 1
2!σ2 − τ

2
dτ = Kg − μ t + 1

2σ2t2

− ln   1 + Kg
N0

Nmax 0

t

exp   Kg − μ τ + 1
2σ2τ2 dτ

(D1)

which immediately yields Eq. 25.

Equation 29 follows immediately from Eqs. 24 and 22.
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Finally, Eq. 28 follows immediately from Eq. 26 and the fact that μ t ≥ 0.

Appendix E: Proof of Theorem 4

The proof follows straightforward facts on moment- and cumulant-generating functions for 

Poisson distributions and is provided for completeness.

Given Eq. 30, Eq. 13 implies

M − t, 0 ≙
k ≥ 0

e−trk C f rk C , 0

  =
k ≥ 0

e−t ak + rmin λke−λ

k!
  = exp   −rmint + λ e−at − 1
  = exp   −rmint + λ exp   − μ − rmin

λ t − 1

(E1)

which, combined with Eq. 14, implies that the cumulant-generating function is

Ψ −t, 0 = ln M −t, 0
= − rmint + λ exp − μ − rmin

λ t − 1
= − rmint + λ e−at − 1

(E2)

Substituting Eqs. E1 and E2 into Eq. 19 immediately yields Eq. 33.

To get a closed-form expression in terms of standard functions for the integral in the 

nonlinear term of Eq. 33, consider the transformation

x ≙ e−aτ (E3)

to get

  ∫
0

t

exp Kg − rmin τ + λ e−aτ − 1 dτ

  = ∫
1

e−at

exp Kg − rmin

−a lnx + λ x − 1 dx
−ax

  = e−λ

a ∫
e−at

1

x
rmin − Kg

a − 1eλxdx

  = e−λ

a λ
Kg − rmin

a ∫
λe−at

λ

z
rmin − Kg

a − 1ezdz

(E4)

leading to
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ln N t
N0

  = Kgt + Ψ −t, 0

  − ln 1 + Kg
N0

Nmax
∫

0

t

eKgτM −τ, 0 dτ

  = Kg − rmin t + λ e−at − 1
  − ln 1 + Kg

N0

Nmax

e−λ

a λ
Kg − rmin

a ∫
λe−at

λ

z
rmin − Kg

a − 1ezdz

(E5)

Note that the integral ∫λe−at
λ z

rmin − Kg
a − 1ezdz always converges because it is over the bounded 

interval λe−at, λ .
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Figure 1. Experimental data collected for a bacterial population of E. coli exposed to 
moxifloxacin.
Antibiotic concentration is measured in multiples of the MIC. Details on data collection are 

provided in Appendix A.
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Figure 2. Family of the discrete distributions f r = P r = rmin + ak = λke−λ
k! , k ≥ 0, 

for the kill rate constant r C  parametrized in terms of λ and rmin .

All distributions correspond to the same average μ = 1 and a = 1. Note that f r = 0 for r < 0.
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Figure 3. 

Typical shape of log   N
N0

 for a heterogeneous bacterial population with rmin < Kg (top) and 

rmin > Kg (bottom) when a saturation bound is absent Nmax = ∞  or present Nmax < ∞ .
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Figure 4. 
Data fit for C = 0 r C = 0 (top) and estimates of Kg and Nmax along with confidence 

regions for confidence levels 1 − 2−k, k = 1, …, 6 (bottom).
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Figure 5. 
Data fit for C = 0 . 5 × MIC through C = 128 × MIC (along with = 0) using Eq. 33.
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Figure 4. 
Fit (95% confidence zone) of the kill-rate constant rmin as a function of antibiotic 

concentration C.
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Table 1.

Estimates of the Parameters rmin, λ, a,  for C = 0 . 5 × MIC Through C = 128 × MIC   ± s denotes standard 

error)

C ×MIC rmin ± s 1/h λ 1/h a 1/h
0.5 0.58 ± 0.21 0.38 0.11

2 0.89 ± 0.04 1.3 4.1

8 0.97 ± 0.04 11 6.4

32 1.02 ± 0.03 12 4.9

128 1.04 ± 0.02 12 5.4
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Table 2.

Estimates of the Parameters Kk, C50, H for the Most Resistant Bacterial Subpopulation

Parameter Estimate ± Standard Error

Kk 1/h 1.03 ± 0.02

C50 ×MIC 0.39 ± 0.04

H 1.06 ± 0. 15
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