Skip to main content
. 2023 May 18;13:8072. doi: 10.1038/s41598-023-34650-6

Table 3.

Results from different ML algorithms.

Measures Subset AUC Accuracy F1 Recall Precision
Time series Train 0.49 0.51 0.00 0.27 0.35
Test 0.50 0.51 0.34 0.50 0.26
PC Train 0.67 0.67 0.69 0.67 0.66
Test 0.60 0.60 0.60 0.60 0.60
SC Train 0.98 0.98 0.97 0.98 0.98
Test 0.98 0.98 0.98 0.98 0.98
GC Train 0.51 0.52 0.00 0.32 0.37
Test 0.50 0.51 0.34 0.50 0.26
BM Train 0.75 0.75 0.72 0.75 0.75
Test 0.75 0.75 0.75 0.75 0.75
SCC Train 0.67 0.67 0.65 0.67 0.66
Test 0.62 0.62 0.62 0.62 0.62
GL Train 0.66 0.66 0.65 0.66 0.66
Test 0.57 0.58 0.57 0.57 0.57
LW Train 0.66 0.66 0.64 0.66 0.65
Test 0.58 0.58 0.58 0.58 0.58
MI Train 0.49 0.50 0.40 0.50 0.49
Test 0.49 0.49 0.49 0.49 0.49
TE Train 0.90 0.90 0.89 0.90 0.90
Test 0.91 0.91 0.91 0.91 0.91

The best MLs were RF and LR, whose performances are highlighted.

Significant values are in bold.