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Abstract
The behavior of gut microbiota is closely involved in sustaining balanced immune and metabolic homeostasis, and the dys-
biosis of gut microbiota can lead to severe disease. Foods and dietary patterns are the primary drivers in shaping/designing 
gut microbiota compositions and their metabolites across the lifetime. This indicates the importance of functional molecules 
present in the food matrix in the life of gut microbiota and their influence on the host’s biological system. In this contribution, 
the effects of different dietary choices and bioactive compounds (i.e., phenolics, vitamins, carotenoids) on gut microbiome 
compositions and their metabolites are comprehensively discussed by focusing on neurotransmitters. This study may provide 
useful information that fills a gap in understanding the role of the gut microbiota and its alterations as affected by foods and 
food-derived bioactives.
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Gut microbiota

The collection of microorganisms including bacteria, 
archaea and eukaryotes inhabiting the gut is referred to as 
the ‘gut microbiota’ (Foster and Neufeld, 2013). The gut 
microbiota is engaged in sustaining balanced metabolism 
by contributing to the successful degradation of macromol-
ecules ingested such as carbohydrates, proteins, and lipids 
(Chait et al., 2020). Recent findings show that gut microbiota 
plays a crucial role in the functions of the central nervous 
system (CNS) (Heijtz et al., 2011). Residential and com-
mensal bacteria colonize the gut of human beings after birth 
and throughout life; 1014–1015 of bacteria along with 1000 
distinct bacterial species live in the gut, contributing to the 
immune function, nutrient processing, and other aspects of 
the host’s physiology (Foster and Neufeld, 2013; Macpher-
son and Uhr, 2004; Tlaskalová-Hogenová et al., 2004).

Recent advanced techniques such as molecular and 
metagenomic approaches have enabled the characteriza-
tion of the composition of the gut microbiota, revealing that 

the diverse microbiomes in the gut form a complex ecol-
ogy and community (Foster and Neufeld, 2013). There are 
two predominant bacterial phyla in the gut: Firmicutes and 
Bacteroides, which account for more than 70% of the micro-
biome in the gut (Eckburg et al., 2005; Lay et al., 2005). 
Moreover, Proteobacteria, Fusobacteria, Actinobacteria, 
and Verrucomicrobia also reside in the gut in a lower num-
ber compared to Firmicutes and Bacteroides. A variety of 
environmental factors (i.e., genetics, diet, age, metabolism, 
geography, stress, and antibiotic treatment) affect the gut 
microbiota composition and behavior, which in turn influ-
ence its metabolic functions. In this review, we mainly focus 
on how food-derived bioactives affect gut microbiota pro-
files and their metabolites.

Diseases related to the dysbiosis of gut 
microbiota

The human gut possesses trillions of symbiotic microorgan-
isms (bacteria, archaea, fungi, etc.) that play a crucial role in 
regulating the host’s unique physiology in health and disease 
(Foster and Neufeld, 2013). Gut dysbiosis is referred to as a 
disruption of gut microbiota homeostasis due to an imbal-
ance in microflora, alterations in their functional profiles and 
metabolism, or changes in their distribution (Moos et al., 
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2016). A range of factors such as diet, age, genetics, and 
medications are responsible for gut dysbiosis (Chait et al., 
2020; Heiman and Greenway, 2016; Maier et al., 2018; Oda-
maki et al., 2016).

Recent findings reported that the dysbiosis of gut micro-
biota is strongly associated with the occurrence of many 
severe diseases such as inflammatory bowel disease, type 2 
diabetes, Crohn's disease, Parkinson’s disease, Alzheimer's 
disease, schizophrenia, and autism as well as mental ill-
nesses such as major depressive disorder and anxiety (Card-
ing et al., 2015; Clarke et al., 2013; Diaz et al., 2011; Gabbay 
et al., 2017; Nedic et al., 2021), indicating the importance of 
maintaining a well-balanced gut microbiota.

Gut dysbiosis by psychotropics

Psychotropic medications, such as antidepressants, mood 
stabilizers, antipsychotics, and anxiolytics, are widely 
applied in the treatment of many psychiatric disorders in 
which they exert their bioactivity by contributing to CNS 
reactions (Kaye et al., 2018). According to recent research, 
the alteration of gut microbiota diversity can be caused by 
psychotropic medications (Chait et al., 2020). Indeed, much 
attention has been paid to the alteration of gut microbiota 
by psychotropic administration in both in vitro and in vivo 
models. Chait et al. (2020) examined the antimicrobial activ-
ity of psychotropics in which the abundance of Akkerman-
sia muciniphila, Bifidobacterium animalis and Bacteroides 
fragilis were remarkably changed by antidepressant drugs 
such as phenelzine, desipramine, venlafaxine, bupropion, 
(S)-citalopram, and aripiprazole. Moreover, olanzapine 
administration increased the abundance of Firmicutes and 
Erysipelotrichi, while it decreased the level of Bacteroi-
detes, Proteobacteria, and Actinobacteria in a rat model 
(Davey et al., 2012; Morgan et al., 2014). In addition to the 
above evidence, a variety of studies have been carried out to 
screen the alteration of the gut microbiota profile upon psy-
chotropic administration (Cussotto et al., 2019; Lyte et al., 
2019). However, research on how this alteration affects gut 
microbiota-derived metabolites is limited.

The importance of gut microbiota‑derived 
metabolites

Metabolites secreted by gut microbiota have a significant 
function in the gut microbiota-brain axis; for instance, gut 
microbiota secrete diverse metabolites including neurotrans-
mitters and their precursors, and these molecules influence 
the interaction between the gut and brain via the endo-
crine, immune, and neurotransmitter systems (Chen et al., 
2021). For instance, gut bacteria secrete lipopolysaccharide 

and other endotoxins responsible for the activation of the 
peripheral immune system through immune cell activa-
tion and cytokine release, leading to the initiation of CNS 
inflammation (Caspani and Swann, 2019). Moreover, the 
gut microbiota produces metabolites such as gamma-amin-
obutyric acid (GABA), acetylcholine, short-chain fatty acid 
(SCFA), norepinephrine, and dopamine, and these molecules 
influence brain functions and conditions (Cox and Weiner, 
2018; Cryan et al., 2020). Thus, gut microbiota-derived 
metabolites significantly affect the host’s body and brain 
health, emphasizing the importance of the alteration of gut 
microbiota diversity upon exposure to psychotropic admin-
istration. Until now, despite tremendous scientific efforts to 
understand the alteration/dysregulation of gut microbiota 
as affected by psychotropics, critical limitations remain in 
understanding changes in the metabolites of gut microbiota 
upon exposure to psychotropics and following the altera-
tion of gut microbiota composition. Today, much progress 
has been made in mass spectrometry-based metabolomics 
in the identification and quantification of metabolites in a 
wide spectrum of biological samples (i.e., plant, microbial 
and mammalian samples), demonstrating that mass spec-
trometry-based is a rapid and high throughput approach in 
the determination of metabolite profiles in target samples. 
(Fernie et al., 2004; Gieger et al., 2008; Rinschen et al., 
2019).

Gut‑brain‑axis

The gut-brain axis, which refers to the two-way commu-
nication between the gut microbiota and the brain, has a 
crucial role in neuronal development, cognitive regulation, 
and brain function (Cryan et al., 2020) (Fig. 1). There are 
two main pathways in transmitting information between two 
areas: “top-down” and “bottom-up”. The top-down pathway 
is regulated by the hypothalamus–pituitary–adrenal axis in 
which the cortisol and cytokine secreted by immune cells 
significantly influence the gut microbiota community locally 
and systemically, influencing the diversity of gut microbiota 
and gut permeability (Cryan and Dinan, 2012). Conversely, 
the gut microbiota can influence alterations in the levels 
of circulating cytokines, affecting brain functions, and is 
referred to as the “bottom-up” pathway. In this way, the level 
of tryptophan and its interaction with the vagus and enteric 
nerve act as key functions in the gut-microbiota-brain axis. 
In addition, recent findings indicate that the gut microbiota 
produces a wide spectrum of metabolites including neuro-
transmitters and their precursors, which then take part in 
the bottom-up pathway. For example, spore-forming bacte-
ria produce metabolites that can improve the biosynthesis 
of serotonin in enterochromaffin cells (Chen et al., 2021). 
In addition, certain neurotransmitters and their precursors 
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released by the gut microbiota and enteroendocrine cells 
enter into the blood circulation and eventually reach the 
brain. This demonstrates the significance of gut microbiota 
and their metabolites in the communication between the gut 
and brain, in particular in the “bottom-up” pathway.

Gut microbiota‑derived metabolites 
with a focus on neurotransmitters

Many recent studies have investigated the biosynthesis of 
neurotransmitters (GABA, SCFA, dopamine, acetylcholine, 
norepinephrine, etc.) by gut microbiota as their metabolites 
as well as their influence on the brain's functions (Cox 
and Weiner, 2018; Cryan et al., 2020). For example, some 
research groups reported that interference in producing 
monoamine due to gut dysbiosis resulted in depressive dis-
order in the animal system, indicating a strong influence 
of gut microbiota on the occurrence of mental disorders 
(Clarke et al., 2013; Diaz et al., 2011; Neufeld et al., 2011). 
Moreover, patients with depression showed a notable altera-
tion in the level of Firmicutes, Actinobacteria, and Bacte-
roidetes compared to a control group (Zheng et al., 2016). 
Minato et al. (2017) reported that a significantly reduced 
level of Prevotellaceae was found in patients with progres-
sive Parkinson’s disease, which led them to suggest that the 
abundance of Prevotellaceae is a biomarker for Parkinson’s 
disease. Moreover, Li et al. (2017) stated that the level of 
Faecalibacterium is strongly related to the development and 
neuropathology of Parkinson’s disease. The above evidence 
clearly shows the crucial roles of the diversity of gut micro-
biota and their metabolite profiles in sustaining a healthy 
brain.

Synthesis and production 
of neurotransmitters by gut microbiota

Dopamine is a major catecholaminergic neurotransmitter 
and plays a crucial role in many functions of the brain 
such as emotion, memory, attention, motivation, and 
reward (Klein et al., 2019; Kleinridders and Pothos, 2019). 
Increasing evidence has demonstrated that dysregulation 
in the production of dopamine is closely related to men-
tal disorders, including depression and anxiety (Belu-
jon and Grace, 2017; Camardese et al., 2014; Carpenter 
et al., 2012; Gonzalez-Arancibia et al., 2019; Moraga-
Amaro et al., 2014). Some Bacillus species such as B. 
cereus, B. subtilis, and B. mycoides can synthesize dopa-
mine (Tsavkelova et al., 2000). In addition, Hafnia alvei 
(NCIMB, 11,999), (NCIMB, 10,466), Klebsiella pneumo-
niae (NCIMB, 673), and morganii enable the production of 
dopamine in the gut (Özoğul, 2004; Shishov et al., 2009). 
Cryan and Dinan (2012) also demonstrated the production 
and secretion of dopamine by Bacillus and Escherichia 
species. However, the mechanism of dopamine synthesis 
in the gut microbiota has not yet been fully investigated.

Serotonin is engaged in diverse brain functions includ-
ing mood, modulating reward, memory, cognition, learn-
ing, and other physiological processes (i.e., vasoconstriction 
and vomiting). Changes in the expression and production of 
serotonin in the brain lead to the pathogenesis of mental ill-
nesses, including depressive disorders and anxiety (Helton 
and Lohoff, 2015). The main pathway for the biosynthesis 
of serotonin is through enterochromaffin cells in the gut, 
thereby tryptophan hydroxylase 1 (Tph1) is involved in the 
reaction as the rate-limiting enzyme (Kwon et al., 2019). 
The synthesis rate of serotonin by enterochromaffin cells is 
largely affected by the available concentration of tryptophan 
required for the reaction; therefore, sustaining an adequate 
amount of tryptophan in the gastrointestinal tract is impor-
tant to maintaining an adequate level of serotonin.

Many studies have found serotonin-producing bacteria 
in the gut such as E. coli (K-12), Lactococcus lactis subsp. 
cremoris (MG 1363), Lactobacillus plantarum (FI8595), 
Candida spp., Streptococcus spp., Streptococcus thermophi-
lus (NCFB2392), Escherichia spp., and Enterococcus spp. 
(Cryan and Dinan, 2012; Özoğul et al., 2012; Shishov et al., 
2009). Gut microbiota also indirectly engage in the synthesis 
of serotonin; for example, enterochromaffin cells synthesize 
serotonin when they receive signals via gut microbiota-
derived metabolites, which increase the expression of the 
gene TPH1. Moreover, SCFAs produced by gut microbiota 
elevate the production of serotonin in the enterochromaffin 
cells (Reigstad et al., 2015). However, additional research 
should be carried out to understand the direct pathways for 
the synthesis of serotonin in gut microbiota.

Fig. 1   Gut-brain-axis: The importance of bidirectional communica-
tion between the brain and gut microbiota and their metabolite in con-
trolling mental disorders



1022	 J. Yeo 

1 3

Transportation of gut microbiota‑derived 
neurotransmitters to the brain

Gut microbiota-derived GABA is transferred to the brain 
via different pathways. Much attention has been paid to 
exploring the transportation mechanisms of GABA to the 
brain produced by the gut microbiota. GABA absorption 
in the intestinal system takes place via the transcellular 
pathway with the assistance of carrier proteins. GABA in 
plasma can enter the blood–brain barrier (BBB) via GABA 
transporters, including GABA transporter type 1, 2, 3, and 
4, which are also localized in other organs including the 
kidneys and liver. The plasma membrane GABA trans-
porters in the brain have a significant role in sustaining 
an adequate level of extracellular GABA around the syn-
apses (Zhou and Danbolt, 2013). The GABA transporters 
are the active voltage-dependent system through which 
the inward electrochemical gradient of Na+ considerably 
influences the action of GABA transporters (Scimemi, 
2014). In addition, the GABA transporter displays a weak 
micromolecular affinity to GABA, and it demands Cl− in 
the extracellular matrix (Scimemi, 2014). Therefore, the 
mechanism of GABA transportation from the intestinal 
system to the brain is well understood.

SCFAs produced by the fermentation of fiber by the 
gut microbiota are absorbed via colonocytes through 
sodium-coupled monocarboxylate transporters (SMCTs) 
and monocarboxylate transporters (MCTs), referred to 
as active transport (Vijay and Morris, 2014). The trans-
portation of SCFAs occurs through MCT1 transporters 
in an H+-dependent, while they can also be transported 
via sodium-dependent and electrogenic SMCTs, which 
is referred to as SCFA anion transport (Stumpff, 2018). 
SCFAs present in colonocytes are metabolized through the 
citric acid cycle in the mitochondria to generate ATP and 
energy (Schönfeld and Wojtczak, 2016). However, certain 
portions of SCFAs in colonocytes are not metabolized, 
leading them to enter circulation for consumption as an 
essential energy source in hepatocytes, except for acetic 
acids, which are not metabolized in the liver (Schönfeld 
and Wojtczak, 2016). This implies that only a certain 
range of colon-derived SCFAs enter the systemic circula-
tion; for instance, 36%, 9%, and 2% of gut microbiota-
derived acetate, propionate, and butyrate, respectively, 
enter the blood plasma and tissue (Boets et al., 2015). 
Bloemen et al. (2009) demonstrated that the usual levels 
of acetate, propionate, and butyrate in portal blood were 
260 μM, 30 μM, and 30 μM, respectively. However, the 
penetration abilities of SCFAs to the BBB have been rarely 
investigated; thus, further studies are needed for a better 
understanding of the effects of gut-derived neurotransmit-
ters on the roles of the brain. Meanwhile, the majority of 

neurotransmitters, including norepinephrine, dopamine, 
and acetylcholine, in blood circulation cannot get through 
the BBB due to the absence of proper transporters (Chen 
et al., 2021). However, the precursor molecules of these 
neurotransmitters, including tryptophan and tyrosine, can 
penetrate the BBB. Thus, they can be localized in the rel-
evant cells and utilized for the biosynthesis of neurotrans-
mitters in the brain.

Alteration of gut microbiomes by bioactive 
compounds

Increasing findings show the remarkable influence of bio-
active compounds in shaping the compositional and func-
tional patterns of the gut microbiota. Many studies have 
shown that bioactive compounds derived from diverse food 
sources cause substantial alterations in the composition of 
the gut microbiota (Wen and Duffy 2017; Wu et al. 2011). 
The alterations of gut microbiota profiles as affected by food 
bioactives are summarized in Table 1.

Polyphenols also have regulatory effects on gut micro-
biota composition. Gallic acid significantly reduced the 
counts of Bacteroides spp. and increased the abundance of 
Atopobium spp. (Hidalgo et al., 2012). Catechin improved 
the growth of the Clostridium coccoides–Eubacterium rec-
tale group, E. coli, and Bifidobacterium spp. and repressed 
the level of the Clostridium histolyticum group in in vitro 
batch-culture fermentation systems. The exposure of epicat-
echin to the gut microbiota increased the abundance of the 
C. coccoides–E. rectale group (Tzounis et al., 2011). Clavel 
et al. (2005) found that the administration of isoflavones at 
a dose of 100 mg/day for two months in human tests caused 
an enhancement in the level of the C. coccoides–E. rectale 
cluster, Faecalibacterium prausnitzii subgroup, Lactobacil-
lus-Enterococcus group, and B. spp. The administration of 
stilbene (resveratrol) dramatically improved the counts of 
Bifidobacterium and Lactobacillus during 20 days in rats 
in in vivo dietary intervention tests (Larrosa et al., 2009). 
Quercetin elevated the level of Bacteroides, Bifidobacterium, 
Lactobacillus, and Clostridia and reduced those of Fuso-
bacterium and Enterococcus in a mouse model (Lin et al., 
2019).

Research has also been carried out regarding the influ-
ence of proanthocyanidin on gut microbiota composition. 
For instance, Hidalgo et al. (2012) tested the effects of 
malvidin-3-glucoside on the alteration of gut microbiota 
in batch-culture fermentation with human fecal bacteria. 
Malvidin-3-glucoside remarkably improved the level of the 
beneficial bacteria B. spp. and Lactobacillus spp. In addi-
tion to the above findings, many studies have reported on the 
alteration of gut microbiota as affected by diverse phenolic 
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compounds. Phloridzin improved the adhesion of Lactoba-
cillus rhamnosus to Caco-2 cells (Parkar et al., 2008).

Meanwhile, carotenoids also showed a remarkable 
influence on the alteration of gut microbiota profiles. For 
instance, β-carotene remarkably reduced the level of Bacte-
roidetes and the genus Prevotella and Blautia, while it led 
to an increase in the abundance of phyla Firmicutes, genera 
p-75-a5, and Parabacteroides (Li et al., 2021). Moreover, 
a β-carotene treatment significantly enhanced the level of 
Faecalibacterium in a rat model system (Zhu et al., 2021).

Recently, accumulating evidence has shown that vitamins 
from the plant- and animal-based foods lead to alterations 
in the microbiome profiles in the gut. The changes in gut 
microbiome composition can result from exposure to certain 
food-derived bioactives or indirectly due to changes in the 
physiology of gut and intestinal lumen conditions (Pham 
et al., 2021). Vitamins have been proven to be microbiome-
modulators through several pathways. Some vitamins, 
including vitamins A, B6, C, and E, cause direct altera-
tions in gut microbiome profiles (Castillo et al., 2016; Miki 
et al., 2017; Vergalito et al., 2018;). In this section, a wide 
spectrum of examples regarding the effect of vitamins on 
changes in gut microbiota composition are summarized.

Liu et al. (2017) reported that giving 200,000 IU of a 
vitamin A supplement to 64 young children suffering from 
autism disorders significantly increased the abundance of 
Bacteroidetes, while it reduced the abundance of Proteobac-
teria, Actinobacteria, Enterobacter, Escherichia-Shigella, 
and Clostridium. Lv et al. (2016) studied the alteration of 

gut microbiota of infants with persistent diarrhea profiles 
through a vitamin A supplement in which the results showed 
that the levels of Enterococcus, Enterococcaceae, and Lac-
tobacillales were remarkably increased, while the abun-
dance of Escherichia-Shigella was decreased. Meanwhile, 
another study showed that the administration of vitamin A 
to 16 adult patients with cystic fibrosis enhanced the level 
of Clostridium and Gemellales and significantly decreased 
Bacteroidetes/Bacteroidia/Bacteroidales (Li et al., 2017). 
Thus, the above examples provide crucial information 
regarding discrepancies in the alteration of gut microbiota 
profiles due to the supplementation of vitamin A depending 
on the health status of patients, the dose, and other envi-
ronmental differences. Other bioactive molecules such as 
astaxanthin, eugenol, and curcumin also remarkably affect 
alterations of the composition of gut microbiota.

Changes in gut microbiota‑derived 
metabolites by bioactives and diets

Recently, increasing research has focused on the influences 
of food-derived bioactives on alterations in gut microbiota 
composition and their metabolites, in particular in neuro-
transmitters. Changes in gut microbiota-derived metabolites 
as affected by bioactives are summarized in Table 2.

Fogliano et al. (2011) investigated the influence of poly-
phenols in the water-insoluble cocoa fraction. They found an 
increase in the abundance of Bifidobacteria and Lactobacilli 

Table 1   Alteration in gut microbiota profiles by bioactive compounds

Bioactive compound Change in the composition of gut microbiome Reference

Gallic acid Reducing the counts of Bacteroides spp. and enhancement in the abundance of Atopobium spp. Hidalgo et al. (2012)
Catechin Simulate the growth of the C. coccoides–E. rectale group, Bifidobacterium spp. and E. coli, and 

repress the level of C. histolyticum group in in vitro batch-culture fermentation system
Tzounis et al. (2011)

Epicatechin Increase in the counts of the C. coccoides–E. rectale group in in vitro batch-culture fermenta-
tion system

Tzounis et al. (2011)

Isoflavones Enhancement in the abundance of C. coccoides-E. rectale cluster, F. prausnitzii subgroup, L.-
Enterococcus group, and Bifidobacterium spp.

Clavel et al. (2005)

Quercetin Increase in the abundance of Bacteroides, Bifidobacterium, Lactobacillus, and Clostridia and a 
decrease in Fusobacterium and Enterococcus in mice

Lin et al. (2019)

Stilbene (resveratrol) Increase in the counts of Bifidobacterium and Lactobacillus during 20 days in the rats in vivo 
dietary intervention tests

Larrosa et al. (2009)

Malvidin-3-glucoside Increase in the level of beneficial bacteria Bifidobacterium spp. and Lactobacillus spp. Hidalgo et al. (2012)
Phloridzin Elevate the adhesion of L. rhamnosus to Caco-2 cells Parkar et al. (2008)
Astaxanthin Increase in the abundance of Proteobacteria and Bacteroides in six-week-old male and female 

BCO2 knockout mice
Increase in the abundance of Actinobacteria and Bifidobacterium in male genetic background 

C57BL/6 J mice

Lyu et al. (2018)

Eugenol Increase in the population of Clostridales in mice Wlodarska et al. (2015)
Curcumin Increase in the population of Clostridium spp., Bacteroides spp., Citrobacter spp., Cronobacter 

spp., Enterobacter spp., Enterococcus spp., Klebsiella spp., Parabacteroides spp., and Pseu-
domonas spp. in human study

Peterson et al. (2018)
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followed by the elevation of butyrate production, indicat-
ing that bioactives from diets can modulate gut microbiota 
composition and their metabolites. Sembries et al. (2006) 
demonstrated that apple juice extracts and red beet juice 
extracts enhanced the level of neurotransmitters such as 
acetate, propionic acid, and butyric acid in a rat model. 
Moreover, Marques et al. (2018) found an increase in the 
production of kynurenic acid by altering tryptophan metabo-
lism in a rat model. Other studies also demonstrate improve-
ments in the level of SCFAs in rat models upon exposure to 
food sources; namely, berberine promoted the production of 
butyrate in rats, and dietary fiber (resistant starch from pota-
toes) increased the production of SCFAs including butyrate 
(Baxter et al., 2019; Wang et al., 2018).

In addition, recent research has indicated a strong associa-
tion between gut microbiota and mental health, and given 
that diets affect the diversity of gut microbiota to a large 
extent, the composition of a host’s diet may play an impor-
tant role in their mental health. For example, a western-
style diet elevated the Firmicutes/Bacteroidetes ratio and 
the abundance of Proteobacteria and Spirochaetes in a rat 
model. This led to a decrease in the level of SCFAs such 
as acetic and propionic in cecal contents and anxiety-like 
behavior (Ohland et al., 2013). In a recent human cohort 
study, a reduced level of carbohydrate intake resulted in a 
rapid rearrangement in the composition of human gut micro-
biota within 24 h; for instance, a reduction in carbohydrate 
intake significantly decreased the abundance of fiber-degrad-
ing bacteria, while the level of Eggerrthella, Streptococcus, 
and Lactococcus was enhanced followed by a decrease in the 
secretion of SCFAs (Mardinoglu et al., 2018).

In summary, although many studies have been conducted 
regarding alterations in the diversity of gut microbiota as 

affected by food ingredients, research on how food ingre-
dients influence the alteration of gut microbiota-derived 
neurotransmitters is limited. However, based on the above 
investigations, it is expected that individual food ingredients/
components play a significant role in modulating gut micro-
biota composition and the following changes in their secretion 
of neurotransmitters.

This review provides comprehensive, in-depth knowledge 
of the significant functions of gut microbiota in maintaining 
metabolism and homeostasis as well as the alteration of their 
profiles as affected by food intake and the consumption of 
food-derived bioactive compounds. Moreover, this contribu-
tion summarizes the significance of food sources and dietary 
choices in designing gut microbiota profiles and their metabo-
lites. Food sources and bioactive compounds remarkably affect 
the composition of gut microbiomes and their metabolites, 
indicating their importance in sustaining balanced-immune 
and metabolic homeostasis. Despite the increasing research 
on the influence of food bioactives on gut microbiota-derived 
metabolites, there is still a lack of information on related fields. 
Nevertheless, this review provides a valuable summary for 
understanding the role of foods and food-derived bioactives 
in controlling the composition of gut microbiota and their 
metabolites.

Declarations 

Conflict of interest  The authors declare no conflict of interest.

Table 2   Changes in gut microbiota-derived metabolites by bioactives

Diet/food ingredient Alteration in gut microbiome-derived metabolite Reference

Polyphenols in the water-insoluble cocoa fraction Increase in the level of butyrate Fogliano et al. (2011)
Apple juice extracts and red beet juice extracts Increase in the contents of acetate and total short-chain fatty acids 

(propionic acid and butyric acid) in rats
Sembries et al (2006)

Anthocyanin-rich blueberry extract Increase in the production of kynurenic acid by altering tryptophan 
metabolism

Marques et al. (2018)

Berberine Promotion in the production of butyrate in rats Wang et al. (2018)
Dietary fiber (resistant starch from potatoes) Increase in the production of short-chain fatty acids including 

butyrate
Baxter et al. (2019)

Western-style diet (high in fat) Enhancing the level of Firmicutes/Bacteroidetes ratio and the 
abundance of Proteobacteria and Spirochaetes in mice model

Reducing the level of SCFAs including acetic, propionic, and 
butyric acids in cecal contents along with altered anxiety-like 
behavior

Ohland et al. (2013)

Carbohydrates (fiber) A decrease in carbohydrates intake (including fiber) significantly 
reduced the richness of fiber-degrading bacteria, whereas the 
abundance of Eggerrthella, Lactococcus, and Streptococcus was 
increased, leading to a decrease in the production of SCFAs

Mardinoglu et al. (2018)
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