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Arc regulates a second-guessing cognitive bias
during naturalistic foraging through
effects on discrete behavior modules

Alicia Ravens,1,6 Cornelia N. Stacher-Hörndli,1,6 Jared Emery,5 Susan Steinwand,1 Jason D. Shepherd,1,3,4

and Christopher Gregg1,2,5,7,*

SUMMARY

Foraging in animals relies on innate decision-making heuristics that can result in
suboptimal cognitive biases in some contexts. The mechanisms underlying these
biases are not well understood, but likely involve strong genetic effects. To
explore this, we studied fasted mice using a naturalistic foraging paradigm and
discovered an innate cognitive bias called ‘‘second-guessing.’’ This involves
repeatedly investigating an empty former food patch instead of consuming avail-
able food, which hinders themice frommaximizing feeding benefits. The synaptic
plasticity gene Arc is revealed to play a role in this bias, as Arc-deficient mice did
not exhibit second-guessing and consumed more food. In addition, unsupervised
machine learning decompositions of foraging identified specific behavior se-
quences, or ‘‘modules’’, that are affected by Arc. These findings highlight the
genetic basis of cognitive biases in decision making, show links between behavior
modules and cognitive bias, and provide insight into the ethological roles of Arc in
naturalistic foraging.

INTRODUCTION

Studies of animal foraging and human psychology have helped to uncover important rules andmechanisms

of cognition and decisionmaking, giving rise to the fields of behavioral economics and neuroeconomics.1–5

Economically optimal (or rational) behavior is operationally defined as behavior that maximizes the actor’s

benefits. However, cognitive biases have been found that are systematic deviations from optimal economic

decisions and involve innate heuristics that are ‘‘short-cut’’ rules the brain evolved for faster and more effi-

cient decisions in the wild.4–6 Mechanistic studies of decisionmaking typically focus on defining neurophys-

iological correlates, neuronal circuits, and mathematical models of decision processes.7–17 However, at

least some cognitive biases have been observed in multiple different species,1,2,18 suggesting evolution-

arily conservation and a genetic basis. Indeed, given that cognitive biases are systematic, stereotyped be-

haviors proposed to involve innate fast-decision heuristics that are adapted for the wild, such biases likely

point to components of behavior that are innate and genetically determined, rather than learned habits. So

far, however, little is known about the genetic basis of the different cognitive biases affecting economic

behaviors and foraging.

The study of genetically controlled behavioral components that evolved in the wild has been difficult

because of the lack of precisely controlled paradigms that emulate natural conditions.19 Most lab studies

focus on simplified and controlled binary choice tests that show limited richness in behavior.20 However, in

nature, the entire behavioral sequence before, during, and after a choice shapes benefits and costs for nat-

ural selection. Approaches to study more naturalistic and rich behaviors have been lacking, though unbi-

ased top-down decompositions of behavior are expected to improve our understanding of such complex

behaviors.21 The development of data-drivenmethods to decompose spontaneous behaviors into discrete

components is rapidly advancing this area of research.22–24 We recently developed a naturalistic foraging

assay and unsupervised machine learning methods for top-down decompositions of foraging in mice to

help reveal the structure and genetic mechanisms that affect different components of naturalistic foraging

and decision processes.25,26 Our paradigm mimics key elements of behavior in the wild, including a freely

accessible home with sand patches of potential food, seeds, and digging. Using this approach, we found

that foraging behavior involves finite, stereotyped and genetically controlled behavioral sequences that we
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call ‘‘modules’’.25 Foraging modules are statistically reproducible from mouse to mouse and are identified

from data describing decision and action sequences expressed during round trips from the home that can

range from less than a second to hundreds of seconds in duration. With this approach, we are poised to

investigate genetic mechanisms underlying different stereotyped components of naturalistic foraging.

Here, we deeply analyze foraging in fasted mice and uncover a cognitive bias that involves repeatedly

investigating a former and now empty food patch rather than consuming readily available food. We refer

to this as ‘‘second-guessing’’ because it involves repeatedly checking a former food patch after learning it

does not contain food. Second-guessing occurs in naive male and female mice and contributes to subop-

timal economic outcomes by failing to maximize food consumption. Given that memory confidence and

repeated checks on memory accuracy have important roles in doubt and repetitive behaviors,27–29 we hy-

pothesized that second-guessing is linked to memory and tested roles for the synaptic plasticity and mem-

ory gene, Arc.30,31 Studies using standard lab tests of discrete behavioral responses, such as spatial mem-

ory,32–34 fear conditioning33,35,36 and behavioral responses to novelty and stress37–39 found that Arc is

required for memory consolidation.40 However, ethological roles for Arc in rich, spontaneous naturalistic

foraging have not been tested. We show that initial learning and memory responses are grossly intact in

Arc�/� mice after 24 h, but uncover a complete loss of second-guessing behavior that is replaced with

increased food consumption in males. Using top-down, machine learning decompositions of the behavior,

we uncover a finite set of stereotyped foraging modules that are affected by loss of Arc in a learned envi-

ronmental context and underlie second-guessing versus feeding decisions. Thus, our study reveals a

genetically determined ‘‘second-guessing’’ cognitive bias that is controlled by Arc affected foraging

modules.

RESULTS

Identification of a ‘‘second-guessing’’ cognitive bias in fasted, foraging mice

To investigate the nature of different memory responses during foraging, we designed a naturalistic para-

digm in which mice have spontaneous access to a foraging arena and their home. Using methods from the

foraging ecology field, our arena includes patches of sand, including one that has seeds. Mice learn the

location of a food patch in the foraging arena during an Exploration phase (Figure 1A) and then 24 h later,

the mice are provided with access to the arena again during a Foraging phase, but the food is now in a

Figure 1. Mice show a discrete ‘‘second-guessing’’ behavioral epoch that involves repeatedly investigating a learned food depleted patch during

naturalistic foraging

(A and B) Schematic summaries of the Exploration (A) and Foraging (B) phases of our naturalistic foraging assay. During the 30-min Exploration phase (A),

naive mice learn Pot2 is a food-containing patch. During the 30-min Foraging phase performed 24 h later, the food patch has beenmoved and is now located

in Pot4. The mice show a memory response to the former food location.

(C) The plot shows the average time spent at the former food patch (Pot2) and the new food patch (Pot4) in the Foraging phase for male (blue) and female

(red) mice (n = 15). The time at each Pot is shown for 1 min time bins over the 30-min testing period. Male and female mice show an initial and then secondary

peak of memory response behavior involving increased interactions with Pot2 (arrows point to peak interaction time points).

(D) The plot below shows interactions with the new food patch (Pot4) and reveals a different pattern in which interactions increase steadily over the course of

the testing period.

(E and F) The top plots compare the mean time that mice spend at the former food patch (Pot2, orange) to time at a non-food containing control patch (Pot1,

dark gray) during the 30-min Foraging phase (F, n = 15; dark line shows the mean and shaded areas show the SEM). The bar plots in (E) show the p value

results for 1 min sliding windows of a generalized linear model testing for a significant difference in time spent at Pot2 versus Pot1 in themale and female data

(n = 15). The purple bars show time windows that have a significant p value after accounting for sex variance (p<0.05, Pot time� sex + Pottype) and gray bars

are windows that are not significant (p>0.05). The results reveal three discrete Epochs of memory response behavior (EPOCH 1, 2, and 3). Separation

between epochs is defined as the transition from a non-significant effect (gray bars) to a significant Pot 2 bias (purple bars). The inserted bar plots show

examples of the Time at Pot data for a 1-min window in each epoch (gray bar is mean time at Pot1; red bar is mean time at Pot2; error bars show SEM).

(G) The plots show the percentage of the total food that is consumed during the Exploration and Foraging phases by males (blue) and females (pink). The

data show that the mice eat less than 20% of the total food, despite being fasted (n = 15). Thus, the Epoch 2 memory response involving repeated searching

of the former food patch (Pot2) in the Foraging phase is not caused by running out of food in Pot4. Mean G SEM.

(H and I) The plots show the cumulative time at the new (Pot4, green) versus former (P2, red) food patches for males (H) and females (I) during Epoch 1 of the

Foraging phase. The data show that mice rapidly discover and value the new food patch during Epoch 1, showing significantly increased cumulative time at

the new versus former patch (n = 15, generalized linear model). Therefore, the Epoch 2 investigations of the former food patch (Pot2) are not caused by a

failure to rapidly identify food. Mean G SEM.

(J and K) The data show results of generalized linear model testing of whether the cumulative time spent at the former food patch (Pot2) over the entire

Foraging phase (TOTAL) or during Epoch 2 only (EPOCH 2) is significantly affected by a 4-h versus 24-h memory consolidation gap between the Exploration

and Foraging phases in male and/or female mice. Statistical results show that significant effects of the consolidation timing (timing) are not observed in total

or in Epoch 2, nor are there significant interactions with sex. The plots show the data for males (J) and females (K). Mean G SEM, n = 15.
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different location (Pot4) (Figure 1B). Thus, we can test whether the mice express a memory response to the

former food patch (Pot2) by measuring the time spent at Pot2 relative to patches that do not contain food

(Pots 1 and 3). We also learn whether the mice discover and exploit the novel food patch (Pot4) by analyzing

time spent at this location (Figure 1B), and ultimately, decompose the behavior using unsupervised ma-

chine learning methods to uncover foraging modules (see below). Overall, this paradigm enables us to

investigate how memory of a former food patch and environment can shape foraging behaviors and

decisions.

We performed this foraging test on a cohort of wild-type adult male and female mice on a C57BL/6J back-

ground and first characterized interactions with the former food patch, Pot2, in the Foraging phase of the

task. By analyzing the average time spent by all mice at Pot2 in time bins over the 30-min testing period, we

found that males (Figure 1C, blue) and females (Figure 1C, Pot2, pink) demonstrate two major peaks of

interaction with the former food patch (Figure 1C, blue and pink arrows). The first peak shows the most

Pot2 interactions over the trial, reaching a peak at �3 min in males and �4 min in females. This first

peak of interaction then wanes, reaching a minimum interaction time at �10 min in males and 9 min in fe-

males (Figure 1C), which is then followed by a second peak at �12 min in males and 13 min in females (Fig-

ure 1C, blue and pink arrows). This second epoch of increased interaction wanes by 16 min in males and

17 min in females (Figure 1C, blue and pink lollypops). In contrast to interactions with Pot2, interactions

with the new food patch, Pot4, show a different pattern and increase steadily, reaching a peak at

�16 min that persists until the end of the assay (Figure 1D). Our results suggest that different epochs of

interaction with the former food patchmight exist that reflect discrete waves of memory-dependent behav-

ioral responses and interactions with Pot2, and we therefore tested this.

To statistically test for discrete epochs of memory behavior, we performed a sliding window analysis of the

data that involved sliding 1-min windows in which we compared time spent at the former food patch (Pot2)

against time spent at a control patch (Pot1) that never contained food and is not close to the new food

patch (Pot4) in the Foraging phase (Figures 1E and 1F). We analyzed the male and female data together

using amodel that absorbs the effect of sex and tests for a main effect of the Pot. From the results, we found

3 discrete epochs of memory-dependent response behavior in which themice display waves of significantly

increased time at Pot2 that are separated by windows where the mice do not spend significantly more time

at Pot2 compared to Pot1 (Epoch 1: 0–10 min, Epoch 2: 11–16 min, Epoch 3: 17–30 min).

In Epoch 1, the animal’s increased interaction with the former food patch is rational given the initial expec-

tation of food in this location. However, the Epoch 2 increase in interactions with Pot2 is an economically

suboptimal behavior because the animal is fasted and knows that food is not located there but is abundant

in Pot4. All mice have visited Pot4 by �2 min after entering the arena during the Foraging phase, with a

mean latency of 25 s. We tested the possibility that mice perform this Epoch 2 behavior because they

have consumed all the food in Pot4 and are now looking for more. However, we found that these fasted

mice consume <20% of the total food available during the Exploration and Foraging phases of our task,

which shows that they do not run out of food in Pot4 during the Foraging phase (Figure 1G). It is also

not the case that the mice are failing to find the food in Pot4. We observed that they rapidly discover

and show significantly increased interactions with the Pot4 food patch within the first minutes of the assay

(Figures 1H and 1I). Collectively, the above results show that the Epoch 2 behavior is a discrete memory

response during foraging that is directed at a former food patch that no longer contains food. Given the

energetic costs versus caloric benefits for a fasted mouse to explore an empty food patch rather than

consume available food, respectively, the Epoch 2 behavior shows evidence of being an innate, econom-

ically irrational cognitive bias to repeatedly ‘‘second-guess’’ a former food patch. We therefore refer to this

behavior in Epoch 2 as ‘‘second-guessing’’.

Second-guessing behavior could be affected by memory consolidation and the duration of the time sepa-

rating the Exploration and Foraging phases of our assay. Here, we tested whether the duration of the

consolidation period significantly affects second guessing by comparing a 4-h (shorter-term memory)

versus 24-h (longer-term memory) separation between the two phases. We found that the cumulative

time at Pot2 over the total assay and during the Epoch 2 second-guessing behavior are not significantly

different between the 4-h and 24-h conditions (Figures 1J and 1K). Therefore, second-guessing is not signif-

icantly affected by these shorter versus longer periods after training. We next tested if second-guessing is a

genetically determined cognitive bias during foraging.
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Figure 2. ARC knockout mice show grossly intact initial memory responses, but significant changes to memory

responses during later epochs

(A) Schematic summary of experimental testing of naturalistic foraging phenotypes in Arc�/� versus +/+ mice. The

experiment tests behaviors related to exploitations of the available food-rich patch (Pot4) versus now food-absent former

food patch (Pot2).

(B) The plots show the latency to enter the foraging arena from the home during the Exploration (blue) versus Foraging

(purple) phases for Arc�/� versus +/+ littermates. Male and female Arc�/� and +/+ mice show a significantly reduced

latency to enter the arena in the Foraging phase compared to the Exploration phase (n = 15). t-test. Mean G SEM.

(C and D) The bar plots show the total time spent at each of the pots during the first 5 min of the Foraging phase for male

(C) and female (D) Arc�/� mice (orange) and +/+ (black) littermates. Arc�/� and +/+ littermates spend significantly

increased time at the former food patch (Pot2), showing they learned and recall this former food patch, and at the new

food rich patch (Pot4). A significant main effect of Pot was observed (p<0.0001). The +/+ and�/�mice are not significantly

different (p>0.05). N = 15, Mean G SEM, one-way ANOVA with Tukey post-test. *p<0.05, **p<0.01, ***p<0.0001.
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Arc knockout mice show selective loss of second-guessing with an associated increase in food

consumption in males

Arc regulates synaptic plasticity and long-term memory consolidation40 and is a logical gene candidate for

affecting second-guessing memory responses. In addition, roles for Arc in naturalistic foraging have not

been studied. Here, we profiled foraging inArc�/�mice compared to +/+ littermate controls in our assay. First,

we tested how Arc�/� mice learn during the Exploration phase by examining how they adapt their behavior in

the Foraging phase assay 24 h later (Figure 2A). We found that both Arc�/� and +/+ mice show a significantly

reduced latency to enter the foraging arena during the Foraging phase compared to the Exploration phase

(Figure 2B). This shows that the�/� mice recall the general environment and adapt their behavior accordingly.

We further found that both male and female Arc�/� and +/+ mice show a significant preference for Pot2 within

the first 5min of the Foraging phase, indicating an initialmemory to the former foodpatch (Figures 2C and 2D).

Therefore, Arc�/� mice forage, learned the location of the food in the Exploration phase, and show initial

memory-dependent behavioral responses 24 h later in the Foraging phase.

By analyzing plots of the cumulative time spent at Pot2 over course of the assay, we found a significant ge-

notype effect in which+/+ males and females continue to accumulate increased time at Pot2, but�/� mice

exhibit a significant reduction in Pot2 interactions that becomes pronounced after approximately 8 min into

the assay in males (Figure 2E) and 15 min in females (Figure 2F). This finding shows that Arc most strongly

affects the behavior during later epochs, rather than the initial memory responses to the former food

patch, Pot2.

The memory phenotype in Arc�/� mice could be secondary to changes in motivation to feed. To test this,

we examined food consumption during the Exploration phase, which lacks a memory component and

found that Arc�/� mice do not consume less food or spend less time at the food (Figures S1A and S1B).

This indicates that their drive to feed is not significantly reduced compared to +/+ mice in the assay. Alter-

natively, Arc�/� mice might be slow to discover the novel food patch in the Foraging phase and therefore

express a delayed, but elevated interest in Pot4 overPot2. However, we found that Arc�/� mice discover

and significantly increase Pot4 interactions within the first �8 min of the Foraging phase like +/+ mice (Fig-

ure S1C). Given that Arc�/� mice do not display overt reductions to the drive to consume or find food, we

concluded that they display bona fide changes to later memory response epochs during foraging, rather

than changed motivations to feed. We therefore directly tested second-guessing behavior.

To examine roles for Arc in second-guessing, we visualized the pattern of interactions with Pot2 over the

course of the 30 min Foraging phase in 1 min time bins to reveal memory-dependent epochs

(Figures 3A and 3B). We found that Arc�/� males show a specific loss of the Epoch 2 second-guessing

behavior, as they no longer show a second wave of interest in Pot2 (Figure 3A). Similar albeit less robust

effects were observed in females (Figure 3B). We further tested this difference by computing the cumulative

time at Pot2 during Epochs 1, 2 and 3 in the Arc�/� versus +/+ mice. We found a significant main effect of

genotype (�/� versus +/+) in which Arc�/� mice show a loss of Pot2 interactions during Epoch 2, but not

Epochs 1 or 3 (Figures 3A and 3B; see statistical results in top boxes). Thus, Arc�/� mice show selective

loss of second-guessing during foraging.

Given the absence of the second-guessing response, we determined what behaviors the Arc�/� mice are

doing in its place. We found that male KO mice show significantly increased food consumption in the

Foraging phase (Figure 3C) and shift to significantly increased interactions with the Pot 4 food patch during

the Epoch 2 memory response (Figure 3D). This effect was not observed in females (Figures 3C and 3E) and

deeper analyses of the female data found that they did not spend significantly increased time at Pots 1 or 3

or in the home. Thus, Arc�/� females appear to redistribute their behavioral activity broadly during Epoch 2

rather than focusing on a specific patch or location in the arena. Overall, we uncovered a role for Arc in

affecting second-guessing during foraging and in the absence of second-guessing Arc�/� males show

more economically optimal behavior by increasing food consumption.

Figure 2. Continued

(E and F) Plots of the cumulative time at Pot2 during the Foraging phase show that Arc�/�males (E) and females (F) exhibit

later epoch behavioral changes compared to +/+ controls by spending less time at Pot2 beginning at �10 min into the

Foraging phase (gray dashed line). p-values from generalized linear modeling of cumulative time at 30 min are shown and

indicate a significant main effect of genotype (p.geno), but no effect of sex (p.sex) or interaction (p.sex*geno). N = 15,

Mean G SEM.
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Figure 3. Arc�/� mice show deficits in second-guessing behavior

(A and B) The barplots show data for the time spent at the former food patch (Pot2) in the Foraging phase in 1 min time bins for Arc�/� (orange) males (A) and

females (B) compared to +/+ littermate controls (gray). The 1, 2 and 3 memory response epochs are delineated by purple numbers and dashed lines. The

data show significant loss of the Epoch 2 second-guessing memory response in Arc�/� males and females. Significant changes to Epoch 1 and 3 behaviors

were not observed. Plots below summarize the phenotypic effect by showing the mean time for knockouts versus wildtypes at Pot2 over the Foraging phase

(gray). p-values for generalized linear model are shown on the top. (n = 15).

(C) The plots show the total food consumed by male and female mice in the Exploration (Exp) phase and Foraging (For) phase for Arc�/� (orange) mice

compared to +/+ littermate controls (gray). Males show significantly increased food consumption in the Foraging phase. N = 15, Generalized linear model

interaction for phase and food consumed.

(D and E) The barplots show data for the time spent at the new food patch (Pot4) in the Foraging phase in 1 min time bins for Arc�/� (orange) males (F) and

females (G) compared to +/+ littermate controls (gray). Male Arc�/� mice show increased time at the food patch specifically during the Epoch 2 second-

guessing memory response. N = 15, Mean G SEM.
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Arc affects a discrete set of foraging modules that determine second-guessing

Previously, we found that naturalistic foraging behavior in mice shows evidence for having a modular struc-

ture and involve finite, stereotyped and genetically determined behavioral sequences.25 Here, we tested

whether second-guessing involves modules of foraging behavior that are affected by Arc. To first uncover

the modules expressed by the Arc�/� and +/+ mice, we applied our DeepFeats algorithm to decompose,

describe and classify the behaviors expressed by the mice (n = 60).25,41 For each of the 1,609 round trip

foraging excursions expressed by the mice, we captured 57 diverse measures of how the mice move

and where they go while foraging. Principal component analysis (PCA) was applied for data dimension

reduction in combination with the DeepFeats behavioral module detection algorithm. The data was parti-

tioned into balanced training and test datasets of mice and our analysis found that 8 principal components

(PCs) best reveal candidate modules in the training data (Figures S2A and S2B). With these PCs, we found

43 clusters of different foraging sequences that reflect candidate foraging modules (Figure S2C). With a

modified in-group proportion permutation test, we then evaluated the reproducibility of the training data-

set clusters in the test dataset (Figures S2C and S2D) and found that 24 of the 43 clusters are significantly

reproduced in the test set, which we defined as significant, stereotyped modules (Figure S2D). Overall, 942

of the 1,609 total round trip foraging excursions are classified in modules, while the remaining excursions

are non-modular and reflect more stochastic and idiosyncratic behaviors.

Next, we tested whether loss of Arc impacts the expression of specific modules, or alternatively affects non-

modular behaviors. A generalized linear model testing for an interaction effect between Arc genotype and

the expression frequencies of different modules (24 different modules) and non-modular behaviors (19

non-modular excursion clusters) revealed that the most significant genotype X behavior type interaction

occurred for modules in the Foraging phase (p = 2.7x10�11; Figure 4A, dark bars). Post-tests with q-value

corrected p values revealed that the expression frequencies of Modules #1, 2, 10, 12, 21 and 43 are signif-

icantly affected in Arc�/� mice (q<0.05), whereas the other 18 modules are not significantly affected. In our

examination of non-modular behavior types, we did not observe a significant interaction in the Foraging

phase and found a modest effect in the Exploration phase (p = 0.04; Figure 4A, light bars). We further

confirmed that Arc predominantly affects module expression in the Foraging phase with a different analysis

that tested for changes to the stereotyped expression order of modules by the mice, which we found to be

significantly changed in Arc�/� mice in the Foraging phase, but not the Exploration phase (Figures S3A–

S3F). In conclusion, loss of Arc most strongly affects the expression of modules, rather than non-modular

excursions, and impacts a specific subset of modules in the Foraging Phase (Figure 4A).

To visualize the global structure of naturalistic foraging in mice and learn the relationships between

different modules and non-modular behaviors, and between Arc affected and unaffected modules, we

Figure 4. Loss of Arc affects the expression of discrete foraging modules that underlie second-guessing versus feeding behaviors

(A) The dark bar plot shows the p values for a generalized linear model testing the interaction effect between genotype and module on module expression

frequency data for male and female Arc�/� and +/+ mice in the Exploration and Foraging phases (n = 15). The light bar plot shows the results for excursion

behavior clusters that are not statistically significant modules where the interaction effect is tested for genotype and behavior cluster. The results show that

Foraging phase modules are the most strongly affected and have a significant genotype3module interaction effect indicating that a subset of modules are

significantly impacted by loss of Arc. *p<0.05, ****p = 2.7x10�11.

(B) The plot shows a 2D PHATE projection of the multi-dimensional data for each excursion expressed by the male and female Arc�/� and +/+ mice in the

study (1609 excursions shown). The excursions classified as significant foraging modules are colored and non-modular excursions are gray. The results show

the structure and relationships of the different behavioral components of naturalistic foraging (see Video S1 and S2 for full 3D projection).

(C and D) The plots show the 2D PHATE projection of the excursion data where the colored excursions indicate modules with significantly increased (C,

Modules 12, 1, 2 and 43) versus decreased (D, Modules 21 and 10) expression inArc +/+ and�/�mice. Representative X-Y coordinate traces of themovements

over time (z axis) are shown for each significantly affected behavior module, which show the center point tracking data for excursion closest to the centroid of

the cluster (see Figure S4 for more details). Traces are colored by movement velocity (Black is slow or stopped and pink is moving). Red lines and letters

indicate the home tunnel (H), Pot2 former food location (2), and Pot4 current food location (4). The plot inserts show the expression frequency data for each

affected module for male and female Arc +/+ (WT, blue) and�/� (KO, orange) mice. A linear model testing for a main effect of genotype was applied to the

data for each module and multiple testing was controlled using the q-value (shown below trace). The excursion data in the PHATE map is highlighted for

each Arc affected module to show grouping structure and distance relationships in space (see main text). Mean G SEM. *q<0.05, **q<0.01, ***q<0.001.

(E–G) The heatmaps show the aggregated expression frequency of different foraging modules (rows) in male and female Arc KO (�/�) and WT (+/+) mice

(columns). The data has been scaled by column (see legend). Unsupervised hierarchical clustering of the data groupedmale and female KOs separately from

WTs in memory response Epochs 2 (E) and 3 (F), but not Epoch 1 (G). A chi-square test on the Epoch 2 and 3 datasets showed statistical significance (p value

shown on top), indicating significant dependence of genotype onmodule expression. Modules that are significantly affected inArc�/�mice are highlighted

in orange numbers, whereas modules that are not significant are in black type. The data reveal specific modules that are most strongly affected, including

Module 1, which has increased expression in Arc�/� mice during Epochs 2 and 3.
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visualized our entire multi-dimensional behavior dataset for all 1609 foraging excursions in our data using

PHATE (Potential of Heat Diffusion for Affinity-based Transition Embedding).42 PHATE is an unsupervised

algorithm for 2D and 3D embedding of high dimensional data that uncovers accurate, denoised local and

global data structures.42 For our study, the results show the global landscape of foraging behavior in which

each point is an embedding of the data describing a single round trip excursion from the home (Figure 4B).

By annotating excursions in the 24 modules (Figure 4B, each module has a different color) and the remain-

ing non-modular excursions (Figure 4B, gray dots) in this map, we found that the excursions for different

modules are well separated, and individual excursions assigned to the same module are grouped, rather

than intermingled, as expected. This independent approach therefore confirms the classification of these

discrete behaviors. The map also reveals the relationships between different modules because modules

that are more similar are closer and connected to each other in space. The branches and connections be-

tween modules in the diffusion map show the global structure and continuum of mouse foraging. Supple-

mental videos of rotating 3D PHATE projections of modules and non-modular excursions (Video S1), and

modules alone (Video S2), show the structure more clearly.

We visualized the data for the subset of modules that are significantly affected by loss of Arc (Figures 4C

and 4D and Video S3). The PHATE map shows that these affected modules involve well separated and

distinct clusters of excursions (Video S3) and a heatmap shows how each retained principal component dif-

ferentiates the modules (Figure S4A). Modules 1, 2, 12 and 43 have significantly increased expression in

Arc�/� mice (Figure 4C, graph insets), while Modules 10 and 21 show decreased expression (Figure 4D,

graph insets). Module 2 is distinctive, involving a short dart into and out of the foraging arena that is signif-

icantly increased in Arc�/� females (Figure 4C, orange). Modules 1, 12 and 43 involve reduced exploration

and more extended visits to the food patch (Pot4) (Figure 4A, insets and Figures S4B and S4C). Module 1 is

the most significantly increased in Arc�/� mice and is a simple decision and action sequence that involves

going directly from the home to the food patch (Pot4) and then returning to the home (Figure 4C, Module 1

trace inset, and Figures S4B and S4C). Modules 10 and 21 show decreased expression by Arc�/� mice and

representative traces of the decision and action sequences for these modules reveal that they are complex

exploratory behaviors that involve increased interactions with the former food patch (Pot2), as well as other

components of the environment (Figure 4D, Module traces and graph insets and see Figures S4D and S4E).

Our results show that Arc affects the landscape of naturalistic foraging behavior by impacting discrete

modules. Arc likely influences second-guessing by affecting the expression of these modules in particular

epochs of the behavior, which we investigated next.

To begin, we tallied the expression frequency of each module for the Arc�/� and +/+ males and females for

Epochs 1, 2 and 3 of the Foraging phase. The results are presented in heatmaps scaled by column, which

show modules with relatively high versus low expression frequencies for each sex and genotype

(Figures 4E–4G). Unsupervised hierarchical clustering analysis of the module expression data found differ-

ences between the Arc�/� and +/+ mice in Epochs 2 and 3 with statistically significant row by column de-

pendency (Figures 4E and 4F; Fisher’s Exact Test). In contrast, this effect was not observed in Epoch 1 where

the columns cluster by sex instead of genotype (Figure 4G). The preference for Arc�/� mice to express

Module 1 over Modules 10 and 21 becomes pronounced during Epoch 2 and persists during Epoch 3

(Figures 4F and 4G), which supports the conclusion that changes to the expression of these discrete mod-

ules during Epoch 2 contributes to the switch from second-guessing (Modules 10 and 21) to increased food

consumption (Module 1) in Arc�/� mice. Overall, we mapped the effects of Arc in naturalistic foraging to a

second-guessing cognitive bias involving specific decision and action sequences expressed during a

defined temporal epoch of the behavior.

DISCUSSION

Cognitive biases are systematic behavioral biases that can result in decisions that are not economically

optimal in some contexts. Their mechanistic basis is poorly understood, but the conservation of some

cognitive biases across different species suggests they may be genetically determined. Here, we uncov-

ered a second-guessing cognitive bias in fasted foraging mice that involves repeatedly visiting an empty

former food patch instead of consuming available food to maximize caloric benefits. This bias occurs in

both sexes and shows significant reproducibility across different mice, indicating that second-guessing

is an innate behavioral bias rather than a learned habit. The bias is strongest in males. Arc�/� mice show

specific loss of second-guessing, and in its absence, Arc�/� males reap the benefits of more economically

optimal behavior by increasing food consumption. Arc affects second-guessing by impacting the
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expression of specific foraging modules within the landscape of behaviors that comprised naturalistic

foraging in our assay. The affected modules are discrete, stereotyped decision and action sequences

that shape interactions with the available food patch versus second-guessing of the former food patch.

Although Arc�/� mice lack second-guessing, their initial memory responses that reflect learning and recall

of the environment are grossly intact. Thus, our study reports a genetically determined cognitive bias from

studies of naturalistic foraging and an ethological role for Arc in regulating this second-guessing bias

through effects on the expression of a subset of foraging modules during a specific epoch of the behavior.

Our findings provide a rationale for future efforts aimed at defining links between genetic mechanisms,

naturalistic behavior modules and cognitive biases.

Cognitive biases are thought to be related to innate decision heuristics that evolved for efficient decision pro-

cesses in an organism’s native environment.43 Although such biases can be economically suboptimal in some

contexts and contribute to poor decision making, they likely evolved to be adaptive and advantageous in the

native context.6,44 It has been pointed out by others that behavioral ecologists often ignore the potential for

genetic factors to constrain animal decision making.45 This is unfortunate because decision biases and con-

straints likely point to important roles for genetic factors that evolved to shape natural behavior. In support,

we demonstrate that second-guessing is cognitive bias that is expressed by mice during naturalistic foraging

and that this bias has a genetic basis. Arc is required for second-guessing and, because Arc�/� males show

increased food consumption in place of second-guessing, our data reveal that this cognitive bias can be

genetically modified to yield more economically optimal behavior in our task. Second-guessing likely has

important adaptive advantages in the wild. If food patches can appear, disappear, and reappear quickly,

then it may be important to have constantly updated knowledge of different food patches in the local environ-

ment and the dynamics of food availability, and selection would lead to the development of discrete behavior

patterns that solve this problem.Moreover, if animalsmust frequently abandon available food because of high

risks of predation or encounters with conspecific competitors, then updated knowledge of alternative patches

and frequent patch switching could be important for survival. Thus, second-guessing may be statistically and

economically rational in the wild even when a known food patch is available.

Although both males and females display Arc-controlled second-guessing, we observed sex differences

that could involve sex hormones, metabolism, or other mechanisms yet to be determined. The second-

guessing bias is strongest in males and, although Arc�/� male mice consume more food in the absence

of second-guessing, this effect is not significant in females. In addition, Arc�/� females uniquely show

significantly increased expression of foraging Module 2, which involves brief darting into and out of the

foraging arena from the home. Thus, we uncovered multiple sex differences in how Arc affects particular

foraging decisions in males and females. Although sex differences in decision-making heuristics are

debated,46,47 it is known that risk taking, impulsivity and behavioral prioritization differ between males

and females,46 which could contribute to sex differences in second-guessing. Indeed, our other foraging

studies also found important sex differences in mice.25,26

We provide evidence that Arc impacts second-guessing and foraging behavior by affecting the expression of

discrete foragingmodules, rather thanmore non-modular and free behaviors. BothArc�/�males and females

show increased expression of Module 1 and decreased expression of Modules 10 and 21, revealing shared

behavioral effects at the module level across the sexes. Module 1 involves a direct excursion from the

home to the food patch and back, whereas Modules 10 and 21 involve more repeated visits to the former

food patch (Pot2) and complex exploratory behavior. We visualized the global structure of mouse foraging

in our assay, which revealed discrete modules affected by Arc within this map. Our results show the potential

for unsupervised computational approaches to ‘‘behavioral cartography’’ that illuminate maps of complex

naturalistic behavior and how different genetic factors affect specific components. Arc affects the expression

of discrete foragingmodules that shape second-guessing versus feeding during later epochs of foraging. Our

sliding window analysis showed that these epochs are discrete temporal phases of memory-response

behavior and transitions between each epoch occur when time spent at the former food patch (Pot2) drop

is not significantly different from time spent at a control patch that never previously contained food (Pot1).

Arc is often considered a general regulator of synaptic plasticity and memory, and standard lab memory

tests indicate that Arc�/� mice fail to consolidate long-term memories.33,35,48 Our foraging results show

that initial Epoch 1 memory responses are grossly intact in Arc�/� mice, while Epoch 2 second-guessing

and later memory epochs are more strongly affected, providing insights into ethological roles for Arc
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during foraging. The second-guessing effects of Arc could be because of changes in cognitive flexibility

and perseveration, which have been reported inArc transgenic mice where disruption of Arc protein degra-

dation led to abnormal synaptic plasticity and behavior.34Arc�/� mice may also have less robust memory

that affects second-guessing during Epoch 2 and 3 but has little gross effect during Epoch 1. Overall,

our foraging study indicates that Arc’s role in learning and memory are more task, context, and sex-specific

than has been previously observed. Future studies are needed to define the brain regions, neural circuits,

and types of cellular plasticity mechanisms in which Arc regulates second-guessing in males and females

using conditional genetic approaches.

We previously showed thatmouse foraging involves finite, stereotyped behavior modules that are segmented

by round trip excursions from the home.25,26 Here, using PHATE projections of multi-dimensional foraging

data describing individual excursions, we showed that these modules are well defined components of the

naturalistic foraging behavior landscape and are differentiated from more stochastic and free non-modular

behaviors. Foraging modules share some conceptual similarities to other stereotyped movements, such as

motifs or syllables,22,49 but are more complex, compound decision and action sequences that incorporate

both movement and contextual information. Here, we showed a link between specific foraging modules

and an economically irrational cognitive bias, and that loss of Arc selectively eliminates the cognitive bias.

Over 50 different cognitive biases have been described in humans.50,51 Based on our results, we speculate

that foragingmodules have important links to different cognitive biases and innate decision heuristics. Indeed,

modularity is central to phenotype evolution by enhancing evolvability, such that existing modules can be re-

organized, duplicated, and modified without recreating their constituent parts and structure de novo.52

Although modularity is a component of all biological systems,52–55 it is a newer concept in behavioral eco-

nomics. Stereotyped, hierarchical and modular behavior has been described in Caenorhabditis elegans,

Drosophila, and mice.24,25,56–62 Our results indicate that Arc affects the expression frequency of specific

foraging modules in a context and time dependent manner, and we expect that other genetic mechanisms

yet to be discovered affect the form, timing, and expression frequency of second-guessing modules. Sec-

ond-guessing could share mechanisms with doubt and obsessive-compulsive behaviors, making further dis-

sections of the mechanisms involved of potential biomedical importance.29,63

Limitations of the study

Our study used fasted mice to study the cognitive bias of investigating former food patches versus eating

available food. We have not determined how different internal metabolic states affect second-guessing,

which limits our understanding of when and how this bias arises. Moreover, our focus on fasted mice differs

from published studies of Arc�/� mice that reported loss of long-term memory consolidation and may

contribute to differences in which we observe that some initial memory responses are intact in Arc�/�

mice. It is also possible that memory consolidation in this naturalistic foraging task may take longer than

24 h and thus may only be Arc-sensitive over longer periods between exploration and foraging phases

that we did not test.
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Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Christopher Gregg (chris.gregg@neuro.utah.edu).

Materials availability

Arc knockoutmice are available from the Shepherd lab and can be obtained by contacting the lead contact.

Data and code availability

d All data reported in this paper will be shared by the lead contact upon request.

d All original code and any additional information required to reanalyze the data reported in this paper will

be shared by the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice

Housing and husbandry

All experiments were conducted in compliance with protocols approved by the University of Utah institu-

tional animal care and use committee (IACUC). C57BL6/J and Arc/Arg3.1 knockout mice were bred and

housed on static racks in the Biopolymers Building near the lab’s behavioral testing room on a 12hr

reversed light, 11pm on and 11am off. The generation of the Arc/Arg3.1 knockout mouse line has been pre-

viously described.33 All mice were given water and food (Harlan-Teklad 2920X soy protein-free) ad libitum,

with the exception of a single overnight fast for mice tested for foraging behavior (see method details,

Behavior, foraging). Adult breeders (6 weeks to 1 year of age) were paired continuously, and pups were

weaned at postnatal day 21 (P21) and cohoused with up to five same-sex littermates or similar aged

same-sex mice of the same line; mice were never singly housed. Ear punches were taken at P21 for both

genotyping biopsy samples andmouse identification purposes. Genotyping was performed by Transnetyx.

Genotyping

Ear punches taken at P7-P21 were lysed in 75mL of 25mMNaOH +0.25mM EDTA with a 1 hour incubation in

a thermalcycler at 98�C. Lysates were then pH neutralized with an equal volume of 40mM Tris.HCl, pH5.5.

Two mL of lysates were then added to make 20mL PCR reactions with DreamTaq Green Master Mix

(ThermoFisher, Cat# K1081) and 0.5mM primers.

METHOD DETAILS

Foraging

Foraging behavior testing was performed as detailed previously.25 In brief, in preparation for the foraging

assay, mice were first habituated with sand (Jurassic play sand, Jurassic Sand) and seeds (Whole millet,

Living Whole Foods) for two days in their home cage. On day one, seeds are spread on top of sand in

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Arc/Arg3.1 knockout mouse line Plath et al.33 jason.shepherd@neuro.utah.edu

C57BL6/J mice The Jackson Laboratory https://www.jax.org/strain/000664

Software and algorithms

PhateR Moon et al.42 https://cran.r-project.org/web/packages/

phateR/readme/README.html

Ethovision XT Noldus https://www.noldus.com/

Custom code This paper chris.gregg@neuro.utah.edu
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the bottom of a Petri dish and the dish is placed on the bedding in the home cage for the mice and pups to

explore. On day two, seeds are covered with sand in the bottom of the Petri dish in the home cage for the

mice and pups to dig in and explore. To motivate animals to feed, mice were food deprived prior to testing

to achieve 8%–10% weight loss at the time of testing. We selected this weight loss target after several pilot

studies with the goal of achieving some consistency in the motivational states of the animals at different

ages and not compromising health or activity. To achieve the intended weight loss and motivational state,

adult mice were food deprived for 24 hours. Water is available ad libitumat all times except when mice are

in testing cage (2 3 1 hour).

Mice are housed in a room with an 11:00 – 23:00 dark cycle, so that testing is performed during the dark

cycle. For testing, mice are moved into the behavior room prior to the start of testing for at least 1 hour

for habituation to the new room. All testing is performed in the dark and video recording is done using

infrared illumination and all manual procedures are done in the dark using red light. The mouse to be

tested, and their home cage soiled bedding, are moved to the testing-cage and allowed to habituate.

At the start of testing, the testing-cage is attached to the arena via the tunnel, the mouse now has access

to the arena and video recording starts for the Exploration phase. Mouse behavior is recorded continu-

ously during the 30 min Exploration phase trial under infrared lights. Noldus Ethovision software v14

were used for video tracking. After completing the Exploration phase, the mouse is returned to the

testing cage with water but no food until the Foraging phase 24 hours later. For the Foraging phase,

the testing cage is then gently attached to the tunnel and access to the arena is possible and the

Foraging trial begins. Video recording of the Foraging phase is performed for 30 minutes. After testing,

mice are placed in a new cage with food and are returned to the mouse colony room. Between each

Exploration and Foraging phase trial, the entire arena, including walls, platform, tunnel and steel

pots, are wiped clean with 70% ethanol.

Preparation of sand and seed pots for the foraging assay

Three stainless steel pots (Resco, diameter 5.5cm, depth 4cm) were filled with 95 g of sand. For the Explo-

ration phase, 1 pot is filled with 80 g of sand covered with 2.5g of seeds. On top of seeds, a layer of 12 g of

sand is added to cover seeds. This sand is then covered with 0.5g of seeds. This pot is placed in position 2 in

the arena. For the Foraging phase, 1 pot is filled with 80 g of sand, 3g of seeds on top of sand and additional

12 g of sand to cover all seeds. This pot is placed in position 4 in the arena. All pots are weighed before and

after the trial tomeasure the sand displaced from each pot. Remaining seeds and hulls left in the pot and on

the platform are measured after each Exploration or Foraging trial to determine the amount of seeds

consumed by the mouse during the trial. Used sand is collected after every trial and set aside. At the

completion of all testing, the used sand is autoclaved before reuse in future trials.

Foraging arena construction

The foraging arena, tunnel and testing cage were custombuilt with acrylic plastic (Delvies Plastics, Salt Lake

City, UT, USA). The 14 cm long tunnel enters the platform from underneath through one of the five 5.5 cm

diameter holes in the arena platform. The platform is 8 cm above epoch level and is made from 0.5 cm thick

white Plexiglas. The arena is made from a transparent Plexiglas tube and the 0.4 cm thick walls raise 42 cm

above the platform. The arena has a diameter of 35 cm. The walls of the arena were roughened with sand-

paper to limit glaring and recording artifacts.

Arena tracking zones

The arena is organized into zones that are used to breakdown the behavior and foraging strategies used by

each animal in the assay. The arena is divided into five sectors and the boundary of each sector is the

midpoint between two pots. The arena is further divided into three concentric circles, including the middle

center zone, the intermediate zone and the outer wall zone. The outer radius of theIntermediate zone in-

tersects with the center of the pots and tunnel entry. The radius of the Center zone is half the radius of the

Intermediate zone. A zone is also created around each pot in the arena. Pot zones have a radius of 1.7x the

radius of the pot itself. Finally, to learn about the behavior of the animal related to entries to and exits from

the arena, we define zones around the tunnel entry. The Tunnel Entry zone aligns with the entry hole of the

actual tunnel. The In Tunnel zone is covering the most peripheral area of the Tunnel Entry and tracks the

mouse just before leaving the arena completely. Whenever the mouse is in the cage, the tracking system

is recording the mouse as being in the In Tunnel zone. The Tunnel Zone area has the same radius as the

Potzones.
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Automated tracking

At the start of the trial, the tracking begins with a 10 s delay to allow time for the connection of the testing-

cage to the arena. The mouse is first tracked when it appears in theIn Tunnel zoneand position and move-

ment is continuously recorded after this time point until the end of the 30 min Exploration or Foraging

Phase. The XY position of the center of the mouse is video tracked with at a rate of 30 frames per second.

For the data analysis, tracking data from 0-25 minutes are used. Time spent in each zone, latency to visit a

zone and number of visits to each zone, as well as the distance traveled, are calculated using the Ethovision

software. The data is exported as results for the total 25-minute trial duration, as well as in 5 minute time

bins. Sand displacement and food consummation measures are collected and calculated manually.

Behavioral measures

All measures captured during Exploration or Foraging phases of the assay are presented in (Stacher

Hörndli et al., 2019). All ‘time spent in zone’, sand displaced, food consumed and zone visit measures

were normalized to the total time spent in the arena (TTA) by dividing each value by TTA (x/TTA). For

time bin values, the TTA for the corresponding time bin is used for normalization (i.e., x-1/TTA-1). All la-

tencies to visit pots were normalized to the latency to enter the platform (LEP) by subtracting the LEP (x-

LEP). Latency to the center zone after arena entry (LCAE) is already normalized to LEP and does not

need any further normalization. All percentage measures do not need any normalization. Time on the plat-

form itself and time in the tunnel (cage) are not included in the normalized dataset because they are closely

related and redundant to TTA.

Locomotor measures

The raw data files generated by Noldus Ethovision listing all XY coordinated and all zones as well as dis-

tance traveled and velocity for each frame were used to extract data describing excursions and locomotor

patterns using custom code, including the duration and number of bouts at different velocities. An excur-

sion is defined as beginning when themouse leaves the tunnel (In Tunnel zone) and ending when themouse

returns to the tunnel (one round trip). Continuous velocity values in the data were categorized into three

velocity classes,slow: velocity %5 equals; medium: velocity >5 % 15; fast: velocity >15. The length of the

bout is calculated using the number of frames in the sequence and all sequences of the same velocity class

longer than 3 frames are counted as a single velocity bout. In addition, a vector of several descriptive sta-

tistics is created that describes locomotor patterns and variability from X-Y tracking data.

QUANTIFICATION AND STATISTICAL ANALYSIS

Foraging behavior

Excursion data capture

Our DeepFeats approach for analyzing modularity in foraging was performed as previously described25

with some modifications and advances. In our study, mice were tracked with Noldus Ethovision software.

Noldus settings were used to define regions of interest in the foraging arena and indicated when themouse

was in each area. To ensure the tracking is equivalent across different mice, a Procrustes transformation of

the XY coordinates was performed to put every tracking file in the same coordinate space. The track coor-

dinates were zero’d to the center of the tunnel to the home cage. We then generated custom code in R to

parse the raw Noldus tracking files into discrete, round trip home base excursions from the home cage tun-

nel. Each excursion is assigned a unique ID key that we call the Concise Idiosyncratic Module Alignment

Report (CIMAR) string key. It stores the coordinates of the excursion in the data and the CIMAR string in-

cludes metadata regarding the mouse number, excursion number, sex, age, genotype and phase. Next,

custom code compares the CIMAR coordinates to the raw Noldus data files and constructs a new dataset

that extracts 57 measures from the Noldus output, which we use to initially statistically describe each excur-

sion. The 57 measures are designed to capture a relatively comprehensive array of different behavioral and

locomotor parameters, as well as describe interactions with food and non-food containing patches and

exposed regions in the environment. These measures consist of shape, frequency, order and location sta-

tistics of an animal’s X and Y movements, numbers of visits and time spent at different features in the arena,

including food patches (Pots#2 and 4), non-food containing patches (Pots#1 and 3), the tunnel zone, wall

zone and center zone of the arena and data describing locomotor patterns, including velocity, gait and dis-

tance traveled. The 57 measures for each excursion are scaled (normalized and centered across excursions)

because they are in different units.
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Behavioral measures to resolve modularity in excursions

This section details the methods to define the set of behavioral measures that best resolve candidate mod-

ules. A data matrix was constructed in which the rows are excursions performed by the mice, labeled by

CIMAR keys, and the columns are the 57 behavioral measures. Dimension reduction was performed using

Principal Component Analysis and the number of principal components (PCs) to retain for the identification

of modules was defined based on the set that maximized cluster identification in the training dataset parti-

tion. Unsupervised clustering was performed on the retained PCs.We used theWard.D2minimum variance

method implemented using the ‘‘hclust’’ function in R to perform the clustering and define compact, spher-

ical clusters. We then statistically define discrete excursion clusters from the results using the Dynamic Tree

Cut algorithm (Langfelder et al., 2008). This is a powerful approach because it is adaptive to the shape of

the dendrogram compared to typical constant height cutoff methods and offers the following advantages:

(1) identification of nested clusters; (2) suitable for automation; and (3) can combine the advantages of hi-

erarchical clustering and partitioning around medoids, giving better detection of outliers. We detect clus-

ters using the ‘‘hybrid’’ method and use the DeepSplit parameter set to 4 and the minimum cluster size set

to 20. The total number of clusters detected is quantified at each correlation threshold. Conceptually, more

relaxed correlation threshold cutoffs could reduce cluster detection by retaining redundant measures that

mask important effects from other measures. On the other hand, thresholds that are too stringent could

reduce cluster detection by pruning informative measures. Our objective is to identify the threshold that

uncovers the most informative and sensitive set of measures for resolving different clusters of excursions,

setting the epoch for the discovery of potential modules.

Statistical validation of significant clusters of excursions

In our study, Dynamic Tree Cut will deeply cut branches in a dendrogramgenerating large numbers of small

clusters if there are few bona fide relationships in the data. Thus, to test whether bona fide clusters of ex-

cursions exist in the data we implemented a random sampling procedure in R in which we randomly sample

from the matrix of the retained behavioral measure data to break the relationships between the excursions

and the measures. The sampled null data matrix is then subjected to the same clustering and quantification

procedure to determine the number of clusters found by Dynamic Tree Cut. A null distribution is created

from 10,000 iterations and compared to the observed number of clusters, which is expected to be signif-

icantly less than the null due to bona fide biological relationships between the excursions and set of re-

tained measures. A lower tailed p value was computed to test this outcome. In a modification compared

our previous study.

IGP permutation test for stereotyped behavioral modules

To test whether reproducible modules of behavior exist in the data for the foraging excursions, we use the

in-group proportion (IGP) statistical method for testing for reproducible clusters between two datasets.64

We built a modified version of this function for parallelized computing to speed the analysis for large

numbers of permutations. The excursion data for the mice is separated into a training data and test

data partition for reproducibility testing. A balanced partition was generated according to genotype,

sex and phase factors using the ‘‘createDataPartition’’ function in the caret package in R. Unsupervised hi-

erarchical clustering was performed on the Training data partition excursions and clusters were defined us-

ing Dynamic Tree Cut. Next, the centroids for each training data cluster were computed as the mean values

of the behavioral data for the excursions in the cluster. The training data centroids were then used to

compute the IGP statistic for each training data cluster based on the test partition data, thereby evaluating

the reproducibility of each cluster.

In a modification compared to our previous study described,25 we created a custom IGP permutation test

that is based on a distance calculation, rather than the correlation implementation in the clusterRepro R

package. The distance IGP testing framework was written in C++ and speeds the permutation test by

many fold and is a more accurate replication of the clustering parameters used in the test data. We

used this approach to compute p values for each cluster to determine whether the IGP value is greater

than chance. False positives due to multiple testing errors were controlled using the q-value method.65

Modules are thus defined as significantly reproducible training partition excursion clusters (q < 0.1).

Each module detected was assigned an ID number and individual excursions in the data were annotated

based on the module they match to. This approach facilitated quantifications of module expression fre-

quency by the mice.
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Statistical modeling of module expression counts

To statistically evaluate the genetic factors that significantly affect module expression frequency, we used

generalized linear modeling functions implemented in R. The hypotheses tested are detailed in the text for

each analysis and below. An interaction effect between module (or non-modular behavior type) was tested

using the model: Expression count� sex + genotype +module + genotype*module compared to a nested

model of the main effects. Post-testing to define the specific modules that are affected was performed us-

ing a glm testing for a main effect of genotype on each individual module with themodel: Expression count

� sex + genotype. We filtered based on overall variance to remove modules with low expression variance

across all mice in the study and reduce multiple testing errors, which is a proven two-step method for

analyzing high dimensional data.66 P-values were corrected for multiple testing errors by the q-value

method to control the false discovery rate and pi0 was computed to determine true nulls in the data.67

Generalized linear modeling was performed using a Poisson distribution. We tested the goodness-of-fit

of the Poisson for each module with a chi-square test of the residual deviance and degrees of freedom

in R.

Statistical modeling of module transitions

To statistically evaluate transitions between modules, the start time for each expressed module was re-

corded. We then constructed 1-step transition matrixes that relate the expressed module to the next ex-

pressed module to examine sequences of module expression. To determine whether module expression

transitions are dependent on the identity of the previously expressed module, we performed a Fisher’s

Exact test on the transition count matrix. To compare wild-type and knockout mouse transition matrices,

we computed the stationary probability distribution and then the Euclidean distance between the male

versus female distribution. Next, we compared the observed distance to a distribution of distances derived

from randomly permuted data. In the permutation test, modules are randomly sampled from the wild-type

and knockout data, two transition matrices are generated, the stationary probability distribution is

computed and then compared by Euclidean distance. The observed distance is compared to the permuted

distribution (>10,000 permutations) to determine the p-value.

Behavioral cartography and visualization

To visualize the structure of the foraging behavior landscape and the relationships between modules and

non-modular behavioral components, the raw data for 57 different behavioral measures was collected to

describe each excursion for all 1609 excursions performed by all mice in the study. The data were analyzed

and visualized using the PHATE algorithm42 and annotated according to module and non-modular com-

ponents as defined using the methods above.
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