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Abstract

Neuroinflammation and immune dysregulation play a key role in Alzheimer’s disease (AD) and are also associated with severe Covid-19
and neurological symptoms. Also, genome-wide association studies found many risk single nucleotide polymorphisms (SNPs) for AD
and Covid-19. However, our understanding of underlying gene regulatory mechanisms from risk SNPs to AD, Covid-19 and phenotypes is
still limited. To this end, we performed an integrative multi-omics analysis to predict gene regulatory networks for major brain regions
from population data in AD. Our networks linked transcription factors (TFs) to TF binding sites (TFBSs) on regulatory elements to
target genes. Comparative network analyses revealed cross-region-conserved and region-specific regulatory networks, in which many
immunological genes are present. Furthermore, we identified a list of AD–Covid genes using our networks involving known and Covid-19
genes. Our machine learning analysis prioritized 36 AD–Covid candidate genes for predicting Covid severity. Our independent validation
analyses found that these genes outperform known genes for classifying Covid-19 severity and AD. Finally, we mapped genome-wide
association study SNPs of AD and severe Covid that interrupt TFBSs on our regulatory networks, revealing potential mechanistic insights
of those disease risk variants. Our analyses and results are open-source available, providing an AD–Covid functional genomic resource
at the brain region level.

Introduction
Alzheimer’s Disease (AD), a neurodegenerative disease, affects
over 50 million elders worldwide (1). Late-onset AD (LOAD)
comprises > 97% of all AD cases, usually occurring after age
65 (2). AD patients experience phenotypic changes such as
memory loss, cognitive decline, weak executive function (1) [e.g.
poor Mini-Mental State Exam (MMSE) scores]. Many underlying
molecular changes happen like an accumulation of amyloid-
beta (Aβ) plaques and neurofibrillary tangles (NFTs), chronic
neuroinflammation (may begin decades before clinical onset).
Nonetheless, molecular mechanisms behind AD progression and
phenotypes remain elusive. Misguided innate immunity may be a
major culprit driving AD based on the neuroimmunomodulation
theory of AD (3).

Molecular interconnections that exist between the central ner-
vous system (CNS) and immune system (4) are also seen via
the strong correlations between AD and the severity of Covid-
19 infection (5). Covid-19, a robust marker for an overreactive
immune system, can also mediate neuroinflammation (6). β-
coronaviruses (like Covid-19) may attack the CNS, elevating AD
dementia processes (7). Covid survivors have greater risk of neu-
rological/psychiatric problems and brain fog [neuro-Covid (8) or
long-Covid]; patients may have visible neuropathological abnor-
malities in brain structure (5) [e.g. Hippocampus atrophy (9)]

similar to those found in AD patients (10). AD brains have high
levels of circulating pro-inflammatory cytokines associated with
activation of microglia [macrophage resident immune cells typ-
ically downregulated in healthy brains (4)]; these cytokines also
contribute to the cytokine storm causing exaggerated inflamma-
tion characteristic of severe Covid (11). In fact, Covid patients
experiencing delirium (symptom linked with high risk of AD) are
at grave risk of death and typically sent to an Intensive Care Unit
(ICU) (9). Elder patients (age > 65 years) are 70% likelier to be
diagnosed with AD within a year of Covid infection (12). There
is a 2-fold increased risk of Covid death in AD patients (13) and
of higher severity of Covid for patients with APOE4 (E4 alleles for
the key LOAD risk gene APOE) (14). Links among Covid, cognitive
decline and neurodegenerative diseases like AD are puzzling and
poorly understood (9). AD itself has over 34 canonical and intri-
cately interconnected pathways, making that process daunting
(15). Focusing on AD–Covid pathways may be a useful starting
point of departure given their strong links. Thus, understand-
ing genetic effects and underlying molecular mechanisms for
shared AD–Covid paths may shed more insights on rogue immune
responses not only in AD but also in severe and/or neuro Covid-19.

Several neuroimmunology pathways are shared by AD and
Covid. One of them is the NF-κB (Nuclear Factor Kappa-light-
chain-enhancer of activated B cells) pathway that is found
in almost all cell-types and that regulates, inter alia, brain
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Figure 1. Integrative analyses to predict GRNs from disease risk variants to phenotypes. Primarily, this analysis consists of seven major steps as a pipeline.
First, it inputs the population gene expression data with phenotypic information (Step 1). Second, it uses that gene expression data to construct and
cluster gene co-expression networks into gene modules (Step 2). Third, it performs enrichment analysis for these gene modules (Step 3). Fourth, it
links genes and modules to various phenotypes from the input population (Step 4). Fifth, it predicts the Transcription Factors (TFs) and regulatory
elements (e.g. TF binding sites along enhancers and/or promoters) that regulate genes and co-regulate modular genes as a gene regulatory network
(GRN, Step5). Sixth, it further finds disease risk variants [e.g. Genome-Wide Association Studies (GWAS) Single Nucleotide Polymorphisms (SNPs)] that
alter the binding sites of TFs from this GRN (Step 6). Seventh and finally, it outputs a SNP regulatory network (SNP-effected-GRN) linking functional
non-coding disease risk variants to impacted TFs and enhancers/promoters to regulated genes and modules to enriched functions and pathways to
disease phenotypes (Step 7). This network thus provides a deeper understanding of gene regulatory mechanisms in diseases. As a demo, in this paper,
we applied this pipeline to AD population datasets from different brain regions. We predicted brain-specific GRNs for various AD phenotypes such as
Alzheimer’s disease progression stages. Then, we built SNP-effected-GRNs by mapping single nucleotide polymorphisms (SNPs) from several AD GWAS
datasets and a GWAS related to Covid-19 severity in Covid-positive individuals to these GRNs.

homeostasis (maintains synapse plasticity, learning, memory;
moderates neuron survival/apoptosis) (16), innate immunity,
inflammation (17). A prominent hypothesis believes AD may be
caused by an impaired NF-κB pathway (16) with overactivated NF-
κB transcription factors (TFs) like RELA and NFKB1. This may lead
to more cytokines, neuroinflammation, oxidative stress compli-
cations, activated microglia, neuron death (16). NF-κB TFs are also
involved in a positive feedback loop, activating pro-inflammatory
cytokines in severe Covid (11). RELA, one of the most important
TFs regulating Covid response (18), is associated with APOE4
(19). Gene regulatory networks (GRNs) can capture how these
TFs regulate several genes of pro-inflammatory cytokines. Thus,
to understand neuroimmunology in Covid-19 and AD better,
it is important to analyze these underlying gene regulatory
mechanisms.

Gene expression and regulation are a key mechanism leading
to human diseases. Studies found differentially expressed genes
(DEGs) in AD in various brain regions like the Hippocampus
CA1 (Hippocampus), Lateral Temporal Lobe (LTL), Dorsolateral
Prefrontal Cortex (DLPFC). Also, gene co-expression networks are
widely used to identify co-expressed gene modules and link gene
expression patterns to AD phenotypes (20). Genes in a module
show similar expression dynamics across AD phenotypes, which
denotes that they share certain molecular mechanisms that
are dysregulated in AD (21). Nevertheless, understanding gene
regulatory mechanisms controlling DEGs, co-expressed genes and

modules for various AD phenotypes as they relate to the immune
system is unclear. Gene expression and function are controlled
by various regulatory factors working together in a GRN, like:
TFs binding to TF binding sites (TFBSs) on regulatory elements
(e.g. enhancers, promoters). However, our understanding of gene
regulation in AD and in AD–Covid is still limited.

To address these issues, we performed an integrative analysis
of multi-omics to reveal genes, functions and GRNs from AD
and/or severe Covid-19 Single Nucleotide Polymorphisms (SNPs)
to AD phenotypes for the three brain regions as mentioned above
(Fig. 1, Materials and Methods). Given a brain region, we built a
gene co-expression network using population gene expression
data from an AD cohort and identified co-expressed genes and
modules associated with AD phenotypes. We then integrated
chromatin interaction data [e.g. High-throughput chromosome
conformation capture (Hi-C)] and TF-gene expression relation-
ships to predict TFs regulating co-expressed genes by binding to
the regulatory elements that control these genes. Our machine
learning (ML) analysis prioritized 36 AD–Covid candidate genes for
predicting Covid severity and we evaluated further their ability to
predict AD. Finally, we identified risk SNPs altering these TFBSs
and analyzed their impact on our GRNs and AD phenotypes. We
emphasized subnetworks and regulatory SNPs associated with
our predicted AD–Covid genes. Thus, our analysis may provide
deeper insights into molecular causes of neuroimmunology per-
taining to AD, Covid-19 severity, neuro-Covid and AD–Covid.
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Figure 2. Gene co-expression modules significantly associated with AD phenotypes show specific expression dynamic patterns across phenotypes and
enriched functions and pathways. The left and right heatmaps on the top row correspond to the same set of select gene modules for the Hippocampus
(and the corresponding heatmaps for the LTL and DLPFC are in Supplementary Material, Figure S2). (A) Shows the module eigengenes (MEs) of seven
gene co-expression modules in the Hippocampal CA1 region where rows: modules and columns: individual human samples. Red: high expression level.
Blue: low expression level. On the left hand side of this heatmap is a dendrogram tree based on agglomerative hierarchical clustering so that similar
modules (in terms of values for MEs) cluster close together. (B) Shows the correlation coefficients and P-values for the same 7 Hippocampal CA1 gene
modules and various select AD phenotypes (Supplementary Materials contain additional phenotypes). Row: modules. Columns: AD phenotypes. Red:
highly positive correlation (r > 0). Green: highly negative correlation (r < 0). (C) Shows select biological functions and pathways that are enriched for
modules positively correlated (P < 0.05, r > 0) with AD across the three brain regions. Values in the cells, circle sizes and gradient color (yellow to
red) correspond to the highest −log10(adjust P-value) enrichment value of any gene module associated with the phenotype of AD diagnosis (i.e. AD
phenotype) from that given brain region. There are N = 31 post-mortem human samples in the Hippocampus, N = 30 in the Lateral Temporal Lobe (LTL)
and N = 638 in the Dorsolateral Prefrontal Cortex (DLPFC).

Results
Gene co-expression network analysis reveals
gene expression dynamics for AD phenotypes
across multiple brain regions
First, we applied our analysis to population gene expression
datasets of three major brain regions relating to AD: Hippocampal
CA1 (Hippocampus), LTL and DLPFC (Materials and Methods). We
identified several gene co-expression modules showing specific
gene expression dynamic changes for various AD phenotypes
(Supplementary Material, Files S1–S3 for the Hippocampus, LTL
and DLPFC, respectively), implying potential underlying gene
regulatory mechanisms associated with the phenotypes. Given a
brain region, we constructed and clustered a gene co-expression
network to a set of gene co-expression modules. In a gene co-
expression network for a brain region, nodes (or vertices) are
genes and each edge represents that two respective genes have
correlated gene expression profiles across the samples (i.e. co-
expression). There are likely groups of co-expressed genes within
the network that form densely connected sub-networks (gene

modules). Genes in a module share similar gene expression
dynamics in that respective brain region for the observed AD
phenotypes. Modular eigengenes (MEs) represent expression
dynamics for a gene module, using the first principal components
of module gene expression matrices.

Hippocampus. Twenty-one of 30 gene modules (9,525 genes)
are ‘phenotype-enriched’ as they are significantly positively
associated with at least one key AD-related phenotype. Their MEs
show specific expression dynamics (Fig. 2A: 7 select modules).
Pink and lightyellow modules have high gene expression values
for Controls and cluster together. On the other hand, greenyellow,
yellow, tan and magenta modules cluster together given their high
expression in AD. Next, we used expression dynamic patterns
to link modules to phenotypes (Fig. 2B) by significant positive
correlations. The tan module has the highest severe AD correla-
tion (r = 0.68). The midnightblue module is significant for Braak
4 stage (mild dementia), the lightyellow module for cognitive
resilience. The greenyellow module significantly correlates with
AD, AD progression, moderate/severe AD, cognitive impairment,
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Braak 6 stage. LTL. Twenty-eight of 56 co-expression modules are
phenotype enriched. We highlighted five MEs in Supplementary
Material, Figure S1A. The sienna3 module has higher expression
values for old and young Controls. Orange, magenta and yellow
modules cluster together with high expression in AD. As shown
in Supplementary Material, Figure S1B, the sienna3 module
correlates positively with Controls (r = 0.63) and being asymp-
tomatic for dementia or any other AD-related symptoms (r = 0.55).
Yellow, orange and magenta modules associate with aging,
AD/Braak progression, neuritic plaques; the orange module has
r = 0.72 for AD/dementia. DLPFC. The sample size in the DLPFC,
which is 20-fold larger relative to those of the other 2 regions,
likely attributes to the comparatively lower module-phenotype
correlations we observe in the DLPFC. Still, we see significantly
correlated modules with select AD phenotypes and highlight 6
of 35 modules (all 35 are phenotype-enriched) (Supplementary
Material, Fig. S1C and D, P < 0.05). The tan module is associated
with the worst APOE genotype (E4/E4) and with the age for the
diagnosis of AD; royalblue and green DLPFC modules correlate
with severe AD based on the last MMSE score. In terms of better
and healthier outcomes, the darkolivegreen module is significant
for Controls, higher MMSE scores, cognitive resilience. Our
gene modules across regions uncover gene expression dynamic
patterns across phenotypes, suggesting that genes in a module are
likely involved in similar functions and pathways. To understand
this, we performed module enrichment analysis as follows.

Eigengenes and enrichments of co-expression
modules reveal hub genes, gene functions and
pathways in AD phenotypes
We performed gene set enrichment analyses (Materials and
Methods) to understand better the biological functions, diseases,
pathways, structures and other observed phenomena of our
modules and link them to various AD phenotypes (Fig. 2). Healthy
phenotypes are Control, cognitive resilience, protective APOE
E2/E2 genotype. Our brain region module enrichments underscore
the role of the immune system and neuroimmunology among
other factors in AD progression and verify that the phenotype
correlations we detected for our gene modules may indicate true
biological signals.

In AD, the Hippocampus (Supplementary Material, Fig. S2A,
Supplementary Material, File S1) has a major loss in volume,
neurogenesis, memory, neuron density (22). Healthy gene modules
are enriched with synaptic plasticity, dendrite development,
calcium signaling. Perhaps resilient individuals are protected
from microsatellite instability and amyloid accumulation. Age
and AD progression modules are associated with abnormal innate
immunity, Covid-19 spike protein, NF-κB pathway [overexpressed
in AD (16)], activation of JNK and MAPK cascade [active in
AD, involved in tau phosphorylation, neuroinflammation (23),
synapse dysfunction, neuron death (70)]. Severe AD modules
are associated with metabolic processes (24), immune memory,
interferon signaling [high in AD mouse Hippocampus (25); this
response to amyloid may activate microglia, initiating neuroin-
flammation and synapse loss in neurons (26)]. The LTL (Sup-
plementary Material, Fig. S2B, Supplementary Material, File S2)
is impacted early in AD (27). Control modules are enriched
with Wnt signaling [inhibits tau protein hyperphosphorylation
and production of amyloid-beta (Aβ) plaques (28)], whose
dysregulation may lead to neurodegeneration. In AD and plaque
modules, Nlp protein loss from Mitotic centrosomes is enriched
[may cause microtubule instability, abnormal cell morphology,
AD (29)]. We found cell-type and other pathway enrichments

in AD progression phenotypes: astrocyte projection [glial cell
type that is increasingly active near Aβ plaques in AD (30)],
NF-κB activation, prion pathway [disruption may lead to Aβ

plaques (31)]. Dramatic Histone H4 acetylation epigenetic losses
on DNA regions near genes may decrease memory formation
during aging and AD in the LTL (27). The DLPFC (Supplementary
Material, Fi. S2C, Supplementary Material, File S3) works with the
Hippocampus to mediate complex cognitive functions (32) and
has plasticity deficits in AD (33). Microglia exclusively express
AD genes like APOE (34). Here, APOE2 modules are associated
with mitochondrial inheritance (P < 1e-16) and are shielded from
neurotoxins, whereas APOE4 modules are enriched with Aβ

response [may regulate microglia (88)], cognitive dysfunction.
Promising associations (some with P < 1e-58) for APOE4 and AD-
related modules support a crucial role of reactive microglia for AD
disease progression. In AD, microglia may change shape, are more
phagocytic, go awry and release pro-inflammatory cytokines,
leading to Aβ and neurofibrillary tangles (NFTs) (35), synapse
decline, neuroinflammation, neurodegeneration, cell death (34).
Our results may shed light on links between APOE4 and neuroin-
flammation, with enrichments such as: autoimmune diseases
(e.g. Wegener’s Granulomatosis), synapse pruning, astrocyte acti-
vation, microglia, abnormal innate immunity and cytokine levels
[the DLPFC in AD patients typically has more pro-inflammatory
cytokines like IL-1B, linked to Aβ plaques (35)]. Healthy modules
are enriched with Electron Transport Chain [altered in AD (36)],
neuron recognition, synapse plasticity, calcium ion regulated
exocytosis. Finally, we compared three brain regions (Fig. 2C, Sup-
plementary Material, Fig. S2D): Braak stage modules are enriched
with Ki-1 antigen (tumor marker of activated immune cells
regulating NF-κB and apoptosis), focal adhesion (plaques), VEGFA-
VEGFR2 [altered levels in AD may impact microglia/neuron
survival (37)]. Control and AD DLPFC/Hippocampus modules
share neuroimmunomodulation. AD and Braak stage modules
are enriched with blood–brain barrier (BBB), virus attachment,
complement system (CS) activation [innate immune-mediated
defense altered in AD (38)], oligodendrocyte differentiation [this
change in this glial cell type is linked to neurodegeneration, Aβ

accumulation (39)].

Prediction of brain region GRNs for AD
phenotypes
To understand underlying molecular mechanisms regulating
gene expression associated with various AD phenotypes, we
predicted the GRNs for target genes (TGs) and gene modules of
brain regions, especially using multi-omics data (Materials and
Methods). Brain region GRNs link TFs and regulatory elements
(e.g. enhancers or promoters) to TGs and co-expressed genes
(e.g. from the same gene module). GRN edges can be activation
or repression of TGs by TFs, which follow-ups can investigate.
These GRNs can be further linked to AD phenotypes significantly
associated with TGs and modules. We applied many popular
approaches and public databases to predict networks and used
their shared predictions to build our highly confident GRNs.
We found: 1,043 candidate TFs in the Hippocampus, 1,580 in
the LTL, (and 1,588 in the DLPFC), which we input into RTN,
GENIE3 and TReNA Ensemble Solver for the Hippocampus
and LTL, respectively. Supplementary Material, Table S1 shows
statistics of TF–Regulatory Element–TG network nodes and edges.
Supplementary Material, Files S4 and S5 contain our detailed
final Hippocampus and LTL GRN edge lists. We found TFs
significantly regulate 21 LTL gene co-expression modules and 21
Hippocampus gene modules; for example, in the Hippocampus,
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neurogenesis TF REST regulates a module of 883 genes, NFKB1
regulates one Control module, RELA regulates three gene modules
(2 Control modules, 1 AD progression module).

GRNs and AD phenotypes associated with
shared AD-Covid pathways
Rogue immune responses characterize AD and Covid-19. Our
hypergeometric test of overlap between both AD and Covid-19
(SARS-CoV-2) Kyoto Encyclopedia of Genes and Genomes (KEGG)
networks (P = 0.0034) was significant, suggesting that the shared
AD–Covid mechanisms are important. We thus looked at these
shared mechanisms implicated in adverse effects and inflamma-
tion in both diseases (16), like the NF-κB pathway. In mammals,
the NF-κB TF family has five TFs: NFKB1 (or p105/p50 protein),
NFKB2 (or p100/52 protein), REL (or c-Rel), RELA (or p65 protein)
and RELB (proto-oncogene near APOE). Reactive Oxygen Species
(ROS) activate RELA and NFKB1 TFs. Both TFs then transcribe
pro-inflammatory cytokines (e.g. IL-6, IL-1B, TNF), reducing long-
term potentiation (LTP) during AD (typically resulting in reduced
strength of synaptic signal transmission between neurons, lower
synaptic plasticity, memory loss and learning delays) and leading
to exaggerated and potentially lethal immune responses in Covid
[e.g. tissue injury, hypoxia (7), Acute Respiratory Distress Syn-
drome (ARDS) (40)] (Supplementary Material, Fig. S3). We found
that gene expression levels of NF-κB TFs correlate positively with
AD severity but negatively with controls in all three regions (Hip-
pocampus: Supplementary Material, Fig. S4A). NFKB1 and RELB
correlate negatively with controls in three regions, as do NFKB2
and RELA in the DLPFC and Hippocampus (Supplementary Mate-
rial, Fig. S4B). All five TFs correlate positively with severe AD in
the Hippocampus and two TFs correlate positively with AD in
DLPFC (Supplementary Material, Fig. S4C). Upregulation of NF-
κB TFs may be a key AD–Covid interplay as activation of these
TFs is linked to greater inflammation in Covid and in AD (40).
NFKB1 and RELA’s severe AD Hippocampus module has immune
enrichments like PID IL-1 pathway, abnormal innate immunity,
immunoglobulin level. We investigated our GRNs involving NF-κB
TFs. Figure 3A shows shared target genes (TGs) for NFKB1 and/or
RELA in the DLPFC and Hippocampus; seven TGs are regulated by
both TFs in both regions, like ANP32B and EMP3. Figure 3B shows
how RELA and NFKB1 indirectly regulate IL-1B in the LTL via TFs:
TCF3, RFX3, RREB1, IRF1, TP53.

We looked at the SARS-CoV-2 (Covid-19 KEGG: hsa05171) net-
work to analyze how the NF-κB pathway and regulated cytokines
may be associated with AD–Covid links and neuroinflammation
(Fig. 3C). During Covid-19 infection, the SARS-CoV-2 Spike protein
is primed by TMPRSS2, binds to the ACE2 [high expression
in brain/macrophages (41)] receptor and interacts with AT1R
(Angiotensin II Receptor Type 1) to enter and infect the cell (42).
Neurons may be directly invaded by SARS-CoV-2 or by systemic
infection compromising the blood-brain barrier (BBB, dysfunc-
tional in AD), elevating brain levels of chemokines, Complement
System (CS) factors and cytokines (increased in AD) (43) that
damage neurons (9). TMPRSS2, ACE2 and AT1R expression levels
correlate positively with severe/advanced AD in the Hippocampus
(Fig. 3D). We used our GRNs to analyze how NFKB1 and RELA
regulate genes of several pro-inflammatory cytokines that are
involved in the severe Covid cytokine storm [associated with
BBB dysfunction, anti-neuron antibodies, neuroinflammation,
neurodegeneration (7), activation of microglia and astrocytes].
In the DLPFC, RELA binds to an enhancer of CXCL10, which
has altered levels associated with immune dysfunction and
inflammatory disease severity (44). NFKB1 binds to LTL enhancer

of CSF3R, a regulator of neutrophil [innate immune system
cells that change level and function in severe Covid (45)] and
microglia maintenance (46). NFKB1 regulates IL-2 binding to an
IL-2 enhancer on chromosome 4: 121,696,658–121,696,872. In AD
brains, Aβ stimulation may activate NF-κB TFs to upregulate TNFa
and IL-1B (regulates amyloid precursor protein (APP) synthesis)
in microglia and astrocytes (16), likely triggering neuron death,
cytokine cascade, more plaques, inflammation, tissue destruction
(35,47). NFKB1 and RELA regulate TFs that further regulate
inflammatory cytokines IL-1B, IL-12B, CCL2, MMP1/3, CLGN. In the
Hippocampus, NFKB1 regulates SPI1 and BATF that then jointly
regulate MMP1. RELA regulates TNFa-induced proteins TNFAIP3/6
(regulate long-term potentiation in AD) in the Hippocampus; IL-
2 and TNFa are highly expressed in Covid patients with severe
pneumonia who develop ARDS [needing to go to the ICU and
receive emergency oxygen (40)] as well as in severe AD patients
(as are cytokines CCL2, IL-1B, IL-12B) (Fig. 3D). RELA activates
IL-12A/B (recruits Natural Killer cells (48)) and IL-1B via their
respective enhancers and regulates IL-6 [induces C-Reactive
Protein (CRP) synthesis that activates the CS (4)] by binding to
an IL-6 promoter.

Activation of the CS is involved in an inflammatory feedback
loop with neutrophil activation, resulting in tissue injury (49)
in severe Covid. CS components like C1qrs activate microglia
to the M1 state, releasing inflammatory mediators (50) causing
Hippocampus atrophy (51) (these M1 microglia induce neu-
rotoxicity; M2 microglia are instead anti-inflammatory and
neuroprotective). We found that C1qrs correlates negatively
with Control and Initial AD, but positively with AD severity in
the Hippocampus (Supplementary Material, Fig. S5). APOE
genotype is also associated with C1qrs expression in Covid
patients (14) in the DLPFC (negative correlation with E2, positive
with the APOE E4 allele). Indeed, many CS components correlate
positively with AD progression. Immunoglobulin-G antibodies,
whose responses to epitopes are key to Covid (52) immune
response, correlate positively with moderate but not severe
AD. Fibrinogen and the SELP protein changed from negative to
positive associations from moderate to severe AD. Supplementary
Material, Figure S6 shows correlations between other shared AD–
Covid mechanisms and AD phenotypes (e.g. Hippocampus: Tumor
Necrosis Factor Receptor (TNFR) with severe AD, IkappaB kinase
(IKK) with cognitive impairment; LTL: IKK with neuritic plaques;
DLPFC: c-Jun N-terminal kinases (JNKs) with cognitive resilience).

ML prediction of Covid-19 severity from
AD-Covid-related GRNs
There are several other shared AD–Covid mechanisms. Supple-
mentary Material, Files S6 and S7 have results for this section. We
normalized gene expression data of a recent Covid-19 cohort
(N = 50 Intensive Care Unit (ICU) vs. N = 50 non-ICU human
samples) (108) and identified 5,085 differentially expressed genes
(DEGs, 2,505 upregulated and 2,580 downregulated) for severe
Covid (ICU). We looked at our three final brain region GRNs
related to the 22 shared genes between AD and Covid KEGG
networks, including TFs that regulate them and/or their TGs
i.e. AD–Covid GRNs (Supplementary Material, Table S2). We then
identified the AD–Covid lists from these three AD–Covid GRNs and
filtered these gene lists down to only include the genes from the
modules associated with AD phenotypes (21, 28, and 35 modules
for the Hippocampus, LTL and DLPFC, respectively). Finally, a
combined AD–Covid gene list had 2,153 genes (pooling our final
AD–Covid genes lists from the Hippocampus: 1,146 genes, DLPFC:
895, LTL: 322) of which 733 are severe Covid DEGs. Covid severity
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Figure 3. Gene regulatory networks (GRNs) and phenotypes for Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), a shared pathway
in both AD and Covid-19. (A) A subnetwork focusing on overlaps in the GRN between the DLPFC and Hippocampus, focusing on the target genes (TGs)
regulated by NF-κB TFs: RELA (belongs to NF-κB class II) and NFKB1 (belongs to NF-κB class I). Here, only TF–TG links found in both brain regions are
shown. (B) RELA and NFKB1 TFs regulate other TFs in a domino chain reaction that then regulate the pro-inflammatory cytokine IL-1B in the LTL. This
illustrates the complexity of GRNs. For instance, RELA regulates TCF3, which then regulates RREB1, which then regulates IRF1, which then regulates
TP53, which lastly regulates IL-1B. (C) The Covid-19 virus (SARS-CoV-2) spike protein enters and infects the cell. Gene regulation of pro-inflammatory
cytokines by activated NF-κB TFs from our Hippocampal, LTL and/or DLPFC GRNs is linked with severe Covid-19 outcomes (e.g. cytokine storm and
beyond). This visualization is adapted from the Covid-19 KEGG network (KEGG: hsa05171), focusing on the NF-κB pathway. Gray dashed arrows indicate
regulation and black arrows indicate activation of cytokines by the respective TF. GRN edge lists in Supplementary Materials contain more examples.
(D) Pearson correlations between AD phenotypes and expression levels of genes from (C) in the Hippocampus; the gene-phenotype correlations with
P-value < 0.05 are denoted with an asterisk (∗) on top.

Figure 4. Predicting Covid-19 severity using AD–Covid GRNs. (A) Prediction accuracy of Covid-19 severity after selecting different numbers of genes
from AD–Covid GRNs and recently found Covid-19 genes (benchmark genes). The accuracy was calculated on the basis of the support vector machine
classification (SVM or SVC) model with 5-fold stratified cross-validation on 80 balanced training samples. The dashed lines correspond to the minimal
numbers of select genes with the highest accuracy (i.e. optimal gene sets for predicting Covid-19 severity). (B) Receiver operating characteristic curves
and corresponding AUC values for classifying Covid-19 severity in the test data of 20 balanced samples using the SVC machine learning models. (C)
Subnetwork of the DLPFC GRN relating to the 10 AD–Covid DLPFC genes for predicting Covid-19 severity (N = 10) with the shared KEGG genes. Blue:
genes/TFs found in the optimal DLPFC final model (which are also 10 of the 36 AD–Covid genes). White: 1 of the 22 shared KEGG genes (between AD
and Covid KEGG networks). There is no overlap between both sets of genes.

correlates positively with many AD KEGG mechanisms and vice-
versa (Supplementary Material, Figs S7 and S8). Seven DEGs are in
all four gene lists (5 upregulated genes like SPI1, 2 downregulated
genes: PIK3R3 and STAT2). AD–Covid genes strongly associate
with Covid severity.

We applied support vector machine (SVM or SVC, Materials and
Methods) models to predict the probability of severe Covid in
Covid patients. Each model was trained using this normalized
Covid gene expression data for a list of genes. We applied recursive
feature elimination (RFE) cross validation (CV) on an SVM model
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for the 18 benchmark Covid genes [from previous studies (53–56)]
(Fig. 4A); RFECV found 10 benchmark genes were optimal (highest
5-fold stratified CV accuracy on training data). We ran RFE on each
of our five lists (benchmark and 4 AD–Covid lists) to select the top
10 optimal genes (predictive for Covid severity) for each list (on the
basis of the training data), which we then used to build our bench-
mark model and four AD–Covid models, respectively. Forty-six
genes were found across all five input lists (benchmark, combined,
Hippocampus, LTL, DLPFC); the 36 genes from our four AD–Covid
models are our AD–Covid genes (we found 0 overlaps with the
10 benchmark genes). Our four AD–Covid models outperformed
the benchmark model on training data with higher average area
under the receiver-operator characteristic curve (AUC) (Supple-
mentary Material, Fig. S9) and accuracy (Supplementary Material,
Table S3). Our models perform better than the benchmark model
on test data (20 balanced samples) with higher AUC (except for
the LTL model) and accuracy (Fig. 4B). Relative to the bench-
mark model, the DLPFC model (optimal; accuracy: 85%, AUC:
0.98) boosted accuracy by 25% and AUC by 0.19. Decision curve
analysis (DCA, Supplementary Material, Supplementary Methods)
found that our models generally have higher Net Benefits than
the benchmark model across all probability thresholds (aver-
age Net Benefit increase of 0.153) and therefore have a greater
clinical usability (Supplementary Material, Fig. S10). Hence, using
our optimal AD–Covid model (for a given probability threshold)
on average increases the number of truly severe Covid patients
detected by approximately 153 per 1,000 Covid patients, without
changing the number of non-severe patients who are needlessly
sent to the ICU. Overall, our 36 genes have higher predictability for
Covid severity than benchmark Covid genes on new Covid patient
blood gene expression data. Our AD–Covid models may provide
potential novel strategies to guide clinical decisions on sending
Covid patients to the ICU or not.

We found that our 36 AD–Covid genes driving Covid severity
may also drive neuroinflammation, which is predictive of
AD. For this, we trained a logistic regression (LR) model to
predict the probability of AD using Superior Frontal Gyrus
(SFG) brain region gene expression data. Three AD–Covid
genes (ANP32B, GPI, SPI1) are AMP-AD (57) nominated AD
genes. GPI promotes neuron survival and immune-functions
[e.g. serves as tumor-secreted cytokine (58)]. TF SPI1 regulates
immune functions and microglia-mediated neurodegeneration
in AD (59), and correlates strongly with AD/Braak Progres-
sion in the Hippocampus. We used 35 of those 36 genes
(SMIM27 was missing) and added four binary features to control
for the four cell-types (39 features in total). We compared our test
performance for 24 samples: (12 AD, 12 Control) with that of a LR
model using 597 AMP-AD (57) genes (601 features). Our AD–Covid
LR model outperformed the AMP-AD LR model: AUC (0.583 vs.
0.569), accuracy (70.3% vs. 62.5%), DCA (29 optimal probability
thresholds vs. 21) (Supplementary Material, Fig. S11).

Thus, our 36 AD–Covid genes are predictive of not only
Covid severity but also of AD, as they performed better than
their respective benchmark models and have promising clinical
translational ability for predicting immune dysregulation, inflam-
mation, AD and severe/neuro Covid. Gene ANP32B [enriched in
extracellular vesicles in AD mice brain tissues (60)] strongly pre-
dicts Covid severity as it was found in DLPFC and Hippocampus
models; ATM, EMP3 and LILRA6 were found in Hippocampus and
combined models. Supplementary Material, Figure S12 reveals
how 13 of these 36 genes are DEGs in excitatory (ExN) and/or
inhibitory (InN) neurons for AD pathology overall and/or early AD
pathology versus none using recent data (61); for instance, SPI1 is

downregulated in ExN in both comparisons, whereas MYLIP is
upregulated in InN for early AD (versus controls). We highlight
the DLPFC GRN subnetwork for all 10 predictive genes directly
regulating or regulated by at least 1 of the 22 shared KEGG
genes (Fig. 4C, Hippocampus/LTL: Supplementary Material,
Fig. S13). Our three brain region GRN subnetworks reveal TF–TG
interactions that may predict pro-inflammatory cytokine levels
and neuroinflammation. NFKB1 and RELA regulate several genes
across all three regions, associated with immune dysregulation
(able to predict Covid severity), like ANP32B in the DLPFC. SPI1
and NFKB1 target PLEK, whose expression is linked to synapse
failure and cognitive dysfunction in AD (62). STAT5B regulates
glucocorticoid receptor activity, which impacts the expression
of pro- and anti-inflammatory genes (4). We found that STAT5B
jointly regulates PI3K subunits PIK3CD and PIK3CB in the DLPFC
(NFKB2 regulates PIK3R1 in the LTL); altered PI3K (shared AD–
Covid mechanism) signaling may increase IRF5 activity (25)
in AD (63) and in severe Covid. These 10 DLPFC SVC model-
based AD–Covid genes are enriched (64) with immune system
diseases like Hodgkin Lymphoma, T-cell Leukemia, Waldenstrom
Macroglobulinemia.

Identification of disease risk variants for AD
phenotypes via integration of genome-wide
association studies (GWAS) and GRNs
It is crucial to understand how non-coding disease-associated
SNPs [over 90% of risk SNPs (65)] affect gene regulatory mecha-
nisms that eventually impact AD phenotypes. For this purpose,
we looked at both AD SNPs and Covid-19 severity (on the basis
of hospitalization status upon Covid infection) SNPs from recent
GWAS. We did this for two main reasons. First, studies have
found that even mild Covid-19 infection is associated with brain
changes (66) and that severe Covid SNPs may contribute to cog-
nitive dysfunction (9), thereby worsening AD phenotypes. Second,
incorporating severe Covid SNPs may help us discover how Covid-
related genetic risk variants are associated not only with Covid
severity but also with AD and cognitive impairment (e.g. neuro-
Covid), both of which are currently unknown (9). We mapped AD
SNPs and Covid severity SNPs onto our final GRNs to see how
these SNPs alter TFBSs on regulatory elements (enhancers and/or
promoters) that regulate target genes (TGs) and gene modules.
Furthermore, we linked these SNPs to AD phenotypes of corre-
sponding TGs and modules for our three brain regions i.e. ‘brain-
region SNP-effected-GRN for AD phenotypes’: SNP–TF–Regulatory
Element–TG–Module–Phenotype. Thus, we could predict how AD
and/or severe Covid SNPs impact TF regulation of TGs that belong
to modules enriched with biological functions; TGs and modules
may associate with AD phenotypes. Our SNP-effected-GRN pre-
dicted 144,098 total unique SNP–TF–TG relationships across the
three regions (for 17,795 SNPs impacting TFBSs, 14 common AD–
Covid SNPs); 6,245 SNP–TG relations had at least one validated
blood/brain expression quantitative trait loci (eQTL) link. Supple-
mentary Material, File S8 has metrics and our annotated SNP-
effected-GRN. Below, we highlight some of the strong examples
from our many SNP-effected-GRN predictions.

Our SNP-effected-GRN may predict how AD and/or severe
Covid SNPs may alter the expression of TGs like our 36 AD–
Covid genes. In Figure 5 we use our Hippocampus SNP-effected-
GRN to focus on Nuclear Transcription Factor Y Subunit Alpha
(NFYA), 1 of 525 common TGs dysregulated by AD SNPs and
by severe Covid SNPs. Figure 5A shows many predicted NFYA
enhancers. AD SNP rs2073014 strongly hinders EHF and ELF1
TFs [that both belong to the ETS TF family (67)] from binding
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Figure 5. Select SNP regulatory networks (SNP-effected-GRNs) linking AD and Covid-19 severity risk variants (GWAS SNPs) to AD phenotypes. This
example utilizes the SNP-effected-GRN in the Hippocampus. (A) This focuses on how an AD SNP rs2073014 disrupts binding of two TFs (EHF and ELF1)
to an NFYA enhancer. Another Covid-19 severity SNP instead increases HSF2 TF binding and subsequent regulation (activation or repression is unknown)
of NFYA. (B) This shows how AD SNP rs2073014 interrupts the binding sites of EHF and ELF1 TFs in the Hippocampus (on the basis of their respective
sequence-specific motifs). (C) On the bottom right is a legend for this network. Bi-directional dashed arrows represent SNP association with AD and/or
severe Covid-19 on the basis of summary statistics from recent GWAS. Arrows with dots in the middle represent that the SNP strongly impacts TF
Binding (either increasing or disrupting it; details available in Supp. Files). The solid arrow represents that the TF regulates that given TG on the basis
of the Hippocampus GRN. Grey arrows represent that the TG and/or TG module are statistically significantly positively correlated (P < 0.05, r > 0) with
that given AD-related phenotype. In this figure, we analyze the role of one AD SNP and two Covid severity SNPs in eventually impacting the regulation
of NFYA in the Hippocampus. For instance, SNP rs193235873 impacts the ability of TP63 to regulate E2F4 that then regulates NFYA. Furthermore, we
show how NFYA regulates five AD–Covid genes (RPS13, ANXA11, LILRA2, ANP32B, SF3B1) and we highlight the Hippocampus gene modules for these 5
genes (using black arrows that contain a white rectangle). In addition, we link the gene modules and these five AD–Covid genes with their respective
AD-related phenotypes. Thus, we predict how AD SNPs and Covid-19 severity SNPs may eventually impact the regulation of 5 of our 36 AD–Covid genes
that are associated with various AD phenotypes.

to an NFYA enhancer. On the other hand, severe Covid SNP
rs2495242 strongly increases HSF2 regulation of NFYA. SNP
rs2073014 is a mutation that changes the DNA base from a T
to a C at chromosome 6 position: 41,029,109, disrupting EHF and
ELF1 motifs (Figure 5B); both motifs are significantly enriched
in all single-cell assay for transposase-accessible chromatin
(scATAC-seq) peaks (typically corresponding to enhancers) (67)
of open chromatin in microglia. We found forty-eight prefrontal
cortex (PFC) eQTL SNPs associated with reduced NFYA expression
that correlate positively with rs2073014 on the basis of linkage
disequilibrium (LD) analysis; this verifies that rs2073014 is
associated with NFYA expression in the brain. Rs193235873, a
Covid severity SNP, increases TP63 regulation of E2F4 (and TP63
significantly regulates E2F4’s Braak 6 stage module), which in
turn regulates NFYA (Fig. 5C). NFYA is associated with AD (68),
plays a key role in various cancers (69) and regulates 5 AD–
Covid genes like LILRA2 and ANP32B (their shared module
positively correlates with worse AD phenotypes). Supplementary
Material, Figure S14a identifies cell-type eQTL SNPs impacting
the regulation of ANXA11 (an AD-Covid gene) by five TFs, like
NFKB1, in the Hippocampus. In particular, SNPs linked to our
AD–Covid genes and correlated with AD phenotypes may help
explain genetic mechanisms of critical illness, neuroimmunology
and cognitive impairment in Covid (54) and in AD.

We predicted five shared AD and severe Covid SNPs in IFNAR2
Hippocampus and/or LTL enhancers that may impact regulation
of IFNAR2, a known Covid severity gene (54). These five SNPs are in
LD with blood eQTL SNP rs7509997 that is strongly positively asso-
ciated (P = 3.31e-49) with IFNAR2 expression. During AD, cytokine
CSF3R’s overexpression in the LTL may be partly explained by
SNPs like rs483341 that disrupt the ability of TF REST [protects
neurons from Aβ-protein toxicity (70)] to bind to chromatin to
repress its TGs (71) like CSF3R, leading to inflammation (72).
Harmful AD SNP rs2564970 (P = 5.47e-08), which is four bases
from a predicted CR1 Hippocampus enhancer (chromosome 1:
207,464,045 - 207,464,283), may strongly disrupt NFKB1 and RELA
regulation of CR1 (Complement receptor type 1), a major AD gene
associated with the CS. Moreover, our SNP-effected-GRN predicts
previously unknown SNPs and specific TFs associated with NF-
κB TF activation in AD, which may make NF-κB TFs neuropro-
tective or neurotoxic. We predict that harmful Covid severity
SNP rs2736322 disrupts RREB1’s ability to bind to an FAM167A
LTL enhancer and subsequently regulate FAM167A, a TG which
correlates positively with AD and Braak stages and belongs to
an AD LTL module. This may explain this SNP’s negative eQTL
relationship with FAM167A expression across various brain cell-
types. Furthermore, we have Supplementary Material, Figures S14
and S15 that elaborate on the following select stories: AD SNPs on
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regulatory elements may dysregulate Hippocampus expression
of three AD–Covid genes: EMP3, LILRA2, SPI1 (Supplementary
Material, Fig. S14b). Harmful AD SNP rs754366 (has a positive PFC
eQTL link to APOC2 expression) may increase SPI1 binding to an
APOC2 DLPFC enhancer where it activates APOC2 (Supplementary
Material, Fig. S14c). Non-coding AD SNPs in microglia scATAC-seq
peaks impact regulation of KCNN4 (Potassium Calcium-Activated
Channel Subfamily N Member 4), an AD risk microglia gene with
previously no known mutations (71) associated with its expression
(Supplementary Material, Fig. S15). The above stories and more
(in Supplementary Material) underscore the importance of our
work and findings. Moreover, our SNP-effected-GRN may help
explain GRN mechanisms behind several causal blood/brain eQTL
links.

Discussion
In this paper, we performed an integrative multi-omics study
to predict AD GRNs along with gene co-expression modules for
three major brain regions. Using these networks and modules,
we further linked a number of AD–Covid genes that improve AD
and severe Covid predictions, and also revealed the regulatory
mechanisms of genome-wide association study (GWAS) SNPs of
AD and of severe Covid-19.

Brain regions are composed of varied cell types that may
impact co-expression networks and gene regulation; for example,
AD patients may have fewer neurons and more immune cells.
Many human brain cell-type GRNs were predicted from recent
single-cell sequencing data (e.g. scRNA-seq, scATAC-seq), which
enable studying cell-type functional genomics and GRNs (73).
We validated that many phenotype-associated SNPs are located
on regulatory elements with cell-type epigenomic activities. An
integrative analysis of cell-type GRNs can also be performed
to understand regulatory mechanisms for GWAS risk variants
for refined AD phenotypes [e.g. cerebrospinal fluid, psychotic
symptoms (46)]. Using pooled cell types in the SFG to predict
AD may have confounding factors as a human sample could
have many corresponding cell-type samples. That the Covid tran-
scriptomic data was from blood samples may present limitations
as AD–Covid GRNs use transcriptomic data from brain tissues.
Still, researchers found immune dysregulation in both AD brain
and blood samples (74). Elevated pro-inflammatory molecules
in Covid patients can compromise the blood-brain barrier (the
BBB breaks down in AD), enter the brain and encounter astro-
cytes and microglia (both cell-types malfunction in AD); such
patients are more susceptible to severe Covid and further neu-
rological damage. Thus, Covid-19 patient blood gene expression
data may predict future Central Nervous System (CNS) invasion
and neuroinflammation. Our findings support further research
into understanding better the causal links between AD and Covid
(35) (e.g. it is unknown if Covid triggers new development of AD or
accelerates AD progression). Treatments and drug development
can perhaps be targeted at AD–Covid pathways to alleviate patient
suffering i.e. care providers may suppress Interferon response or
use acetylcholinesterase inhibitors (current AD treatment strat-
egy) (25) to stimulate the cholinergic anti-inflammatory pathway
in Covid patients. Such treatments may reduce the overall risk
of cognitive decline in Covid survivors (9). Currently, research
in AD–Covid, long- or neuro-Covid and AD neuroimmunology is
nascent and more data is being generated, which may be used to
eventually expand on our current work (especially given sample
size limitations of our data).

Many large scientific consortia generate matched multi-omics
data of individuals like AMP-AD (57), PsychENCODE (75), TCGA
(76). We can extend our machine learning (ML) analysis to predict
personalized phenotypes and prioritize phenotype-specific func-
tional genomics and GRNs in diseases from this data. We found
TFs regulate many gene modules and link to AD phenotypes,
suggesting possible collinearity driven by TF regulations across
phenotypes. Emerging ML approaches like neural networks may
decouple phenotypic collinearity, uncovering phenotypic-specific
TFs. Studies emphasize systems biology and ML approaches (like
ours) to identify biomarkers for neuroinflammation (46) in AD,
Covid-associated cognitive impairment (9) (e.g. neuro-Covid or
long-Covid) and Covid severity. Neuroimmunology research is dis-
covering the role of dysregulated immune responses in other com-
plex neurologic diseases like Schizophrenia (SCZ), Amyotrophic
Lateral Sclerosis, Myasthenia Gravis, Parkinson’s disease, Multiple
Sclerosis (77). For instance, overactivated NF-κB signaling is also
found in Post-Traumatic Stress and Bipolar Disorders (4). Covid-
19 may similarly be used to understand the role of misguided
immunity in SCZ, as SCZ is an autoimmune disease (excess
pruning of synapses by microglia) and the second largest risk
factor for Covid-19 death after age (78). Overall, we hope that our
approach can be applied to help understand molecular mecha-
nisms in other diseases by uncovering the association of orphaned
GWAS loci in non-coding DNA regions with disease phenotypes
and by using closely related diseases to help reveal additional
mechanisms at play.

Materials and Methods
The pipeline of our integrative analysis for
predicting gene regulatory mechanisms from AD
and/or severe Covid-19 risk variants to AD
phenotypes
Our analysis can be summarized as a pipeline to predict SNP-
effected-GRNs (linking SNPs to GRNs) from disease risk vari-
ants to phenotypes (Fig. 1). The SNP-effected-GRNs for specific
phenotypes link disease risk SNPs, non-coding regulatory ele-
ments and TFs to genes and genome functions, providing compre-
hensive mechanistic insights on gene regulation associated with
disease phenotypes. Specifically, the pipeline includes the follow-
ing steps. Here, our analysis is open-source available at https://
github.com/daifengwanglab/ADSNPheno. We used human ref-
erence genome: hg19 (GRCh37: Genome Reference Consortium
Human Build 37) for our genomic coordinates and our following
analysis.

• Step 1: Input population gene expression data of individuals
and clinical information on AD phenotypes such as Braak
staging and progression.

• Step 2: Input data are used to construct a gene co-expression
network linking all possible gene pairs. Network edge weights
are correlations of gene expression profiles across input sam-
ples. The network is clustered further into gene co-expression
modules. Genes in a module are likely to share similar func-
tions and be co-regulated by specific regulatory mechanisms.

• Step 3: Annotate gene co-expression modular functions and
biological pathways by enrichment analyses of genes in the
given module (using various biological resources).

• Step 4: Associate modules and genes with AD phenotypes of
the input samples, revealing potential driver genes (e.g. hubs)
and modules for these phenotypes.

• Step 5: Predict gene regulatory networks (GRNs) for genes and
gene modules. We apply multiple computational methods to
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predict GRNs that link TFs to non-coding regulatory elements
(e.g. enhancers, promoters) to genes and modules, providing
regulatory mechanistic insights on AD genes and modules.

• Step 6: Link disease risk variants [e.g. Single Nucleotide
Polymorphisms (SNPs)] to the gene regulatory network. Our
pipeline identifies functional AD and/or severe Covid risk
SNPs that alter (increase or decrease) TF binding to TF binding
sites (TFBSs) in regulatory elements in the GRN i.e. regulatory
SNPs. We can then connect these non-coding regulatory
SNPs to genes and modules and then to AD phenotypes and
biological enrichments.

• Step 7: Output a SNP-effected-GRN that links AD and/or
severe Covid risk SNPs, non-coding regulatory elements, TFs
to genes and their gene modules, genome functions (via
module enrichment analysis in Step 3) for AD phenotypes in
the input data. This network has SNP-Regulatory Element-TF-
gene-module-phenotype links.

Population gene expression data and data
processing in Alzheimer’s
We applied this pipelined analysis to post-mortem human AD
population gene expression data for three major AD brain regions:
Hippocampal CA1 (Hippocampus), LTL, DLPFC. We removed lowly
expressed genes (zero variance; relative weights below 0.1),
using the goodSamplesGenes() function in the weighted gene
co-expression network analysis (WGCNA) (79) package in R. There
are 12,183 shared genes across these three regions, including non-
coding genes. We did not pre-adjust gene expression data using
covariates (e.g. patient metadata) as those are used downstream
as phenotypes. We performed feature engineering to create
additional phenotypes for the human samples. We processed
the data as follows, striving to meet quality control standards.

Hippocampus: We used microarray gene expression dataset
(GSE1297) (80), which had total RNA expression values for 22 283
HG-U133 Affymetrix Human Genome U133 Plus 2.0 Microarray
Identifier probes for 31 individual samples [9 control (no AD)
and 22 samples in various AD stages: 7 initial, 8 moderate, 7
severe]. We used GEOquery (81), hgu133a.db (82), hgu133acdf
(83) and Affy (84) R packages to download raw gene expression
data and perform Robust Multichip Average (RMA) normalization
(85) to account for background and technical variations among
the samples. We mapped microarray probes to genes, averaging
values that mapped to the same gene Entrez ID and removing
unmapped probes. We applied a log2(x + 1) transform to the gene
expression data (the x) and then standardized that data by R’s (86)
scale() function. The final Hippocampus gene expression data has
13,073 genes for these 31 samples.

LTL: We used normalized bulk RNA-Seq dataset (GSE159699)
(27) with total RNA expression values for 27,130 different genes for
30 individual samples. This group of individual samples includes
18 control samples [8 young (below age 60), 10 old (above age 60)]
and 12 old samples with advanced AD. We applied a log2(x + 1)
transformation to the data. The final LTL gene expression data
has 25,292 genes for these 30 samples.

DLPFC: We used FPKM (Fragments per kilobase of exon per mil-
lion mapped fragments) gene expression data from the ROSMAP
Study on synapse.org (ID: syn3219045) (87). We found that 638
out of 640 individual RNA-Seq samples have mapped phenotypes.
For instance, for the final consensus cognitive diagnosis (cogdx)
phenotype on cognitive impairment: we have 201 samples in
Group 1 (none), 168 in Groups 2–3 (mild), 269 in Groups 4–6
(AD/other dementia). We applied a log2(x + 1) data transform and
then standardized the data with R’s scale() function (86). The

final DLPFC gene expression data has 26,014 genes for these 638
samples.

Regulatory elements and chromatin interactions
in human brain regions
Epigenomic data has identified a variety of regulatory elements
like enhancers and promoters. Chromatin interaction data (e.g.
Hi-C) further revealed interactions among enhancers and gene
promoters. Thus, we integrated recent published epigenomic
and chromatin interaction data to link enhancers to genes
(via promoters). For the Hippocampus, we obtained enhancers
and promoters from Brain Open Chromatin Atlas (88) and
promoter-based interactions from GSE86189 (89). R package
TxDb.Hsapiens.UCSC.hg19.knownGene (90) retrieved promoter
start and stop positions of genes in the LTL and DLPFC, using
a short ultra-conserved promoter length of 5,000 base pairs
upstream of the protein-coding start site on the DNA (91).
GSE130746 (27) H3K27ac (DNA Histone H3 protein acetylation
of the lysine residue that is found at the N-terminal position
27 for H3) data (used for the LTL) has information on the gene,
distance from the histone H3K27ac epigenetic mark to that
gene’s Transcription Start Site (TSS), enhancer start and end
positions; our final LTL enhancers were at least 1 kilobase pair
(kbp) away from the TSS. We used PsychENCODE (75) enhancers
and interacting enhancer-promoter pairs for the DLPFC.

Gene co-expression network analysis
We applied WGCNA (79) to population gene expression data to
construct and cluster gene co-expression networks into gene co-
expression modules (minimum module size = 30 genes; no mod-
ules were merged). Then, we applied an additional K-Means clus-
tering step on the basis of code (92) and methodology that has
been previously utilized and proven to improve conventional
WGCNA module assignments and functional enrichments, in
applications like finding brain-specific cell-type marker enrich-
ments (93). This step utilizes modular eigengenes (MEs) from
WGCNA modules as initial centroids, initial gene assignments
from WGCNA and computable distance between the genes and
MEs for K-Means to re-assign genes to optimal modules (retaining
the number of modules originally detected by WGCNA) across
the iterations (till convergence). In total, we obtained 30 gene co-
expression modules for the Hippocampus (13,073 genes), 56 for
the LTL (25,292 genes), 35 for the DLPFC (26,014 genes).

Enrichment analyses of gene co-expression
modules
Co-expressed genes in the same module are highly likely to be
involved in similar functions and pathways. Enrichment analysis
has thus been widely used to identify such functions and path-
ways in a gene module. P-values for enrichments were adjusted
using the Benjamini–Hochberg (B-H) correction procedure (for
multiple hypothesis testing) and enriched terms with adjust P-
value < 0.05 were selected. Given a group of genes (e.g. from a
module) for each brain region, we performed enrichment analysis
using multiple tools and their respective gene databases [e.g.
Metascape (64), g:Profiler (94), WGCNA (79), rentrez (95), Bader
Laboratory (96), Maayan Laboratory (97), ABAEnrichment (98),
Psygenet2r (99), TissueEnrich (100), ClusterProfiler (101,102), Cell-
Marker (103)]. Since we used multiple tools for enrichment analy-
sis, a gene module could have many −log10(adjust P) enrichment
values for a given enriched term; in that case, we used the highest
enrichment value for that term for the module. To visualize
enriched terms for a phenotype in a brain region, we averaged

http://synapse.org
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non-zero −log10(adjust P) values for only the gene modules that
are significantly positively correlated (Pearson r > 0, P < 0.05) with
that phenotype.

Association of genes and modules with AD
phenotypes
We further associated genes and modules with these key AD
developmental phenotypes, including: AD stages and progression
(moderate stage, severe stage, AD Progression), healthy/resilient
(Control individuals or resilient individuals with better cognitive
abilities despite advanced AD pathology), APOE genotype [E4/E4 is
a huge AD risk factor, while E2/E2 is protective (104)], Braak staging
[stages from 1 to 6, with 6 linked to severe neuropathological dam-
age and spread of neurofibrillary tangles across the brain], neu-
ritic plaque accumulation (by CERAD score), cognitive impairment
level. We associated gene co-expression modules with all possible
AD phenotypes from the input data, by computing the pairwise
correlations of each modular eigengene (ME) with each pheno-
type. WGCNA’s MEs are the first principal components of modular
gene expression; an ME is a vector representing gene expression
levels of input samples and is the likeliest gene expression pattern
of the genes in that module. We used WGCNA’s moduleTraitCor()
and moduleTraitPvalue() functions to correlate these MEs with
phenotypes, finding the most significantly positively associated
phenotypes for our gene modules for our analysis (P-value < 0.05,
positive correlation r). Our modules of interest i.e. ‘phenotype-
enriched modules’ are positively correlated with at least one AD-
related phenotype (including the control stage phenotype since
such modules may typically be down-regulated in expression
during AD progression). We performed similar analysis (that we
used for the MEs) for each of our genes using the expression
data for that given gene to find significant phenotypes positively
associated with that gene in that brain region. We used gene co-
expression networks to examine the relationship between genes
and AD phenotypes and identify potential driver (hub) genes for
modules (based on the degree of connectivity for each gene in its
respective gene co-expression module).

Prediction of GRNs from multi-omics
GRNs, a key molecular mechanism, fundamentally control gene
transcription and expression. Co-expressed genes are likely co-
regulated by similar GRNs. Thus, our analysis integrates multiple
methods to predict GRNs from gene expression data. We predicted
GRNs in brain regions using not only gene expression data but
also chromatin interaction data to link TFs to regulatory elements
to target genes (TGs)/modules. For our full DLPFC GRN, we used
the published PsychENCODE GRN (Elastic Net regression weight
cutoff: 0.1) filtered for genes in the DLPFC gene expression data
(105). Our full GRNs linked TFs to regulatory elements (enhancer-
s/promoters; chromosome #: regulatory region start—end) to TGs.

We used these four steps to construct our full Hippocampus
GRN and full LTL GRN. First, we identified regulatory elements
(e.g. enhancers, promoters) that potentially interact using recent
chromatin interaction data (Hi-C) and Step 1 of the scGRNom
pipeline (106). Second, we infer TFBSs on the basis of consensus
binding site sequences on interacting enhancers and promoters
by TFBSTools (107) and motifmatchr (108) using Step 2 of the
scGRNom pipeline (106). We generate a chromatin interaction-
based reference network linking TFs to regulatory elements (by
TFBSs) to TGs (by interactions). Third, using gene expression data
for a given brain region, we predicted all possible TF–TG pairs
(or TF-modules) with strong expression relationships by applying
three widely used tools: RTN (109), TreNA Ensemble Solver (110),

GENIE3 (111) (and TF-gene-module pairs by RTN). Thus, we cre-
ated a gene expression-based network by combining TF–TG pairs
found by at least two of these three tools. Fourth and finally, we
mapped the gene expression-based network TF–TG pairs to the
TF-TG pairs in the chromatin interaction-based reference net-
work. The full GRN (for the Hippocampus or the LTL) thus contains
TF–TG pairs found in both the chromatin interaction and the
gene expression-based networks (see Supplementary Materials,
Supplementary Methods for more details).

For each of the three brain regions, we built final GRNs by
using our prior analysis (see earlier), which had assigned TGs
to gene co-expression modules and associated the modules with
AD phenotypes and biological enrichments. This prior analysis
provided richer annotations for TGs in our full GRNs. Our final
GRN for each brain region comprehensively linked TFs to non-
coding regulatory elements to TGs and these TGs to gene modules
to AD phenotypes/enrichments.

Identification of AD-Covid GRNs and genes using
GRNs and gene modules
To investigate potential mechanistic interplays between AD and
Covid-19, we compared AD (hsa05010) and Covid-19 (hsa05171)
KEGG networks (112) and found AD–Covid mechanisms like: NF-
κB, Inhibitor of Nuclear Factor Kappa B Kinase (IKK), c-Jun N-
terminal Kinase (JNK), Interleukin-6 (IL-6), Phosphoinositide 3-
Kinase (PI3K), Tumor Necrosis Factor alpha (TNFa), TNF Receptor
(TNFR). We found a statistically significant overlap of 22 genes
between both KEGG networks on the basis of a hypergeometric
test (7,559 human genes in the KEGG universe, 384 human KEGG
genes in AD, 232 human KEGG genes in Covid-19). The 22 shared
KEGG genes correlate highly with AD phenotypes in different
brain regions. This motivated us to find neuroimmunology genes
in AD–Covid. We used the Pathview (113) tool to visualize cor-
relations of KEGG network mechanisms with AD phenotypes.
For each region, we constructed an AD–Covid gene list using its
respective final GRN and gene co-expression modules as follows.
First, we built an AD–Covid GRN: a subnetwork of the GRN with
TFs regulating and/or TGs of the 22 shared KEGG genes such that
each GRN edge contains at least 1 shared KEGG gene. Second, we
filtered these AD–Covid GRNs to only include genes that belong
to an ‘AD-phenotype enriched’ gene module. Hence, genes in
our AD–Covid GRN (our AD–Covid genes) were either 1 of the
22 shared KEGG genes or directly linked to them by a GRN link.
Moreover, the AD–Covid genes had altered expression dynamic
patterns associated with AD. Thus, we built four AD–Covid gene
lists: Hippocampus, LTL, DLPFC and a combined list of the three.
These four lists were later used to predict Covid-19 severity (see
next).

Gene expression analysis and ML prediction for
Covid-19 severity from AD-Covid GRNs
To gauge the clinical performance of our AD–Covid genes in
terms of predicting Covid severity (proxy for immune system
dysregulation), we looked at recent population RNA-seq gene
expression data of human Covid-19 blood samples (GSE157103)
(114). We median normalized this data (19,472 genes) and applied
differential expression analysis by DESeq2 (115) between 50 severe
(Intensive Care Unit (ICU)) and 50 non-severe (non-ICU) Covid
patients. Aside from applying differential expression analysis to
find individual-associated genes, we performed machine learning
(ML) analysis to determine if any of our four AD–Covid gene lists
(from our AD–Covid GRNs) and the respective normalized blood
gene expression data could predict the probability of severe Covid

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddad009#supplementary-data
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(being in the ICU) for Covid patients better than a benchmark
list of Covid genes could. We used a SVM classifier model [linear
kernel, balanced class weights, on the basis of Python’s Scikit-
Learn (116) svm.SVC package] to output the predicted probabil-
ities of severe Covid for Covid samples. We randomly partitioned
our data using an 80–20 training–testing split with 80 samples (40
ICU, 40 non-ICU) in training data and held out 20 samples (10
ICU, 10 non-ICU) in test data. Stratified 5-Fold Cross Validation
(CV) was used to calculate training classification accuracy; each
fold held out 16 samples (8 from each class) for validation and
trained an SVM model on the remaining 64 samples (32 from
each class). Input data used to build each model was the median
normalized Covid gene expression data for the respective selected
genes (features) for the training samples. We did not use age
and gender as predictors given their low correlations with Covid
severity.

For our ML analysis, we gathered a benchmark list of 18 known
and published Covid genes from the following four studies (53–
56). A study (53) used U.K. Biobank GWAS and Covid mortality
data to discover eight genes associated with high Covid mortality:
DNAH7, CLUAP1, DES, SPEG, STXBP5, PCDH15, TOMM7, WSB1.
Another study (54) has identified seven risk genes (OAS1, OAS2,
OAS3, TYK2, DPP9, IFNAR2, CCR2) associated with life-threatening
Covid outcomes (e.g. inflammatory organ damage). Numerous
studies (55) implicate SNPs in ACE2 and TMPRSS2 as risk fac-
tors for Covid susceptibility. Another Covid severity study used
a Random Forests ML model and has identified VEGF-D as the
most predictive indicator (56). To build our benchmark model,
we first performed RFE CV (RFECV) on a SVM model using these
18 benchmark genes to calculate the accuracy of adding a gene
to the model and optimal number of genes to use i.e. smallest
number of genes with the maximum stratified 5-fold CV training
accuracy when classifying ICU versus non-ICU Covid patients.
Second, we ran RFE on a SVM model with that optimal number
of genes to select the predictive genes from the training data.
Third, we used these selected benchmark genes to train another
SVM model as our benchmark model. We fixed all models to use
this same number of genes to help facilitate direct comparison
of the predictive models. We performed the second and third
steps instead on each of our respective input AD–Covid gene lists
to build our four AD–Covid models. Thus, we built five models
to predict Covid severity: benchmark, combined, Hippocampus,
LTL, and DLPFC. We compared the prediction performance of
each of our four AD–Covid models with that of the benchmark
model using: accuracy, AUC and Decision Curve Analysis (DCA,
Supplementary Materials, Supplementary Methods) on training
and test (generalize potential clinical impact of models) data.
For each model, we report training metrics by averaging values
across all five stratified folds. We flagged ‘AD–Covid genes’ used
in any of our four AD–Covid models (predictive for severe Covid) as
potential candidate biomarkers for AD–Covid-neuroimmunology.

ML prediction for AD and Covid severity from
AD–Covid genes
We analyzed the performance of our AD–Covid genes (those from
among our 4 AD–Covid models) for predicting AD on a new
human population cohort (GSE125050) (117) of 22 AD and 21
control postmortem SFG tissues in the frontal cortex (linked with
AD pathology). That study isolated RNA-seq data for four brain
cell types (neurons, astrocytes, endothelial cells, microglia) from
SFG tissues. We pooled raw gene expression data for these four
cell-types (62 control, 46 AD samples, Supplementary Material,
Table S4) for our task. For each cell type, we held out three AD

and three Control cell-type samples for testing (total: 12 AD, 12
Control). The remaining 84 samples were used to train a LR model
(Python’s Scikit-Learn (116) Logistic Regression package, liblinear
solver, balanced class weights) to predict AD or control for a given
sample. Our features were pooled gene expression data values
for AD–Covid genes and four dummy (0 or 1) features noting
the cell-type for each sample. We built another LR model as a
benchmark, only changing the gene features we used, which were
now 597 AMP-AD (58) nominated genes for AD identified in the
SFG gene expression data. The AMP-AD consortium (58) flagged
these AMP-AD genes as good targets for AD treatment and/or
prevention on the basis of computational analyses in previous
studies of human samples. We kept the shared and common AMP-
AD and AD-Covid genes as gene features to train both LR models.
We compared the test performance of the optimal AD–Covid LR
model and benchmark AMP-AD LR model to better quantify the
effectiveness of our AD–Covid genes in predicting AD as well. Fur-
thermore, we noted our AD–Covid genes that were differentially
expressed genes (DEGs) in recent single-cell transcriptomic data
(61) analysis for AD pathology versus controls in Excitatory (ExN)
and/or Inhibitory (InN) neurons.

Linking GWAS SNPs for AD and for severe
Covid-19 to gene regulatory elements
Genome-Wide Association Studies (GWAS) have identified genetic
risk variants associated with diseases like AD. However, most AD
SNPs lie on non-coding regions, hindering finding AD genes and
understanding downstream disease functions. We consider SNPs
with P < 5e-5 to include candidate disease SNPs via interrupt-
ing gene regulation at large (Supplementary Material, Table S5).
We looked at summary statistics of 26,969 AD risk GWAS SNPs
across five studies (118–122) and 1,642 SNPs from the seventh
round of GWAS meta-analyses related to severity across all Covid-
19 positive human populations (123): 16,512 hospitalized cases
(severe) versus 71,321 not hospitalized controls (non-severe). We
mapped SNPs to regulatory elements in the GRNs via altered
TFBSs (Fig. 1 pipeline step 6). We overlapped 28,597 AD and/or
severe Covid risk SNPs (14 common) with regulatory elements
(enhancers or promoters) in our final GRNs. MotifbreakR (124)
identified 24,576 SNPs altering TFBSs of 791 TFs. These regulatory
SNPs either increase TF affinity for the TFBS (on the basis of TF
sequence-specific motif) or interrupt and subsequently decrease
TF binding to that regulatory region. We linked these SNPs to
TGs from regulatory elements with altered TFBSs, adding a 10
kilobase (kbp) and 2 kbp buffer extension to the start and end posi-
tions of enhancers and promoters, respectively. Thus, we mapped
our SNPs to our final GRNs. Our SNP regulatory network (SNP-
effected-GRN: SNP effect on our final GRN) comprised our pre-
dicted SNP–Regulatory Element–TF–TG–Module–Phenotype links.
We used expression quantitative trait loci (eQTL) data (associates
SNP with changes in TG expression) from various sources [Supple-
mentary Material, Table S6; tissues: brain (75,125,126)/blood (126);
cell-types: brain (127,128)] to annotate SNP-effected-GRN links
with this external SNP-TG validation as highly-confident; our
SNP-effected-GRN may explain GRN mechanisms behind these
causal eQTL links. Furthermore, we performed linkage disequi-
librium (LD) via LDlink (129) (GRCh37 genome, all human popu-
lations) to correlate a pair of SNPs (on the same chromosome);
linked SNPs have significantly correlated alleles and tend to be
non-randomly inherited together in all populations. Supplemen-
tary Material, Supplementary Methods have more details and a
framework for analyzing our SNP-effected-GRN.
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