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A B S T R A C T   

Background: Lithium has a wide range of neuroprotective actions, has been effective in Parkinson’s disease (PD) 
animal models and may account for the decreased risk of PD in smokers. 
Methods: This open-label pilot clinical trial randomized 16 PD patients to “high-dose” (n = 5, lithium carbonate 
titrated to achieve serum level of 0.4–0.5 mmol/L), “medium-dose” (n = 6, 45 mg/day lithium aspartate) or 
“low-dose” (n = 5, 15 mg/day lithium aspartate) lithium therapy for 24-weeks. Peripheral blood mononuclear 
cell (PBMC) mRNA expression of nuclear receptor-related-1 (Nurr1) and superoxide dismutase-1 (SOD1) were 
assessed by qPCR in addition to other PD therapeutic targets. Two patients from each group received multi-shell 
diffusion MRI scans to assess for free water (FW) changes in the dorsomedial nucleus of the thalamus and nucleus 
basalis of Meynert, which reflect cognitive decline in PD, and the posterior substantia nigra, which reflects motor 
decline in PD. 
Results: Two of the six patients receiving medium-dose lithium therapy withdrew due to side effects. Medium- 
dose lithium therapy was associated with the greatest numerical increases in PBMC Nurr1 and SOD1 expres-
sion (679% and 127%, respectively). Also, medium-dose lithium therapy was the only dosage associated with 
mean numerical decreases in brain FW in all three regions of interest, which is the opposite of the known lon-
gitudinal FW changes in PD. 
Conclusion: Medium-dose lithium aspartate therapy was associated with engagement of blood-based therapeutic 
targets and improvements in MRI disease-progression biomarkers but was poorly tolerated in 33% of patients. 
Further PD clinical research is merited examining lithium’s tolerability, effects on biomarkers and potential 
disease-modifying effects.   

1. Introduction 

Parkinson’s disease (PD) is the second most common and fastest 
growing neurodegenerative disorder with a worldwide prevalence that 
is predicted to more than double over the next 25 years (Dorsey and 
Bloem, 2018). Although there are several FDA-approved dopaminergic 

therapies to mask the motor symptoms of PD, no therapy has been 
shown to slow the progressive worsening of motor symptoms nor the 
onset of dementia that occurs, on average, within 10 years of diagnosis 
and represents the most disabling long-term PD sequela (Aarsland et al., 
2000; Schrag et al., 2000; Hely et al., 2008; Lawson et al., 2016). In 
order to identify therapies that can slow disease progression (both motor 
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and cognitive symptom progression) and improve PD patients’ prog-
nosis, a.k.a “disease-modifying therapies”, such therapies will first need 
to show positive effects on therapeutic targets and known 
disease-progression biomarkers. 

Lithium has multiple neuroprotective actions including suppressing 
microglial activation, reducing inflammation and oxidative stress, and 
enhancing autophagy and mitochondrial biogenesis and function (Sar-
kar et al., 2005; Struewing et al., 2007; Arraf et al., 2012; Dong et al., 
2014; Hou et al., 2015). Lithium treatment has demonstrated benefit in 
several PD animal models (Youdim and Arraf, 2004; Kim et al., 2011; 
Lieu et al., 2014; Zhao et al., 2019). Also, the 77% risk reduction of PD in 
smokers shown in prospective cohort studies has been theorized to be 
due to the high levels of lithium in tobacco (Guttuso et al., 2019). Based 
on this background, we performed a pilot clinical trial in PD to assess 
lithium’s ability to engage blood-based therapeutic targets and 
MRI-based disease-progression biomarkers in order to help determine if 
further clinical research on lithium’s potential disease-modifying effects 
in PD was merited. 

A PD therapeutic target of interest for over 25 years is the nuclear 
receptor-related 1 protein (Nurr1) (Zetterstrom et al., 1996; Lin et al., 
2012; Jeon et al., 2020), which is a transcriptional cofactor that upre-
gulates the expression of genes essential for dopamine neuron differ-
entiation and survival (Le et al., 1999; Decressac et al., 2013). Nurr1 
immunoreactive substantia nigra (SN) neurons decrease by 46% with 
aging (Chu et al., 2002), which is the main risk factor for PD. In PD 
patients, Nurr1 immunoreactive SN neurons are reduced by 65% and 
Nurr1 mRNA by 61% in peripheral blood mononuclear cells (PBMCs) 
compared to aged-matched healthy controls (Chu et al., 2006; Li et al., 
2018). Nurr1 is inversely correlated with intraneuronal alpha-synuclein 
and ameliorates alpha-synuclein-mediated dopamine cell toxicity (Yang 
and Latchman, 2008; Decressac et al., 2012; Lin et al., 2012; Li et al., 
2018). Nurr1 also decreases the expression of alpha-synuclein and re-
duces inflammation stemming from microglia (Yang and Latchman, 
2008; Saijo et al., 2009). One of the genes under the control of Nurr1 is 
superoxide dismutase-1 (SOD1) (Volakakis et al., 2010), which is a 
primary antioxidant brain enzyme. In PC12 cells, lithium treatment in-
creases Nurr1 by about 180% and protects against rotenone-induced 
death (Zhang et al., 2016). Additional blood-based PD therapeutic tar-
gets that lithium may engage include serum brain-derived neurotrophic 
factor (BDNF), plasma alpha-synuclein and the inhibited form of 
glycogen synthase kinases-3β phosphorylated at serine 9 (pS9-GSK3β), 
in PBMCs (Li et al., 2007; Leyhe et al., 2009; Lin et al., 2017). 

Because it is unknown if lithium’s ability to engage these blood- 
based therapeutic targets confers any disease-modifying effects in PD, 
we also explored if lithium therapy was associated with improvements 
in known MRI-based disease-progression biomarkers. Previous analyses 
of a University of Florida (UF) and the Parkinson’s Progression Markers 
Initiative (PPMI) longitudinal PD biomarker cohorts have shown a 
diffusion-based MRI assessment called free water (FW) in the posterior 
substantia nigra (pSN) to longitudinally reflect progressive worsening of 
motor symptoms (Ofori et al., 2015; Burciu et al., 2017). A more recent 
PPMI analysis showed increasing FW in the dorsomedial nucleus of the 
thalamus (DMN-T) and nucleus basalis of Meynert (nbM) to reflect 
progressive worsening of cognition in PD (Guttuso et al., 2022). FW 
corresponds to water molecules within a voxel that are not hindered or 
restricted by the cellular environment and therefore originate from 
extracellular water (Pasternak et al., 2009). FW is believed to reflect 
tissue atrophy, cell death and inflammation (Pasternak et al., 2012; 
Burciu et al., 2017; Febo et al., 2020), which are known to occur in PD. 
Thus, therapies shown to slow FW progression in these sites would 
represent promising disease-modifying therapies for slowing motor and 
cognitive decline in PD. 

Considering that lithium dosages as low as 0.3 mg/day may have 
disease-modifying effects in neurodegenerative disease and high dos-
ages are poorly tolerated in PD (Coffey et al., 1984; Nunes et al., 2013; 
Guttuso et al., 2019), we studied three relatively low lithium dosages 

compared to those required for treating bipolar disorder, lithium’s only 
FDA-approved indication. For bipolar disorder, an elemental lithium 
dosage of about 300 mg/day is needed to produce a therapeutic serum 
level of 0.8–1.0 mmol/L. “Elemental lithium” refers to the weight of 
lithium alone not including its salt carrier. 

2. Materials and methods 

The University at Buffalo’s Institutional Review Board approved the 
study prior to patient enrollment (Clinicaltrials.gov: NCT04273932). 
Eligible patients were 45–80 years old diagnosed with PD by the UK 
Brain Bank Diagnostic Criteria under the care of the principal investi-
gator, did not have dementia or formed visual hallucinations, no history 
of stroke or brain surgery, had stable PD medications for > 30 days and 
psychiatric medications for > 60 days with no current need for adjust-
ments, stable or no diuretic or NSAID use for > 30 days, no history of 
prescription or dietary supplement lithium use, no history of nilotinib or 
a glucagon-like peptide-1 agonist use, no use of tobacco for > 1 year, 
normal thyroid stimulating hormone (TSH) level and estimated 
glomerular filtration rate ≥ 50. After providing written informed con-
sent, 16 patients were randomized using a random number table to 
either “high-dose” (n = 5, lithium carbonate titrated to achieve a trough 
serum level of 0.4–0.5 mmol/L), “medium-dose” (n = 6, 45 mg/day 
elemental lithium aspartate) or “low-dose” (n = 5, 15 mg/day elemental 
lithium aspartate) lithium therapy for 24 weeks. Three additional PD 
patients who chose not to receive lithium therapy served as controls. 
Fasting blood samples were obtained at baseline, 12 and 24 weeks. For 
the high-dose group, dose titration was based on trough serum lithium 
levels assessed by Kaleida Health Laboratories, Williamsville, NY. For all 
patient groups, trough serum lithium levels were assessed by inductively 
coupled plasma mass spectrometry (ICPMS) by the UB Chemistry In-
strument Center using 6-lithium as an internal standard, which provided 
a limit of quantification of 1.0 µg/L. 

As this was a pilot study with limited funding, a step-wise approach 
was used to prioritize the blood-based therapeutic target assessments. In 
the initial eight patients enrolled, PBMC Nurr1 and SOD1 mRNA, serum 
BDNF and plasma alpha-synuclein were assessed to determine the most 
promising blood-based therapeutic targets to assess in the remaining 
patients. PBMC Nurr1 and SOD1 mRNA were assessed by Taqman 
quantitative, real-time polymerase chain reaction (ThermoFisher Sci-
entific, Waltham, MA). Values were normalized to actin levels. Serum 
BDNF was assessed by ELISA kit (R&D Systems, Minneapolis, MN). 
Plasma alpha-synuclein was assessed by ultra-sensitive, immuno-
magnetic reduction assay (MagQu, Taiwan). PBMC GSK3β (total and 
serine 9 phosphorylated (pS9) levels) were assessed by PathScan ELISA 
kit (Cell Signaling Technology, Danvers, MA) in the patients who had 
adequate PBMC protein to support these assays. In the final nine pa-
tients, only PBMC Nurr1 and SOD1 were assessed as these showed the 
most promise in the initial eight patients. With this approach, enough 
funding was preserved to obtain MRI scans at baseline and 24 weeks in 
six patients receiving lithium (two from each lithium dosage group 
chosen consecutively). 

All MRI scans were obtained on a Canon Vantage Titan 3 T scanner 
using a 32-channel head coil. The MRI protocol included an MPRAGE 
acquisition (1 mm3 isotropic voxels) along with a multi-shell diffusion 
weighted imaging acquisition (11 b = 0 s/mm2 volumes, 21 directions at 
b = 1000 s/mm2 and 25 directions at b = 2000 s/mm2 with 2.7 mm3 

isotropic voxels) and 11,819 ms repetition time. A b= 0 image was ac-
quired with opposite phase encoding. Diffusion-weighted images were 
corrected for susceptibility-induced and eddy current/subject 
movement-induced distortions using a combination of the FSL tools 
topup (Andersson et al., 2003) and eddy (Andersson and Sotiropoulos, 
2016) Next, the corrected diffusion-weighted data were processed with 
the free water elimination model (Hoy et al., 2014) implemented in 
DIPY (https://dipy.org) to obtain FW maps. 

3D T1-weighted images were corrected for intensity inhomogeneity 
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using the N4 tool and subsequently segmented using the SIENAX tool 
(Smith et al., 2001) to obtain partial volume estimate maps of the gray 
matter. The nbM was then segmented as previously described (Schulz 
et al., 2018). Briefly, a histologically defined map of the nbM (Eickhoff 
et al., 2005) was brought into the native 3D T1-weighted image space for 
each scan via non-linearly warping with Advanced Normalization Tools 
(ANTs) (Klein et al., 2009). In addition, each 3D T1-weighted image was 
processed using the FreeSurfer 6.0 pipeline (Fischl et al., 2004) along 
with the thalamic nuclei segmentation submodule (Iglesias et al., 2018). 
Outputs were visually inspected for errors and misclassification. Manual 
corrections to the FreeSurfer output (e.g., introduction of white matter 
control points, editing of brain mask and/or white matter mask) were 
made as appropriate. For obtaining a mask of the DMN-T region of in-
terest (ROI), the following individual nuclei were combined into a single 
segmentation: paratenial, reuniens (medial ventral), mediodorsal 
medial magnocellular and mediodorsal lateral parvocellular. The pSN 
ROI was obtained using previously published methodology (Yang et al., 
2019). Briefly, the mean b= 0 image was non-linearly registered with 
ANTs to MNI space, where a standard space ROI of the pSN was defined. 
The resulting ROIs were then brought back into native space using the 
corresponding inverse transformation. Finally, the nBM and DMN-T 
maps were brought into the diffusion space using boundary based 
registration (Greve and Fischl, 2009) between the 3D T1-weighted 
image and the b= 0. The maps of the nBM, DMN-T, and pSN in diffu-
sion space were used to obtain free water values within each ROI. Re-
ported FW values are the mean of the bilateral sites for each ROI. 

For comparison, we reprocessed the diffusion data using the 
MarkVCID script, while limiting the input to the b= 1000 shell and 
correlated the FW values with those derived from the multi-shell 
acquisition data. We also re-analyzed the pSN FW data using manual 
ROI placement drawn in the native space of each diffusion acquisition, 
without referencing the MNI-defined pSN ROIs, and calculated the 
correlation coefficient. 

3. Results 

Two of the six patients randomized to medium-dose lithium therapy 
withdrew from the study both due to side effects of sedation, incoordi-
nation and slowness of thinking. None of the other patients reported any 
side effects. (After the study was completed, one of the medium-dose 
patients who withdrew from the study resumed lithium aspartate at 
30 mg/day and reported no side effects at a steady-state trough serum 
lithium level of <0.1 mmol/L but again experienced side effects when 
the dosage was increased to 45 mg/day). 

Patient demographics for the 17 patients who completed the study 
are reported in Table 1. 

Mean changes in blood-based therapeutic targets are reported in  

Table 2. Mean trough serum lithium levels at 24 weeks were 1282, 828, 
195 and 0.73 µg/L in the high-dose, medium-dose, low-dose and control 
PD patients, respectively. 

Because increasing Nurr-1 mRNA expression by about 180% was 
shown to protect against rotenone-induced death in PC12 cells (Zhang 
et al., 2016), patients having a > 200% increase in Nurr1 mRNA 
expression at 24 weeks were defined as “Nurr1 responders”. With this 
definition, the Nurr1 responder rates for the high-, medium-, and 
low-dose lithium groups and controls were 20%, 75%, 20% and 0%, 
respectively. SOD1 mRNA expression at 24 weeks changed by 125% and 
− 21% in Nurr1 responders and non-responders, respectively. 

Mean disease duration for the low-dose, medium-dose and high-dose 
lithium-treated patients who received MRIs were 1.3 years, 1.5 years 
and 3.5 years, respectively. Correlations between the multi-shell FW 
values and those obtained using the MarkVCID script with only the b=
1000 shell data exceeded 0.943 for all of the ROIs. There was an intra- 
class correlation coefficient of 0.94 between pSN FW data using MNI- 
defined and manual pSN ROI placement. 

Mean changes in FW in the six PD patients who received baseline and 
24-week MRIs are reported in Table 3 in addition to 1-year changes in 
FW in PD patients and age-matched healthy controls from the UF and 
PPMI longitudinal cohorts for comparison. 

The percent of PD patients treated with medium-dose lithium 
aspartate for 24 weeks showing longitudinal FW decreases of at least 
0.02 in the DMN-T, nbM and pSN were 50%, 100% and 100%, respec-
tively (Fig. 1), compared to 13%, 22% and 38% of PD patients from 
PPMI, respectively, over one year. 

4. Discussion 

Out of the three lithium dosages tested in this small pilot trial, 
medium-dose lithium aspartate therapy was associated with the largest 
numerical increases in expression of blood-based PD therapeutic targets 
Nurr1 and SOD1 and the most uniform improvements in the MRI-based 
disease-progression biomarker FW in sites previously shown to reflect 
progressive motor and cognitive decline in PD (Ofori et al., 2015; Burciu 
et al., 2017; Guttuso et al., 2022). However, two of the six patients 
receiving this lithium dosage withdrew from the study due to side effects 
while none of the high- or low-dose lithium patients reported any side 
effects. Because lithium’s side effects are typically dose-dependent, it is 
unclear what accounted for these findings considering that the mean 
serum lithium levels were 55% higher in the high-dose group compared 
to the medium-dose group. 

We hypothesize that lithium may dissociate from the salt carrier 
aspartate more readily than from carbonate and/or cross cellular bar-
riers more readily resulting in higher serum and/or intraneuronal “free 
lithium” levels at equivalent elemental lithium dosages of the two for-
mulations. Because commercial lithium assays typically assess total, not 
free lithium levels, biological assays like PBMC Nurr1 expression 

Table 1 
Patient demographics for study completers.  

Lithium 
Dose 

Age 
(years) 

Sex 
(M/ 
F) 

Disease 
Duration 
(years) 

Levodopa 
Equivalent 
Dose ( 
Tomlinson 
et al., 2010) 

MoCA MDS- 
UPDRS- 
III 
(“on”) 

High 
(n = 5) 

63.8 4/1  2.76 615  27.4  21.6 

Medium 
(n = 4) 

62 1/3  2.75 325  26.3  16.0 

Low 
(n = 5) 

66.6 3/2  5.95 870  27.0  21.8 

Control 
PD (n 
= 3) 

69.7 3/0  6.33 1283  25.7  22.7 

All values are means. PD: Parkinson’s disease, MoCA: Montreal Cognitive 
Assessment, MDS-UPDRS-III (“on”): Movement Disorder Society-Unified Par-
kinson’s Disease Rating Scale-Part III assessed in the “on” state. 

Table 2 
Mean 24-week % changes in blood-based therapeutic targets.  

Lithium 
Dose 

PBMC Nurr1 
Expression 

PBMC SOD1 
Expression 

Serum 
alpha- 
Synuclein 

Serum 
BDNF 

PBMC 
pS9/ 
total 
GSK3β 

High- 
Dose 

420% 
(n = 5) 

18% 
(n = 5) 

-5% 
(n = 2) 

-15% 
(n = 2) 

421% 
(n = 2) 

Medium- 
Dose 

679% 
(n = 4) 

127% 
(n = 4) 

34% 
(n = 2) 

-25% 
(n = 2) 

17% 
(n = 3) 

Low- 
Dose 

93% 
(n = 5) 

-1% 
(n = 5) 

-3% 
(n = 2) 

-29% 
(n = 2) 

260% 
(n = 1) 

Control 
PD 

139% 
(n = 3) 

8% 
(n = 3) 

-12% 
(n = 2) 

-28% 
(n = 2) 

93% 
(n = 1) 

PD: Parkinson’s disease, PBMC: peripheral blood mononuclear cell, Nurr1: nu-
clear receptor-related 1 protein, SOD1: superoxide dismutase 1, BDNF: brain- 
derived neurotrophic factor, GSK3β: glycogen synthase kinase-3 beta. 
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represent a more objective way to compare dose-response relationships 
among different lithium formulations. This study’s findings of numeri-
cally higher magnitudes of PBMC Nurr1 and SOD1 mRNA expression 
associated with medium-dose lithium aspartate versus high-dose lithium 
carbonate support this hypothesis. In addition, one of the medium-dose 
lithium aspartate patients who withdrew due to side effects when 
receiving 45 mg/day subsequently reported no side effects when 
receiving 30 mg/day with a steady-state trough serum lithium level 
< 0.1 mmol/L. At 45 mg/day of lithium aspartate, the highest predicted 
serum lithium level in this patient would be about 0.15 mmol/L, which 
would be extremely unlikely to produce side effects if derived from 

lithium carbonate therapy. In support, a recent study showed 10–100- 
fold disparate potencies of several different lithium formulations when 
assessed on an array of biological assays (Torshin et al., 2022). Patient 
characteristics including levodopa equivalent dose and disease duration 
did not appear to contribute to the two patients withdrawals. Further 
research is needed examining the effects of different lithium formula-
tions including lithium aspartate on lithium-sensitive biological assays. 
In order to minimize patient withdrawals, future clinical research on 
lithium aspartate therapy could utilize a dose titration schedule up to a 
maximum tolerated dosage of 30–45 mg/day based on an individual’s 
side effects. 

Because several studies have shown pSN FW to be a disease- 
progression biomarker in PD (Ofori et al., 2015; Burciu et al., 2017), 
the monoamine oxidase B (MAO-B) inhibitor rasagiline, which has 
several neuroprotective actions, was recently studied in a randomized 
controlled trial in PD to assess its effects on this outcome (Arpin et al., 
2021). The results showed rasagiline to not significantly affect longitu-
dinal pSN FW progression; however, the placebo group did have over a 
4-fold higher 1-year increase in pSN FW compared to the rasagiline 
group. Our findings of longitudinal reductions in pSN FW associated 
with medium-dose lithium aspartate therapy for 24 weeks contrasts the 
findings from this study with rasagiline. Although rasagiline has several 
neuroprotective mechanisms of action, it has never been shown to affect 
Nurr1 expression. Lithium, on the other hand, does not inhibit MAO-A or 
MAO-B and robustly increases Nurr1 expression in PC12 cells (Nag, 
2004; Zhang et al., 2016). Lithium also has anti-inflammatory and 
autophagy-enhancing actions that have not been described for 
rasagiline. 

Although motor symptom progression leads to disability in PD, 
cognitive impairment with progression to dementia has a greater 
negative impact on quality of life in PD than motor symptoms, occurs in 
the majority of PD patients and strongly predicts nursing home place-
ment (Aarsland et al., 2000; Schrag et al., 2000; Hely et al., 2008; 
Lawson et al., 2016). On average, it takes about 10 years for dementia to 
occur after PD diagnosis (Aarsland and Kurz, 2010), which highlights 
the need for identification of cognition progression biomarkers that 
could be used in clinical trials to help identify therapies to slow cognitive 
decline even in early PD. Recently, our group identified FW progression 
in the DMN-T and nbM to reflect longitudinal cognitive decline in early 
PD from PPMI (Guttuso et al., 2022). Thus, a therapy that slowed FW 
progression in the DMN-T and nbM in PD would imply that it may be 
able to slow long-term cognitive decline and prevent dementia. Our 
findings associating medium-dose lithium aspartate therapy with lon-
gitudinal reductions in DMN-T and nbM FW show promise towards these 
ends. 

The biggest shortcoming of our pilot study was its very small sample 
size, which may have led to spurious findings and prevented any 
meaningful intergroup statistical comparisons. In addition to the small 
sample size, only a subset of enrolled patients was able to receive MRI 
scans due to funding limitations. Although baseline pSN FW and patient 
disease duration did not appear to influence the FW results, it is difficult 
to make any firm conclusions based on such a small n. Therefore, these 
data should be considered preliminary until a larger number of patients 
can be studied. Future studies could also explore if lithium’s effects on 
biomarkers varies in patients carrying genetic variants known to cause 
PD or increase PD risk. 

5. Conclusions 

Medium-dose lithium aspartate therapy was associated with strong 
engagement of blood-based therapeutic targets and improvements in 
MRI disease-progression biomarkers in PD but also with a high patient 
withdrawal rate due to side effects. Further clinical research is merited 
on lithium’s tolerability, effects on these biomarkers and potential 
disease-modifying effects in PD. 

Table 3 
Mean FW longitudinal changes from pilot lithium/PD trial, UF and PPMI lon-
gitudinal cohorts.   

Mean Change in 
DMN-T FW 

Mean Change in 
nbM FW 

Mean Change in 
pSN FW 

High-Dose 
Lithium 
(24-Week 
Changes) 

-0.0117 
(n = 2) 

-0.0140 
(n = 2) 

0.0198 
(n = 2) 

Medium-Dose 
Lithium 
(24-Week 
Changes) 

-0.0098 
(n = 2) 

-0.0416 
(n = 2) 

-0.0307 
(n = 2) 

Low-Dose 
Lithium 
(24-Week 
Changes) 

0.0123 
(n = 2) 

-0.0306 
(n = 2) 

0.0787 
(n = 2) 

PD from UF 
(1-Year 
Changes) 

— — 0.038 (Ofori 
et al., 2015) 
(n = 25) 

Aged-Matched 
HCs from UF 
(1-Year 
Changes) 

— — 0.001 (Ofori 
et al., 2015) 
(n = 19) 

PD from PPMI 
(1-Year 
Changes) 

0.0100 ± 0.030 ( 
Guttuso et al., 
2022) 
(n = 130) 

0.0025 ± 0.041 ( 
Guttuso et al., 
2022) 
(n = 130) 

0.0180 ± 0.055 ( 
Burciu et al., 
2017) 
(n = 103) 

Aged-Matched 
HCs from PPMI 
(1-Year 
Changes) 

0.0005 ± 0.024 ( 
Guttuso et al., 
2022) 
(n = 58) 

-0.0085 ± 0.034 ( 
Guttuso et al., 
2022) 
(n = 58) 

0.0070 ± 0.030 ( 
Burciu et al., 
2017) 
(n = 49) 

FW: free water, PD: Parkinson’s disease, UF: University of Florida, PPMI: Par-
kinson’s Progression Markers Initiative, DMN-T: dorsomedial nucleus of the 
thalamus, nbM: nucleus basalis of Meynert, pSN: posterior substantia nigra, HC: 
healthy control. 

Fig. 1. Individual patient changes in FW after 24 weeks of high, medium or 
low-dose lithium therapy. FW: free water, DMN-T: dorsomedial nucleus of the 
thalamus, nbM: nucleus basalis of Meynert, pSN: posterior substantia nigra. 
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