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Abstract

This article describes the complex interactions occurring between diet, the gut microbiome, and 

bile acids in the etiology of fatty liver disease. Perhaps 25% of the world’s population may have 

nonalcoholic fatty liver disease (NAFLD) and a significant percentage (∼20%) of these individuals 

will progress to nonalcoholic steatohepatitis (NASH). Currently, the only recommended treatment 

for NAFLD and NASH is a change in diet and exercise. A Western-type diet containing high 

fructose corn syrup, fats, and cholesterol creates gut dysbiosis, increases intestinal permeability 

and uptake of LPS causing low-grade chronic inflammation in the body. Fructose is a “lipogenic” 

sugar that induces long-chain fatty acid (LCFA) synthesis in the liver. Inflammation decreases the 

oxidation of LCFA, allowing fat accumulation in hepatocytes. Hepatic bile acid transporters are 

downregulated by inflammation slowing their enterohepatic circulation and allowing conjugated 

bile acids (CBA) to increase in the serum and liver of NASH patients. High levels of CBA 

in the liver are hypothesized to activate sphingosine-1-phosphate receptor 2 (S1PR2), activating 

pro-inflammatory and fibrosis pathways enhancing NASH progression. Because inflammation 

appears to be a major physiological driving force in NAFLD/NASH, new drugs and treatment 

protocols may require the use of anti-inflammatory compounds, such as berberine, in combination 

with bile acid receptor agonists or antagonists. Emerging new molecular technologies may provide 

guidance in unraveling the complex physiological pathways driving fatty liver disease and better 

approaches to prevention and treatment.

Introduction

Nonalcoholic fatty liver disease (NAFLD) is becoming a global epidemiological problem, 

which affects about 25% of the adult population (58). Progression of NAFLD to 

nonalcoholic steatohepatitis (NASH) is among the top etiologies for cirrhosis and 

hepatocellular carcinoma (HCC) (89). The imbalance between lipid uptake or de novo 
synthesis and lipid secretion results in excessive lipid accumulation in hepatocytes. It has 

been well recognized that inflammation is the key driving force of NAFLD to NASH 
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progression (4). NAFLD/NASH is often associated with obesity, insulin resistance, type 

2 diabetes (T2DM), and metabolic syndrome (90). However, its pathogenesis remains 

incompletely understood.

In the last few decades, scientists have recognized the human body as a complex 

ecosystem of interacting prokaryotic and eukaryotic cells. The adult human body consists 

of approximately 1013 mammalian cells and 2 to 5×1013 prokaryotic cells that colonize 

the human body at different sites (77). Moreover, the microbial metagenome is much 

greater than the human genome as the microbiome represents approximately 99% of 

the functional genes in the body (68). Elucidating the host-microbe interactions is very 

important in developing strategies to prevent and treat very common diseases of the liver 

and gastrointestinal tract (GI). Quantitatively, most of the bacteria associated with the human 

body are found in the GI tract, especially the colon that contains one of the most densely 

populated natural ecosystems known. In recent years, using the 16S rRNA gene, the most 

invariant bacterial gene, and high-throughput sequencing, scientists have a much better 

understanding of the diversity of the human gut microbiome. It has been estimated that 

the human colon contains at least 150 to 200 “phylotypes” at any given time. Bacterial 

16S rRNA genes sharing >97% to 99% identity are generally referred to as a “phylotype” 

or operational taxonomic unit (OTU) (44). There have been identified six divisions/phyla 

of bacteria in the human colon. Two major divisions, the Bacteroidetes (Gram-negative 

anaerobes) and Firmicutes (Gram-positive anaerobes) represent greater than 90% of the total 

species of gut microbiota. Moreover, bacterial diversity in the colon ecosystem is almost 

entirely due to changes at lower taxonomic levels, that is, genus, species, and strains (24, 

68).

The Role of Diet in Regulating Gut Microbiota and Inflammation

The composition of the human gut microbiota can be altered by diet, bile acids, liver 

diseases, antibiotics, gender, age, intestinal transit time, and numerous other factors. 

Dysbiosis of the gut microbiota can enhance the pathophysiology of several chronic 

diseases, including liver and GI diseases (71). The gut microbiota can utilize both 

endogenous and exogenous substrates for growth. Endogenous substrates include greater 

than 100g wet weight of sloughed intestinal cells per day as well as bile components. Host 

antigens may select for gut bacteria that are capable of degrading these as a source of 

carbon and energy. In this regard, Hoskins and Boulding (34) reported that fecal samples 

from blood group B individuals had 5×104 higher levels of bacteria capable of degrading 

B antigens compared to individuals with A or O blood groups. Exogenous or dietary 

substrates can be quite variable depending upon the type of diet consumed, which include 

Western, Mediterranean, Paleolithic, Vegetarian, Ketogenic as well as hybrid forms of each 

diet (27). Alteration of the structure of the human gut microbiome by changes to either 

plant-based or animal-based diets can occur within 24 to 48h postconsumption (17). A 

study by O’Keefe et al. (64) showed that switching the diets of African Americans (Western 

diet) with rural South Africans (plant-based diet high in fiber and resistant starch) for 2 

weeks resulted in a rapid change in the gut microbiota for each group. African Americans 

on a Western diet are at high risk for colon cancer, while rural South Africans have a 

very low risk for colon cancer. The results showed that Ki67, a mucosal cell proliferative 
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marker, and the fecal metabolome markedly changed in each group. African Americans 

showed a decrease in Ki67 in intestinal cells, secondary bile acids, deoxycholic acid 

(DCA), and lithocholic acid (LCA), and an increase in fecal butyric acid on the rural 

South African diet. The rural South Africans showed the opposite effects on the Western 

diet. Western-type diets containing high fructose corn syrup (HFCS), saturated fats, and 

cholesterol and low in complex carbohydrates also rapidly altered the gut microbiota 

composition, intestinal barrier function, and immune system (22, 74). Western-type diets 

have been reported to increase intestinal permeability with increased absorption of bacterial 

components, such as lipopolysaccharides (LPS) and lipoteichoic acids, which enhance the 

synthesis of pro-inflammatory cytokines and cyclooxygenase-2 (COX2) induction through 

toll-like receptor-4 (TLR4) and toll-like receptor-2 (TLR2), respectively, in the intestines 

and liver (51). Western diets create a low-grade chronic inflammation in the intestine and 

liver and systemically drive the pathophysiology of numerous chronic diseases (22, 74).

Western Diets and Hepatic Sugar Metabolism

During the last 40 years, there have been major changes in the dietary habits of 

individuals in the United States and worldwide, with associated increases in the numbers 

of overweight and obese individuals. One of the significant dietary changes was the wide-

scale introduction of HFCS into diets in the early 1980s and beyond as well as increased 

long-chain saturated fatty acids (LCSF). Farmers have known for centuries that feeding corn 

to animals resulted in weight gain. HFCS is a liquid mixture of fructose (50%–65%) and 

the remainder glucose (65). Fructose is a “lipogenic” sugar in humans and other animals, 

and its transport and metabolism in the liver are mediated by different pathways compared 

to glucose (32). Fructose metabolism in the liver stimulates the synthesis of long-chain fatty 

acids (LCFA) via induction of sterol regulatory element-binding protein 1C (SREBP-1c), 

which induces genes encoding enzymes in the fatty acid biosynthesis pathway. The pathway 

of fructose metabolism in the human liver is mostly unregulated as compared to glucose 

metabolism. Once in the liver, fructose is phosphorylated by fructokinase C at carbon 1 

producing fructose-1-phosphate, which is then cleaved to dihydroxyacetone phosphate and 

glyceraldehyde by aldolase B. Because fructose is rapidly metabolized with consumption 

of ATP, excess uric acid is formed through activation of AMP deaminase and is further 

catabolized to uric acid (19). The generation of uric acid may further enhance inflammation 

and fat accumulation in the liver. The combination of increased LCSF synthesis in the liver 

and decreased oxidation due to increased inflammation contributes to fatty liver disease.

LCSF, such as palmitate, has been reported to activate cellular stress pathways and the 

induction of JNK-dependent hepatocyte apoptosis (55). Moreover, LCSF stimulates the 

release of extracellular vesicles from hepatocytes containing tumor necrosis factor-related 

apoptosis-inducing ligand that induces the expression of pro-inflammatory cytokines IL1-β 
and IL-6 in macrophages (33). Inflammatory cytokines, such as TNF-α, can quench insulin 

signaling by activating the JNK signaling cascade by phosphorylating insulin receptor 

substrate 1 (2). The accumulation of fat in the liver, with enhanced inflammation, over 

time can lead to NAFLD and up to 20% of these individuals go on to develop NASH (39).
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Enterohepatic Circulation of Bile Acids

Bile acids are synthesized from free cholesterol in liver hepatocytes. The major bile acids 

biosynthetic pathway, termed the classical pathway, starts with the 7α-hydroxylation of 

cholesterol catalyzed by cholesterol 7α-hydroxylase (CYP7A1), located in the smooth 

ER (36, 93). In humans, this pathway leads to the synthesis of cholic acid (CA, 

3α,7α,12α-trihydroxy-5β-cholan-24-oic acid) and chenodeoxycholic acid (CDCA, 3α,7α-

dihydroxy-5β-cholan-24-oic acid) via a multistep pathway (36). The alternative pathway 

of bile acid synthesis begins in the mitochondria with the 27-hydroxylation of cholesterol 

catalyzed by cholesterol 27-hydroxylase (CYP27A1). This pathway is believed to form 

mostly CDCA and may generate important regulatory oxysterols (70). Bile acids are 

conjugated at the 24-carboxyl group to either glycine or taurine before active transport 

from the hepatocyte primarily by the canalicular bile salt export protein [BSEP, ATP-binding 

cassette subfamily B, member 11 (ABCB11)] along with cholesterol (ABCG5/G8, ATP-

binding cassette subfamily G, member 5/8), phosphatidylcholine (ABCB4, ATP-binding 

cassette subfamily B, member 4), conjugated bilirubin (multidrug resistance protein 2, 

MRP2), and other metabolites (93). Biliary bile components are stored in the gallbladder 

and released into the small bowel following a meal. Conjugated bile acids (CBA) function 

in the small bowel to promote the absorption of cholesterol, LCFA, as well as fat-soluble 

vitamins A, D, E, and K by forming mixed micelles that promote uptake by enterocytes. 

Bile acids move down the GI via gut peristalsis and are actively transported by ileal 

enterocytes by the apical sodium-dependent bile acid transporter (ASBT) (18, 93). Once 

inside ileal enterocytes, bile acids activate the farnesoid X receptor (FXR), upregulating 

the gene encoding fibroblast growth factor 15 (FGF-15) in mice, fibroblast growth factor 

19 (FGF-19) in humans (76). Intracellular bile acids are transported into the portal blood 

by the heterodimeric organic solute transporter (OST), OSTα-OSTβ, a facilitated diffusion 

transporter on the basolateral membranes of ileal enterocytes. Bile acids and FGF-15/19 are 

transported to the liver via the portal vein. Bile acids are taken up by hepatocytes, primarily 

by the Na+-taurocholate co-transporting polypeptide (NTCP). In addition, the basolateral 

multidrug resistance-associated proteins (MRP3 or ABCC3 and MRP4 or ABCC4) and 

OSTα-OSTβ are involved in ATP-dependent bile acid export from hepatocytes to systemic 

circulation (42). FGF-15/19 binding to fibroblast growth factor receptor 4 (FGFR4) on 

hepatocytes activates the extracellular signal-regulated kinases (ERK) signaling cascade 

and downregulates CYP7A1, the rate-limiting enzyme in the classical bile acid synthesis 

pathway (Figure 1). In this manner, the enterohepatic circulation of bile acids helps to 

maintain homeostatic bile acid synthesis rates, glucose, lipid, energy metabolism as well as 

the immune system (13).

During the enterohepatic circulation of bile acids, several hundred milligrams of bile acid 

enter the colon, where gut bacteria can biotransform bile acids into a variety of metabolites 

(72, 73). However, the two most important “gateway” biotransformations are catalyzed 

by bile salt hydrolases (BSH) and the multistep bile acid 7α-dehydroxylation pathway 

(7α-DeOH) (Figure 2) (72). Hydrophobic secondary bile acids can be absorbed from the 

large bowel via passive diffusion and transported to the liver via the portal vein. The levels 

of DCA in biliary bile can be quite high (>50%) in some individuals as the human liver is 

not capable of the 7α-hydroxylation of DCA reforming CA, as is the case with rodents (72).
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Bile acids are major regulators of the structure of the gut microbiome. Resistance to bile 

acids is a major selective pressure regulating the gut microbiome structure. Bile acids may 

alter the structure of the human gut microbiome in a variety of ways: (i) deconjugation of 

bile salts increases the hydrophobicity and alters the chemical properties of individual bile 

acids. Unconjugated bile acids are generally more toxic to gut bacteria than CBA (72). A 

small population of gut bacteria belonging to the genus Clostridium is able to convert the 

unconjugated primary bile acids, CA and CDCA, into DCA and LCA, respectively. DCA 

is reported to be up to 10-time more toxic to some gut bacteria than CA, probably because 

it disrupts bacterial cytoplasmic membrane structure and function (15). The epimerization 

of the 3α>3β-hydroxyl group of DCA by gut bacteria decreases the toxicity of this bile 

acid by decreasing hydrophobicity (21) (Figure 2). (ii) Bile acids have been reported to 

inhibit the growth and translocation of bacteria in the small bowel via an FXR-dependent 

mechanism involving the secretion of antibacterial peptides (37). This probably has a 

stronger effect on the composition of mucosal-associated gut microbiota than those found 

in the lumen of the intestine. (iii) Certain gut bacteria including, Clostridium scindens 
and other species of 7α-DeOH gut bacteria, secrete antibiotics or antibacterial compounds 

(40). These antibacterial compounds may be important regulators of the gut microbiome 

structure along with secondary bile acids. In this regard, feeding CA to rats shifted the gut 

microbiome from a approximately 1:1 ratio of Firmicutes/Bacteroidetes to >98% Firmicutes 
(38), and feeding CA to mice increased levels of bile acid 7α-DeOH bacteria approximately 

1000-fold (72). Moreover, feeding a high-fat diet (HFD) containing fructose and cholesterol 

increases the Firmicutes/Bacteriodetes ratio, possibly due to increased bile acid loss into the 

colon.

Effects of Fatty Liver Disease on Hepatic Bile Acid Synthesis, Transporters, and Serum 
Bile Acid Levels

Changes in rates of primary bile acid synthesis in the liver, formation of secondary bile acids 

by gut bacteria, induction of FGF-15/19 in the intestines, and increase of the serum bile acid 

levels, may be important indicators of pathophysiological processes occurring in the liver-

gut-microbiome axis due to fatty liver disease. The downregulation of hepatic NTPC by LPS 

was reported more than 20 years ago (81). Moreover, in a rat liver model of obstructive 

cholestasis, there was a downregulation of BSEP and NTCP in periportal hepatocytes due 

to induction of TNFα and IL-1β (23). The downregulation of BSEP is hypothesized to be 

primarily due to the negative effects of TNF-α and IL-1β on the interaction of FXR:RXR 

(retinoid x receptor) heterodimer that activates the BSEP promoter (26). The OSTα/β is 

a heterodimeric solute transport protein located in the basolateral membranes of liver and 

intestinal epithelial cells (8). OSTα/β was found to be significantly upregulated in liver 

tissues from NASH and primary biliary cholangitis (PBC) patients. Upregulation of OSTα/β 
is considered a physiological marker for cholestatic liver disease (56). However, levels of 

OSTα/β mRNA or protein have not been measured in NAFLD patients. Downregulation of 

NTCP and other hepatocyte uptake transporters by inflammation may increase the level of 

serum bile acids. In this regard, Puri et al. (67) identified and quantitated serum bile acids 

in biopsy-proven NAFLD and NASH patients and compared them to healthy controls. The 

results showed a significant increase in total conjugated primary bile acids and decreased 

secondary bile acids in NASH patients compared to NAFLD patients and controls. There 
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was a stepwise increase in total serum bile acids from controls to NAFLD to NASH patients. 

The increase in serum CBA was associated with higher grades of steatosis, lobular and 

portal inflammation, and hepatocyte ballooning, correlating a role of increased serum bile 

acids with pathophysiological effects in the liver. Additional studies by Lake et al. (43) 

suggest that in NASH patients, there is a shift to more bile acid synthesis via the alternative 

pathway with upregulation of oxysterol 7α-hydroxylase (CYP7B1) and increased taurine 

conjugated primary bile acid. Studies by Mouzaki et al. (60) showed that NASH patients 

had significantly higher levels of total fecal unconjugated primary bile acids as compared 

to controls. Moreover, levels of the bile acid biosynthesis serum marker, 7α-hydroxy-4-

cholesten-3-one (C4) was significantly upregulated in NASH patients; however, FGF-19 

levels were not significantly different. Mouse models of NASH also show increases in 

hepatic inflammation markers, downregulation of bile acid transporters, except OSTβ, key 

genes involved in bile acid synthesis, and an increase in serum total conjugated primary bile 

acids, especially taurocholate (TCA) (80, 83) (Figure 3).

Possible Role of Sphingosine1-phosphate Receptor 2 in NASH Progression

Studer et al. (79) first reported that CBA activate ERK1/2 and protein kinase B 

(AKT) signaling pathways through sphingosine-1-phosphate receptor 2 (S1PR2) in rodent 

hepatocytes. The activation of ERK1/2 and AKT by TCA in primary rat hepatocytes or 

in the chronic bile fistula rat was inhibited by JET-013, a chemical S1PR2 antagonist. 

Moreover, S1PR2 shRNA markedly inhibited ERK1/2 and AKT activation by TCA 

in primary rat hepatocytes. Additional studies discovered that S1PR2 activated nuclear 

sphingosine kinase 2 (SphK2) in mouse hepatocytes and the chronic bile fistula rat (61). 

Sphingosine-1-phosphate (S1P) has been shown to be an endogenous inhibitor of histone 

deacetylases 1 and 2 that regulate levels of histone acetylation and gene expression (30). 

SphK2 has been reported to be a key regulator of genes involved in LCFA metabolism, 

and S1PR2−/− and SphK2−/− mice rapidly developed fatty livers on (61, 62). SphK2 is 

significantly downregulated in a mouse model of NASH on an HFD (83). S1PR2 appears 

to be an important bile acid sensor during the feeding and fasting cycle and is activated 

by CBA returning from the intestines following a meal. CBAs secreted from the liver are 

stored in the gallbladder during fasting. The decreased levels of hepatic CBA cause the 

inactivation of S1PR2. In contrast, there is evidence that constant activation of S1PR2 results 

in the induction of pro-inflammatory and proliferative signaling pathways in cells in the liver 

that may occur during cholestasis. In this regard, TCA promoted cholangiocarcinoma cell 

growth and cyclooxygenase 2 expression via S1PR2 [Figure 3, (35, 49, 50)]. Our recent 

studies also showed that the long noncoding RNA H19 activates pro-inflammatory and 

fibrotic markers in cirrhotic liver and bile duct ligated mice. In the multidrug resistance 

2 knockout (Mdr2−/−) mouse that serves as a model of cholestatic cholangiopathies, TCA 

induced expression of H19 and fibrotic genes via S1PR2 (46). The increased serum levels 

of CBA, especially TCA, have been reported in NASH patients and may activate S1PR2 in 

cholangiocytes and other liver cells to activate pro-inflammatory pathways and fibrotic gene 

expression, accelerating fatty liver pathogenesis. Finally, other studies reported that CBAs 

promote the growth of esophageal adenocarcinoma cells, activation of YAP and β-catenin 

signaling pathways via S1PR2 (48). It is unknown if S1PR2 and CBAs might play a role in 

HCC development.
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Liver Disease and Gut Dysbiosis

A comparison of the gut microbiota in individuals with a healthy liver, NAFLD, NASH, 

and cirrhosis shows an increase in gut dysbiosis with advancing disease (7). Most studies 

show a decrease in gut microbiota diversity, an increase in bacteria containing LPS, and a 

decrease in bacteria producing short-chain fatty acids (SCFA), especially butyrate (57). Bile 

acids, SCFA, and LPS activate different biosynthetic, metabolic, pro-, and anti-inflammatory 

signaling pathways in host cells. In this regard, bile acids activate specific nuclear receptors 

(FXR, Vitamin D, PXR) and G-protein coupled receptors (GPR) (TGR5, S1PR2, M2,3-

muscarinic) while SCFA activates GPR (41 and 43) and propionate and butyrate activate 

the nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) (3, 75). LPS 

can bind to TLR-4 to activate pro-inflammatory signaling pathways (14). Western diets 

are associated with an increase in the risk of obesity, T2DM, NAFLD, and NASH and 

chronic low-grade inflammation (12). It has been observed that enhanced inflammation 

associated with HFD is due to the absorption of LPS and stimulation of the synthesis 

of pro-inflammatory cytokines through activating TLR-4. Higher levels of LPS have been 

reported in obese individuals compared to healthy controls, possibly due to higher levels 

of Gram-negative gut bacteria, especially members of the family Enterobacteriaceae, and 

increased intestinal barrier permeability (12, 59). Humans are one of the most sensitive 

animal species to the pro-inflammatory effects of LPS. Cani et al. (10) have reported that 

HFD can alter the composition of the gut microbiota, decreasing tight junction proteins, 

zonula occludens (ZO1) and occludin, allowing increase absorption of LPS. HFD may 

also increase absorption of LPS via the lymphatics by incorporation into chylomicrons in 

the small bowel. Germ-free animals and those treated with antibiotics are highly resistant 

to developing fatty liver disease implicating the gut microbiota as an important factor in 

inducing fatty liver disease (9).

Slowing of the enterohepatic circulation brought on by increased systemic inflammation, 

downregulating hepatic bile acid transporters may decrease levels of bile acids in the 

intestine. This may have the effect of altering the gut microbiota as intestinal bile acids 

are important regulators of the structure of the gut microbiome. Moreover, bile acids are 

signaling molecules activating anti-inflammatory pathways through activation of FXR and 

TGR5, as well as increasing the secretion of gut antibacterial peptides (25). Moreover, 

intestinal bile acids regulate bile acid synthesis in the liver by stimulating the synthesis of 

FGF-19 in ileal enterocytes via activation of FXR (Figure 4) (41).

Studies by Bajaj et al. (7) shows major changes in the stool microbiota composition 

comparing healthy controls to decompensated cirrhotic patients where there were significant 

decreases in potentially beneficial autochthonous bacteria including members of families 

Lachnospiraceae, Ruminococcaceae, and Clostridiales XIV and increases in potential 

pathogenic families including Staphyloccaeae, Enterobacteriaceae, and Enterococcaceae. 

Qin et al. (68) also observed major changes in cirrhotic patients compared to controls, 

and gene analysis suggested that many of the gut bacteria were from the oral cavity. 

Moreover, changes in both oral and stool microbiome in cirrhotic patients were also 

reported by Bajaj et al. (1, 6). It was discovered that in the salvia of cirrhotic patients, 

the levels of autochthonous bacterial families decreased and potential pathogenic families 

Hylemon et al. Page 7

Compr Physiol. Author manuscript; available in PMC 2023 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Enterobacteriaceae and Enterococcaceae increased. These results might represent a system-

wide change in immunity to host microbiota in cirrhotic patients. In patients with cirrhosis, 

which have a smaller bile acid pool than control patients, there is a loss of bile acid 

7α-DeOH gut bacteria and a shift to a more “toxic” Gram-negative gut microbiota (55). 

When patients with cirrhosis are transplanted with a new liver, there is an increase in bile 

acid secretion, an increase in fecal secondary bile acid synthesis, and a return to a more 

“normal” and diverse gut microbiota with less systemic inflammation (33). These results 

show the intimate connection between bile acids and the liver-gut axis (Figure 5).

Possible Role of Berberine and Other Anti-inflammatory Compounds in Treating Fatty 
Liver Disease

Berberine is a natural pentacyclic isoquinoline alkaloid present in many plants used in 

ancient medicine, such as Berberis vulgaris (barberry fruit), goldenseal, Orgon grapes, 

Coptis chinensis, and has been used in Asia for thousands of years as a folk remedy for 

various digestive disorders, especially for diarrhea and infectious diseases (86). During 

the last two decades, berberine has been extensively studied for its beneficial effects on 

metabolic diseases, including NAFLD and diabetes (6). Numerous studies have reported 

that berberine has various biological activities, such as anti-inflammatory, lipid-lowering, 

and an antidiabetic effect (63). Our previous studies in rodent NAFLD models showed the 

beneficial effects of berberine on preventing NAFLD disease progression is mainly through 

modulating bile acid metabolism in the gut-liver axis (28). Although the bioavailability 

of intragastrically administered berberine was much lower than that of intraperitoneally 

administered berberine, it had a stronger lipid-lowing effect, indicating that the GI 

is the major functional site of berberine (28). A number of mechanisms have been 

identified underlying berberine’s beneficial effects, such as activating AMP-activated protein 

kinase (AMPK), inhibiting Nod-like receptor family pyrin domain containing 3 (NLRP3) 

inflammasome activation, promoting glucagon-like peptide-1 (GLP-1) secretion, attenuating 

ER stress and oxidative stress, regulating microRNAs (miRs) (20, 45, 52, 54, 69, 84). 

Our recent study using the best available diet-induced NASH mouse model showed that 

berberine significantly prevented NASH disease progression by targeting multiple pathways 

(5, 83). Bile acid analysis further showed that berberine had a significant impact on bile 

acid composition and fatty acid metabolism. Since berberine is mainly accumulated in 

the intestinal tract, our studies suggest that gut microbiota may be the primary target of 

berberine in modulating metabolic processes. A growing number of studies showed that 

berberine modulates not only the structure but also the number of gut microbiota (16, 29, 

91, 92). A recent study reported that the combination of berberine, tocotrienols and coffee 

extracts improved metabolic profile and hepatic lipid accumulation in the HFD-feeding 

mouse NAFLD model via modulating gut microbiota and hepatic miR-122 and miR-34a 

(16).

Licorice is another ancient medicinal plant with a long history as a remedy for inflammatory 

diseases and metabolic disorders (31, 53, 87). Our previous study showed that 18β-

glycyrrhetinic acid, the major component of licorice root extract, prevented free fatty acid-

induced hepatic lipotoxicity via modulating lysosomal and mitochondrial functions (85). 

It also has been reported that glycyrrhetinic acid alleviated hepatic inflammation injury in 
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viral hepatitis disease via the high mobility group box protein 1 (HMGB1)-TLR4 signaling 

pathway (78). A recent study showed that diammonium glycyrrhizinate exerted its protective 

effect against HFD-induced NAFLD via modulating gut microbiota and preventing HFD-

induced disruption of intestinal barrier functions. Diammonium glycyrrhizinate reduced the 

ratio of Firmicutes-to-Bacteroidetes and increased the levels of SCFA-producing bacteria 

(47). There is increasing evidence indicating the beneficial effects of polyphenols, alkaloids, 

and terpenoids from herbal medicine, vegetables, and fruits in regulating lipid, glucose, 

and energy metabolism via different signaling pathways in the liver and modulating gut 

microbiota (66, 82, 88, 95).

Future Directions

The physiological interactions between diet, gut microbiome, and bile acids in regulating 

normal physiological and biochemical pathways in the body are just beginning to be 

elucidated. Dysregulation of these pathways increases the risk of chronic diseases, including 

fatty liver disease. These are important medical issues as there are no currently accepted 

medical treatments for fatty liver disease, such as NASH, other than dietary changes and 

exercise. In this regard, it is currently believed that 25% of the world’s population may 

have NAFLD, of which up to 20% may progress to NASH and perhaps 5% of these 

individuals may end up with cirrhosis and/or HCC (89). Because dietary habits affect so 

many physiological and biochemical pathways in the body, treatment protocols for NASH 

may require multiple approaches and drug combinations (94). For example, the FXR agonist 

(obeticholic acid) has been used to treat NASH patients but with limited success. However, 

in the background of enhanced inflammation, cellular levels of FXR may be downregulated. 

Moreover, phosphorylation of FXR by protein kinase C-zeta (PKC-zeta) is required 

for optimal activation but may be inhibited by inflammation (11). Therefore, chronic 

inflammation may alter drug effectiveness requiring an anti-inflammatory compound, such 

as berberine and other complementary medicines, for optimal treatment results. Fatty 

liver diseases appear to have complex etiologies, but with the emerging new molecular 

technologies, there is an opportunity to gain a better understanding of these and improved 

treatment protocols in the future.
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Didactic Synopsis

Major teaching points

• Western-type diets containing high fructose corn syrup, lipids, and cholesterol 

create chronic inflammation in the body.

• Bile acids are important signaling molecules regulating glucose, lipid, energy 

metabolism as well as the structure of the gut microbiome.

• Inflammation appears to slow the enterohepatic circulation of bile acids 

allowing them to increase in serum, enhancing inflammation and fibrotic 

pathways in the liver.

• Naturally occurring compounds, such as berberine, may be useful in treating 

fatty liver disease by inhibiting pro-inflammatory pathways arising in the gut.
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Figure 1. Bile acid transporters in the liver hepatocyte, ileal enterocyte, and proximal convoluted 
tubule in the kidney.
Bile acids are actively transported from the hepatocytes by the bile salt export protein 

(BSEP) or multidrug resistance protein 2 (MPR2) into bile duct. After secretion into 

the intestine, they are efficiently recovered by leal enterocytes using the apical sodium-

dependent bile acid transporter (ASBT) and into the portal vein via the heterodimeric 

organic solute transporter (OSTα/β) on the basolateral membrane. Bile acids may also 

undergo hepatic-renal cycling, especially during cholestasis. Bile acids secreted by the 

kidney are usually modified by the sulfation of hydroxyl groups. The multidrug resistance-

associated proteins (MRP3 or ABCC3 and MRP4 or ABCC4) and OSTα-OSTβ on the 

basolateral membrane are involved in ATP-dependent bile acid export from hepatocytes to 

systemic circulation.
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Figure 2. Synthesis of the primary bile acids cholic acid and chenodeoxycholic acid from 
cholesterol in liver hepatocytes and metabolism by gut bacteria.
The primary bile acids, cholic acid, and chenodeoxycholic acid are synthesized in the 

hepatocytes from cholesterol and conjugated with taurine or glycine. Taurocholate is 

biotransformed by gut bacteria expressing bile salt hydrolases (BSH) to cholic acid and 

taurine. Gut bacteria can oxidize hydroxyl groups at the 3α, 7α, and 12α position on 

the steroid ring by 3α-hydroxysteroid dehydrogenases (3α-HSDH), 7α-hydroxysteroid 

dehydrogenases (7α-HSDH), and 12α-hydroxysteroid dehydrogenases (12α-HSDH), 

respectively. Oxo-bile acids may be further metabolized at the 3β, 7β, or 12β position by 3β-
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hydroxysteroid dehydrogenase (3β-HSDH), 7β-hydroxysteroid dehydrogenase (7β-HSDH) 

and 12β-hydroxysteroid dehydrogenase (12β-HSDH), respectively, producing iso and epi 

bile acids. Primary bile acids can be biotransformed to secondary bile acids by removing the 

7α-hydroxyl group via a multistep 7α-dehydroxylation (7α-DeOH) biochemical pathway 

found in some species of the genus Clostridium.
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Figure 3. Activation of the ERK1/2 and AKT signaling pathways by conjugated bile acids (CBA) 
via S1PR2.
High levels of CBA activate S1PR2 in liver cells, enhancing the upregulation of genes 

encoding pro-inflammatory and fibrosis mediators. Phosphorylated ERK1/2 is translocated 

into the nucleus, where it activates sphingosine kinase 2 (SphK2) via phosphorylation. 

SphK2 produces sphingosine-1-phosphate (S1P) that is a potent inhibitor of histone 

deacetylase 1 and 2 (HDAC1/2), allowing the epigenetic upregulation of gene transcription.
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Figure 4. Alteration of the enterohepatic circulation of bile acids by NASH.
Liver diseases interrupt the enterohepatic circulation of bile acids, enhancing gut dysbiosis. 

This has the downstream effect of increasing gut permeability and absorption of pro-

inflammatory mediators such as LPS. In NASH, there is an increase in the serum CBA that 

may activate the S1PR2 in hepatic cells, enhancing inflammation and activating pro-fibrotic 

gene expression in stellate cells.
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Figure 5. The possible role of diet, gut dysbiosis and bile acids in the development of steatosis 
and NASH.
The road to Steatosis and NASH begins by consuming a Western-type diet containing 

large amounts of HFCS and fats, resulting in constant low-grade systemic inflammation 

due to gut dysbiosis and absorption of pro-inflammatory bacterial molecules. Under these 

dietary conditions, there is an upregulation of long-chain fatty acid synthesis in the liver 

and decreased oxidation and secretion of fats. Inflammation also downregulates bile acid 

transporters in the liver, slowing their enterohepatic circulation and allowing an increase 
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in CBA in the liver, which activates S1PR2 stimulating hepatic inflammation and fibrosis 

pathways and promoting the development of cirrhosis and hepatocellular carcinoma (HCC).
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