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Abstract

Radical S-adenosylmethionine (SAM) enzymes use a common catalytic core for diverse 

transformations. While all radical SAM enzymes bind a Fe4S4 cluster via a characteristic tri-

cysteine motif, many bind additional metal cofactors. Recently reported structures of radical 

SAM enzymes that use methylcobalamin or additional iron-sulfur clusters as cosubstrates show 

that these auxiliary units are anchored by N- and C-terminal domains that vary significantly in 

size and topology. Despite this architectural diversity, all use a common surface for auxiliary 

cofactor docking. In the sulfur insertion and metallocofactor assembly systems evaluated here, 

interaction with iron-sulfur cluster assembly proteins or downstream scaffold proteins is an 

important component of catalysis. Structures of these complexes represent important new frontiers 

in structural analysis of radical SAM enzymes.

1. Introduction

Radical SAM enzymes are versatile catalysts found throughout all three kingdoms of life 

[1,2]. All deploy SAM in initiating remarkably diverse transformations that are generally 

radical-mediated [2]. These catalysts additionally bind a Fe4S4
2+ cluster, typically via a 

CX3CX2C motif found within an α6β6 core fold [2,3]. SAM coordinates the fourth iron. 

After one-electron reduction of the iron-sulfur cluster by a protein partner or chemical 

reductant, SAM is reductively cleaved to generate a 5′-deoxyadenosyl 5′-radical (5′-dA•). 

The 5′-dA• intermediate is a potent oxidant capable of initiating hydrogen atom transfer 

(HAT) reactions with substrates or co-substrates, generally from unactivated carbons. Recent 

efforts to trap and characterize the 5′-dA• [4-6] have revealed that this key intermediate 

may be initially caged as an organometallic complex, Ω, containing an Fe-C5′ covalent 

bond between the 5′-dA• and the unique iron of the Fe4S4 cofactor [4]. Studies of synthetic 

models of Ω suggest that it might function to confer selectivity in reaction outcome for 

radical SAM enzymes by sequestering the 5′-dA• until substrates can be properly positioned 

for catalysis [7].
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Many radical SAM enzymes bind additional transitional metals [8]. A number have been 

structurally characterized, including those with one or more additional iron-sulfur clusters 

[9-18], individual metal ions [19], or complex cofactors such as methylcobalamin [20]. 

Structural characterization of radical SAM enzymes containing auxiliary cofactors that 

are proposed to perform simple tasks, such as electron transfer [9,10,14,15] or substrate 

binding [16], reveals that dedicated domains are required to bind and utilize these entities 

[21]. Here we describe insights from recent structural characterization of four radical SAM 

enzymes that use additional metallocofactors for complex functionalization of substrates 

(Fig. 1). These include TokK, one of the first structurally characterized radical SAM enzyme 

that performs radical transformations involving a cobalamin (Cbl) cofactor [22]. Here the 

auxiliary cofactor serves as a functional group donor in a chemically challenging carbon 

methylation. We also review biochemical and structural analyses of two radical SAM sulfur 

insertion enzymes, lipoic acid synthase (LipA) [12] and MiaB [23]. Finally, we discuss 

structures of NifB, a radical SAM enzymes involved in complex cofactor biosynthesis. 

NifB is a methylase that fuses two auxiliary [4Fe-4S] clusters and facilitates insertion of 

an interstitial carbide [24,25] in construction of the nitrogenase active site cofactor [26]. 

Despite their structurally distinct auxiliary motifs and divergent reactivity, all of these 

enzymes use a common surface of the radical SAM core fold for docking additional 

cofactors. Several enzymes summarized here additionally employ unusual ligands to their 

auxiliary cofactors, and this strategy is likely key in enabling the chemically challenging 

reactivities of these systems.

2.1 Cobalamin-dependent radical SAM methylase, TokK.

TokK methylates an unactivated carbon within the β-lactam core of asparenomycin A, a 

potent carbapenem antibiotic [27,28]. The products generated by TokK suggest that the 

enzyme uses a 5′-dA• to activate its substrate via HAT. The resulting substrate radical 

then attacks the methyl substituent of methyl-Cbl. TokK can perform serial methylations 

of its substrate [28], adding up to three methyl units to elaborate the C6 position of the 

β-lactam. This modification enhances the potency of carbapenems by preventing inactivation 

by β-lactamases [29].

TokK employs an N-terminal Rossmann-fold domain (Fig. 2) to dock the Cbl cofactor 

adjacent to the radical SAM domain [22], as observed previously in the structure of OxsB 

[20]. Cbl sits on top of the β2 secondary structure in the radical SAM core (Fig. 3), ~10 

Å away from the SAM binding site. The enzyme also contains a third C-terminal domain 

that does not interact with Cbl but instead forms a substrate binding channel. TokK binds 

Cbl in the base-off conformation, an approach that allows for modulation of the coordination 

environment of the Co(III) ion by the protein environment. TokK lacks a lower axial ligand 

to the Co ion, using W76 to block solvent access underneath the cofactor. This arrangement 

likely renders the Co-C bond in MeCbl more reactive by preventing coordination with a 

sixth ligand.

The arrangement of reactive groups in the active site of TokK was revealed by 

characterization of the enzyme bound to its carbapenam substrate and coproducts of 

the SAM cleavage reaction, 5′-dA and methionine [22]. Whereas several other Cbl-
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dependent radical SAM enzymes had been structurally characterized previously [20,30], 

none contained the primary substrate bound in a productive conformation. The carbapenem 

threads through a long channel at the interface between the three domains of TokK [22]. The 

β-lactam binds adjacent to the cobalamin, with C6 position ~4 Å away from the top ligand 

of the Co ion and the 5′-C of the 5′-dA. The arrangement demands that methyl transfer 

occur at the bottom face of the β-lactam, consistent with the known stereochemistry of 

the C6 substituent. The structure additionally implies that the TokK active site architecture 

primarily serves to position substrates and cofactors for radical methyl addition with very 

little intervention from other amino acids.

In this structure (and nearly all others of Cbl-dependent radical SAM enzymes) [20,22,30], 

the top ligand of cobalamin is modeled as a solvent-derived water or hydroxide, rather than 

the native methyl component of cobalamin. This substitution could alter the internal water 

network near the top ligand, thereby modifying the electrostatic environment of the substrate 

binding pocket. Incorporation of the bona fide Cbl methyl ligand could enable solution 

of additional structures with substrates bound. Interestingly, concomitant with the recent 

report of the TokK enzyme substrate complex, Mmp10, a peptide-modifying Cbl-dependent 

radical SAM enzyme was characterized in complex with its substrate [31]. This structure 

revealed analogous distances between reactive groups to those found in TokK. Mmp10 has 

a distinctive domain architecture compared to other Cbl-dependent radical SAM enzymes, 

including a different fold for the Cbl-binding domain and a different docking site within 

the radical SAM core for the Cbl cofactor. Mmp10 was reportedly cocrystallized with 

MeCbl, which may have promoted substrate incorporation in this system. In the absence 

of substrate and SAM, Mmp10 appears to bind an unusual Tyr ligand to the unique iron 

of the radical SAM cluster. The authors suggest that this interaction could be important 

for re-methylation of Cbl, a phenomenon that is not well understood in any Cbl-dependent 

radical SAM enzyme. Additional structural and spectroscopic characterization of these 

unusual interactions will be critical for experimental validation of this proposal.

2.2 Sulfur insertion radical SAM enzymes with auxiliary iron-sulfur clusters.

All radical SAM enzymes that insert sulfur into unactivated carbon centers contain 

additional iron-sulfur clusters that are proposed to serve as the sulfur source in these 

enzymes [8]. Several recent landmark studies by Booker and colleagues [12,32,33] 

have provided the comprehensive experimental evidence for such a role in the vitamin 

biosynthetic enzyme, LipA. LipA converts a carrier-protein-linked octanoyl side chain to 

lipoyl cofactor [34], which contains two thiol substituents at C6 and C8 (Fig. 1). The 

transformation proceeds as two distinct SAM-dependent transformations, with a 5′-dA• 

intermediate targeting C6 initially. Arrest of the reaction after the first step yields a cross-

linked enzyme-substrate complex [32]. Analysis of this form of the enzyme by Mössbauer 

spectroscopy [32] and x-ray crystallography [12] revealed conversion of the auxiliary Fe4S4 

cofactor to a Fe3S4 complex (Fig. 4). Comparison to structures solved in the absence of 

substrate shows that the lost iron in the auxiliary cluster was originally coordinated by a 

serine side chain located in a conserved C-terminal sequence motif. These interactions yield 

weaker bonds between the cofactor and the protein, likely enabling cofactor disassembly for 

sulfur donation.
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A second comprehensive structural study of a radical SAM sulfur insertion enzyme was 

published earlier this year [23]. Methylthiotransferase, MiaB, responsible for synthesis of 

a methylthio substituent at C2 of a hypermodified adenine base in transfer RNA [35], was 

characterized bound to an RNA substrate in several different stages of its reaction cycle [23]. 

MiaB contains an auxiliary Fe4S4 cluster bound within a large N-terminal domain (Fig. 2). 

As in TokK and LipA, this cofactor docks against the N-terminal side of the radical SAM 

core (Fig. 3). Surprisingly, the structure and size of this domain differs significantly between 

LipA and MiaB. In LipA, the auxiliary cluster is coordinated by much smaller domains at 

the N- and C-termini (Fig. 2). However, MiaB shares with LipA an unusual cluster binding 

motif in its apo form. The auxiliary Fe4S4 cluster has a unique iron site that is linked to the 

radical SAM cluster via a polysulfide bridge in the apo state but becomes open upon SAM 

and RNA binding (Fig. 4).

Structures of MiaB with a small RNA fragment bound reveal a substrate binding site located 

directly underneath the two Fe4S4 cluster cofactors, approximately equidistant from the 

5′-C of the 5′-dAH and one of the sulfide ions of the auxiliary cluster. The structures are 

consistent with a two-step mechanism for methylthiolation. In a first step, SAM methylates 

the auxiliary cluster at the outermost sulfide ion, yielding a Fe3S4 intermediate [36]. 

Attack of the methylated thiol upon the RNA substrate yields a transient enzyme-substrate 

intermediate that is proposed to be resolved by reductive cleavage of a second equivalent of 

SAM.

Observation of auxiliary cluster degradation during catalysis would, in theory, limit LipA 

and MiaB to single turnover reactions. Recently, two iron-sulfur cluster carrier proteins, 

NfuA and IscU, were shown to reconstitute the degraded auxiliary cluster in the LipA 

reaction [33,37], enabling multiple turnovers. Structural characterization of these carrier 

proteins in complex with LipA (and other sulfur insertion enzymes) will be an important 

next step in understanding the mechanism of iron-sulfur cluster reconstitution. Many other 

open questions remain about the structure and metal binding mode of the carrier proteins 

themselves. NfuA has been characterized by NMR spectroscopy, providing information 

about its overall fold [38], but little insight into how it binds its iron-sulfur cluster substrate 

and transfers it to target enzymes. Several crystal structures of IscU bound to a Fe2S2 cluster 

have been reported [39,40]. While the cluster binding motif remains ambiguous, the Fe2S2 

unit is most likely coordinated by three cysteines and either an aspartic acid or a histidine at 

the fourth site. Observation of site differentiation in both the auxiliary cofactor of the target 

enzyme (LipA) and one of its partner iron-sulfur cluster carrier proteins suggests that this 

feature could play a role in cluster assembly and degradation.

2.3 Radical SAM enzymes in nitrogenase cofactor biosynthesis.

Radical SAM enzymes with auxiliary cofactors are additionally involved in complex 

cofactor assembly [2]. For example, a precursor to FeMo-co of nitrogenase is synthesized 

upon the radical SAM enzyme, NifB [41]. The core of mature FeMo-co contains two Fe4S3 

subunits connected via three μ2 sulfide ions and one μ6 carbide ion [26]. The early stages 

of FeMo-co assembly require two proteins, NifB and NifEN [42,43]. NifB fuses two simple 

Fe4S4 clusters (K1 and K2) and inserts an additional sulfide and carbide to form a Fe8S9C 
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product (Fig. 1), also known as NifB-co. NifB-co is subsequently transferred to scaffold 

protein NifEN for further maturation to give the active FeMo-co.

Two recently reported x-ray crystal structures of NifB provide initial insight into how two 

simple Fe4S4 clusters (K1 and K2) might be converted into NifB-co [24,25]. Fajardo et al. 

solved a crystal structure of NifB (PDB ID: 6Y1X) that shows the relative locations of the 

radical SAM iron-sulfur cluster and one of the two auxiliary [4Fe-4S] clusters, K1 [24]. The 

K2 cluster is missing in this dataset, along with >20 amino acids at the C-terminus of NifB. 

The K1 cluster is coordinated by two Cys side chains, a His, and a Glu. These ligands are 

found on the N-terminal side of the radical SAM core or in NifB-specific structural features 

(Fig. 2) that include a small N-terminal domain and insertion loop between β1 and β2 of the 

radical SAM fold. K1 binds near β2 in the core, similar to the auxiliary cluster binding sites 

in TsrM, MiaB, and LipA (Fig. 3).

The radical SAM cluster of NifB also exhibits unusual four-Cys coordination. Three ligands 

are provided by the predicted CX3CX2C cluster signature motif, but a fourth Cys (C62) 

is distinct to NifB, and binds to the iron that is typically “open” for SAM to bind (Fig. 

4). C62 is in the insertion loop that also contains the Glu ligand to K1. The radical SAM 

binding motif is reminiscent of that of TsrM, which uses a Glu to bind the fourth iron. 

However, unlike TsrM, NifB is a dual-purpose enzyme. In NifB, SAM is used both as 

a methyl donor and for hydrogen atom abstraction via reductive cleavage [43]. Methyl 

donation by SAM provides the interstitial carbide in NifB-co. But NifB produces both 

S-adenosylhomocysteine (SAH) and 5′-dAH as byproducts, indicating that a second SAM 

molecule is subsequently used to produce the 5′-dA•. The exact mechanism of carbide 

insertion by NifB remains unknown. The structure of NifB shows that the distance between 

the radical SAM cluster and K1 [24] is 12 Å, likely too far for direct methyl transfer to K1. 

The authors propose that the K2 cluster must therefore be the initial target for methylation 

and it probably resides in between the two iron-sulfur clusters observed in the structure.

A second structure of NifB was reported by Kang et al. [25], purported to contain the 

radical SAM cluster and both K1 and K2 clusters (PDB ID 7JMB). This structure would 

seem to show the K2 binding site and coordinating side chains. However, due to modest 

resolution (3.0 Å) and poor fit of the auxiliary cluster models to both omit and anomalous 

difference electron density maps, information about these features of the active site is 

limited. Refinement of this NifB structure by another research group [44] indicated that 

the electron density assigned to the auxiliary cofactors instead likely corresponds to a 

P-cluster-like fused Fe8S8 cluster with a μ2-bridging sulfide ion (PDB ID: 7BI7). The 

significance of this cluster form as a possible intermediate in the NifB reaction remains 

unclear, although the bridging sulfide resides proximal to the radical SAM iron-sulfur cluster 

(Fig. 4), consistent with its initial target for methylation. Occupancy of the K2 binding site 

is accompanied by ordering of the C-terminus, which could provide additional ligands for 

binding a second auxiliary cluster. The insertion loop also changes conformation to move 

away from the cavity between the radical SAM cluster and K1. Important open questions 

remain about the oxidation states of the K1 and K2 clusters, both in the x-ray crystal 

structures and during catalysis. Finally, the SAM binding site remains to be elucidated in 

any structure of NifB. Given the dual role for SAM in NifB, structures in complex with 
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this cosubstrate will be particularly important for understanding the mechanism of carbide 

insertion and cluster fusion.

3. Conclusions and outlook

Our analysis of recently reported x-ray crystal structures of radical SAM methylases and 

sulfur insertion enzymes highlights a common binding site for their auxiliary iron-sulfur 

cluster and cobalamin cofactors (or cosubstrates). All use the N-terminal side of the α6β6 

radical SAM core fold to anchor the auxiliary moiety opposite the SAM binding site. 

Interestingly, this general binding location is shared by several other radical SAM enzymes 

that use auxiliary iron-sulfur clusters for electron transfer or substrate binding such as MoaA 

[16] and SuiB [14] (Fig. 2). Many of the enzymes discussed here also require interface with 

iron-sulfur-cluster assembly proteins. Use of a common auxiliary cluster binding site could 

provide a common docking surface for partner proteins. Structural characterization of these 

protein-protein complexes remains an important goal for future work. Additionally, we show 

that auxiliary domains at the N- and C-termini contribute important ligands to the auxiliary 

cofactors in these systems. The auxiliary metal binding motifs often include labile ligands 

that are likely responsible for the unique reactivities of the sulfur and carbon modification 

reactions catalyzed by this subset of radical SAM enzymes.
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Figure 1. 
Reactions catalyzed by radical SAM enzymes with auxiliary metallocofactors discussed in 

this review.
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Figure 2. 
A comparison of the domain architectures of radical SAM enzymes with auxiliary 

metallocofactors. The enzymes are colored by domain with the radical SAM core fold 

shown in blue. Substrates are shown as yellow sticks and cosubstrate SAM or its cleavage 

product (5′-dAH) are shown as green sticks. (A) Cobalamin-(Cbl)-dependent radical SAM 

enzyme, TokK, involved in carbapenem (sub) methylation (PDB ID 7KDY). (B) Lipoyl 

synthase, LipA, involved in sulfur insertion into a protein-linked fatty acid substrate (PDB 

ID 5EXK). (C) RNA modification enzyme, MiaB, implicated in methylthiolation of an 

adenine base in the anticodon stem loop (ACSL) of tRNA (PDB ID 7MJV). (D) Nitrogenase 

cofactor biosynthesis enzyme, NifB, involved in carbide and sulfur insertion to generate the 

Fe8S9C NifB-co product (PDB ID 7BI7). Selected amino acids are shown in stick format.
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Figure 3. 
Comparison of the metallocofactor and/or cosubstrate binding sites within the α6β6 radical 

SAM core domain reveals a common auxiliary cofactor binding site near β2 adjacent to 

the radical SAM Fe4S4 cluster. (C) TokK binds Cbl near the substrate pocket opposite 

the SAM cosubstrate binding site (PDB ID 7KDY). (D) LipA binds an auxiliary Fe4S4 

cluster adjacent to the octanoyl-peptide binding site (PDB ID 5EXK). (E) NifB binds a 

Fe8S8 cluster near the N-terminal side of the radical SAM core fold (PDB ID 7B17). (F) 

MiaB binds an auxiliary Fe4S4 cluster near the SAM binding site above the tRNA docking 

interface (PDB ID 7MJV).
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Figure 4. 
Zoomed-in views of the auxiliary iron-sulfur clusters in the sulfur-/carbide-insertion 

enzymes show the unusual metal binding motifs employed in the apo forms of each enzyme. 

(A, B) LipA uses a Ser ligand to the auxiliary Fe4S4 cluster (PDB ID 5EXJ) to facilitate 

formation of a monothiolated intermediate in which C6 of the octanoyl substrate side chain 

has added to a sulfide of the auxiliary cluster (PDB ID 5EXK). (C, D) MiaB contains 

a pentasulfide bridge between the unique irons of the auxiliary and radical SAM Fe4S4 

clusters (PDB ID 7MJZ). Binding of SAM and the tRNA substrate results in a complex 

poised for methylation of sulfide in the auxiliary cluster and subsequent transfer to C2 of 

i6-A37 (PDB ID 7MJV). (E, F) In K1-bound NifB, an insertion loop in the radical SAM 

core contributes Glu and Cys ligands to the K1 and radical SAM Fe4S4 clusters, respectively 

(PDB ID 6Y1X). These unusual coordination interactions are disrupted upon occupancy of 

the enzyme with a Fe8S8 cluster (PDB ID 7B17).
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