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Abstract

Unequal cluster sizes are common in cluster randomized trials (CRTs). While there are a number 

of previous investigations studying the impact of unequal cluster sizes on the power for testing 

the average treatment effect in CRTs, little is known about the impact of unequal cluster sizes 

on the power for testing the heterogeneous treatment effect (HTE) in CRTs. In this work, we 

expand the sample size procedures for studying HTE in CRTs to accommodate cluster size 

variation under the linear mixed model framework. Through analytical derivation and graphical 

exploration, we show that the sample size for the HTE with an individual-level effect modifier 

is less affected by unequal cluster sizes than with a cluster-level effect modifier. The impact of 

cluster size variability jointly depends on the mean and coefficient of variation of cluster sizes, 

covariate intraclass correlation coefficient (ICC) and the conditional outcome ICC. In addition, we 

demonstrate that the HTE-motivated analysis of covariance framework can be used for analyzing 

the average treatment effect, and offer a more efficient sample size procedure for studying the 

average treatment effect adjusting for the effect modifier. We use simulations to confirm the 

accuracy of the proposed sample size procedures for both the average treatment effect and HTE in 

CRTs. Extensions to multivariate effect modifiers are provided and our procedure is illustrated in 

the context of the Strategies to Reduce Injuries and Develop Confidence in Elders trial.
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1 | INTRODUCTION

Cluster randomized trials (CRTs) are one type of study design that randomizes entire 

clusters or groups of individuals to treatment arms.1 These trials are conducted either 
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because the intervention itself is designed to be implemented at the cluster level, or 

to prevent treatment contamination; logistical and administrative issues may also play a 

part in adopting a CRT.2 Because individuals nested in clusters share the same physical 

environment or social connections, the outcomes measured from individuals in the same 

cluster tend to be more alike than those measured for individuals from different clusters. 

This creates a positive outcome intraclass correlation coefficient (outcome-ICC) that inflates 

the variance of the average treatment effect estimator. Specifically, a simple design effect, 

defined as the amount by which the sample size required for an individually randomized 

trial needs to be multiplied to obtain the sample size required for a CRT, for estimating the 

average treatment effect is given by

design effect = 1 + m − 1 ρy, (1)

where ρy is the outcome-ICC and m is the assumed common cluster size.2 While the 

average treatment effect has been the cornerstone in comparative effectiveness research 

with CRTs, interest is growing in understanding whether the treatment effect varies among 

pre-specified patient subgroups, such as those defined by baseline demographic or clinical 

characteristics. In this context, the concept of heterogeneous treatment effect (abbreviated as 

HTE hereafter) refers to potentially different treatment effects across patient subgroups that 

can arise due to various reasons, such as diverse practices, varying responses to treatment, 

or differing vulnerability to certain diseases.3,4 Pre-planned HTE analyses of CRTs enable 

a rigorous understanding of how care innovations may impact outcomes for vulnerable or 

other important subpopulations, and facilitate the development of targeted interventions to 

reduce known disparities in health outcomes. On this front, a recent systematic review by 

Stark et al5 reported that 16 out of 64 CRTs examined HTE among demographic patient 

subgroups. They further noticed a lack of guidance on designing CRTs with pre-planned 

HTE analyses, for which new statistical methods are needed.

To assist in the planning of CRTs to detect HTE(s), Yang et al6 recently developed a new 

sample size and power formula and clarified the associated design effect. In particular, 

they found that the outcome-ICC and the covariate-ICC (equivalently ICC of the effect 

modifier) jointly determine the power of the HTE analyses in CRTs. As a counterpart of 

outcome-ICC, the covariate-ICC captures the fraction of between-cluster covariate variation 

relative to the total of between- and within-cluster covariate variation,7,8 and plays an 

important role in sample size determination for HTE analyses. Furthermore, while the 

design effect (1) for estimating the average treatment effect is monotonically increasing with 

a larger outcome-ICC, the design effect for estimating a HTE with a individual-level effect 

modifier is bounded from above, showing that relative to an individually randomized trial, 

the inflation of sample size for studying the average treatment effect often needs to be larger 

than that for studying an individual-level HTE in a CRT. This leads to a greater chance of 

sufficiently powering both the average treatment effect and the HTE(s) in CRTs. However, 

a key assumption of their sample size procedure is that the cluster sizes are equal, whereas, 

in practice, the cluster sizes are often variable. A systematic review conducted by Eldridge 

et al9 indicated two-thirds of CRTs have unequal sized clusters. The impact of unequal 

cluster sizes for the average treatment effect analysis has been investigated in, for example, 

Kerry et al,10 van Breukelen et al,11 Candel and van Breukelen,12 and Li and Tong;13,14 a 
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good review can also be found in Eldridge et al.15 These authors found that while cluster 

size variation can lead to a notable loss of efficiency or power for cluster-level analyses,10 

they lead to smaller loss of efficiency in CRTs with linear mixed model analyses.11 In 

most cases, the loss of power is compensated for by the addition of 10% to 14% more 

clusters, depending on the magnitude of variation in cluster sizes.11,12 Whereas sample 

size methodology has been relatively well studied in CRTs with average treatment effect 

analysis, it is currently unclear how to account for unequal cluster sizes in designing CRTs 

to detect treatment effect heterogeneity.

In this article, we generalize the results in Yang et al6 to develop modified variance 

expressions of the HTE estimator in CRTs with unequal cluster sizes. The new variance 

expressions clarify the implication of varying cluster size on the power of the HTE test, 

and provide a closed-form solution to adjust for it in the design stage. When the effect 

modifier is measured at the individual level, we show that the variance expression for 

the HTE parameter is generally insensitive to unequal cluster sizes, and the sample size 

methods in Yang et al6 provide a reasonable approximation. On the other hand, unequal 

cluster sizes have a larger impact on the power of the HTE test with a cluster-level effect 

modifier, and a proper correction factor is needed for sample size determination. In addition, 

we point out that the linear mixed model with treatment-by-covariate interactions provides 

an unbiased estimator of the average treatment effect and derive the variance expression 

of this covariate-adjusted average treatment effect estimator in CRTs. Interestingly, with a 

continuous outcome, we show that the design effect expression for the covariate-adjusted 

average treatment effect analysis has an identical form (up to a correction factor due to 

cluster size variability) as that for the unadjusted average treatment effect analysis (Equation 

1), except that the marginal outcome-ICC, ρy, will be replaced by the covariate-adjusted, 

conditional outcome-ICC. This finding not only helps unify the sample size considerations 

for the covariate-adjusted average treatment effect and the HTE analyses of CRTs, but 

also provides a new perspective on the possible efficiency improvement from covariate 

adjustment in the design and analysis of CRTs for the average treatment effect.

The rest of this article is organized as follows. Section 2 introduces the analytical model, and 

develops the sample size formula for HTE analysis of CRTs with a single effect modifier 

adjusting for unequal cluster sizes. The new sample size formula is expressed as a function 

of outcome-ICC and covariate-ICC as well as the coefficient of variation (CV) of cluster 

sizes. The methodology is extended to accommodate multiple effect modifiers in Section 

3. We conduct a series of simulation studies to examine the small-sample performance of 

the proposed sample size formulas, both for the HTE analysis and for covariate-adjusted 

average treatment effect analysis. Under certain conditions, we demonstrate numerically that 

the adjusted average treatment effect analysis based on the HTE model can substantially 

reduce the required number of clusters in CRTs, which further illustrates the merits of the 

HTE model. We illustrate our sample size procedure in Section 4 in the context of the 

Strategies to Reduce Injuries and Develop Confidence in Elders (STRIDE) study,16,17 which 

was a two-arm parallel CRT with pre-specified HTE analysis. Section 5 concludes with a 

discussion.
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2 | STATISTICAL METHODS WITH A UNIVARIATE EFFECT MODIFIER

2.1 | Sample size requirement for the test of the HTE assuming equal cluster sizes

We first review the linear mixed model that allows for a test of the HTE in CRTs as well as 

the associated sample size procedure in Yang et al6 assuming equal cluster sizes. Consider 

a two-arm CRT with a total of n clusters, each with cluster size mi, i = 1, …, n. We define 

Y ij as the quantitative outcome of the jth individual j = 1, …, mi  in the ith cluster. Denote 

the treatment variable as W i, which is randomized at the cluster level. We write W i = 1 if 

cluster i is randomized to the treatment arm, and W i = 0 if cluster i receives usual care. 

Typical analytical models for CRTs require the adjustment for between-cluster variability, 

and the linear mixed model with a cluster-level random-effect is commonly used in these 

circumstances to estimate the treatment effect. To allow for the test of the HTE, we let 

Xij denote an individual-level effect modifier of interest (we will use effect modifier and 

covariate interchangeably in what follows), such as gender or racial group indicator. The 

linear mixed model with main effects of cluster-level treatment, effect modifier, as well as 

their interaction can be expressed as

Y ij = β1 + β2W i + β3Xij + β4W iXij + λi + ϵij, λi N 0, σλ
2 , ϵij N 0, σϵ

2 . (2)

In this model, β1, β2, β3, β4 stand for the intercept (grand mean), main effect of treatment, 

main effect of the potential effect modifier, and the treatment-by-covariate interaction effect. 

Further, λi is the random intercept that measures the cluster-specific departure from the 

overall mean and is assumed to follow N 0, σλ
2 ; ϵij is the normal residual error, and is 

assumed to be independent from λi. By definition, the outcome-ICC conditional on the effect 

modifier is written as ρy ∣ x = σλ
2/ σλ

2 + σϵ
2 . We start with the individual-level effect modifier and 

then study the cluster-level effect modifier as a special case where Xij = Xi for all j.

Based on model (2), the test for the HTE can be formulated by testing H0:β4 = 0. Putting 

H0 in the context of a binary effect modifier (eg, Xij = 1 if female; Xij = 0 otherwise), the 

parameter β4 encodes the difference in treatment effect across subgroups (eg, female and 

non-female), and a two-sided test of the HTE can be conducted using the Wald statistic, 

β̂4/se β̂4 , based on a reference normal distribution under the null. To obtain the sample 

size required for a test of the HTE, Yang et al6 derived the large-sample variance of the 

generalized least squares estimator, β̂4, assuming all clusters have the same size, mi = m. 

In brief, we define W‾ = E W i  as the proportion of clusters treated, σw
2 = W‾ 1 − W‾  as the 

variance of the treatment indicator, which equals 1/4 under a balanced design, σx
2 as the 

marginal variance of the effect modifier, σy ∣ x
2 = σλ

2 + σϵ
2 as the total variance of the outcome 

conditional on the effect modifier, and ρx as the covariate-ICC, which can be defined as 

ρx = Cov Xij, Xij′ /σx
2. Here, Cov Xij, Xij′  represents the common covariance between effect 

modifiers observed for any two individuals j and j′ in each given cluster i.7 As a specific 

example, if Xij = μ1 + bi + cij, with μ1 as the global mean, bi N 0, σb
2  and cij N 0, σc

2 , then the 

covariate-ICC is given by ρx = σb
2/ σb

2 + σc
2 . Given the outcome-ICC and covariate-ICC, the 

large-sample variance of nβ̂4 is shown to be
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σ4
2 = σy ∣ x

2 1 − ρy ∣ x 1 + m − 1 ρy ∣ x

mσw
2 σx

2 1 + m − 2 ρy ∣ x − m − 1 ρxρy ∣ x
. (3)

Under the equal cluster size assumption, given a pre-specified HTE effect size δ, the 

required number of clusters that ensures 100 1 − ζ % power with an α-level test is

n = z1 − α/2 + z1 − ζ
2σy ∣ x

2 1 − ρy ∣ x 1 + m − 1 ρy ∣ x

mδ2σw
2 σx

2 1 + m − 2 ρy ∣ x − m − 1 ρxρy ∣ x

, (4)

where zq is the q-quantile of the standard normal distribution.

We can make several key conclusions based on the Equation (4). First, the sample size 

formula for testing the HTE only depends on the effect size of the HTE but not on the 

main effect of treatment or the effect modifier. Second, different from previous sample size 

formulas in the education literature for designing school-based CRTs,18,19 the above formula 

explicitly clarifies that the conditional outcome-ICC, ρy ∣ x, and the marginal covariate-ICC, 

ρx, jointly determine the power of the HTE analysis. Furthermore, the relationship between 

n and ρy ∣ x is parabolic in that n first increases as ρy ∣ x increases from zero, and then decreases 

after a critical point. The sample size also decreases with a smaller ρx and larger covariate 

variance σx
2. Finally, while the usual design effect (1) for estimating the average treatment 

effect is monotonically increasing with a larger (unconditional) outcome-ICC, the design 

effect for estimating the HTE with an individual-level effect modifier is bounded from 

above and can even decrease with a larger outcome-ICC.6 An important implication from 

this observation is that, relative to an individually randomized trial, studying the average 

treatment effect in a CRT often requires a larger sample size than that for studying the 

HTE, leading to a greater chance of having sufficient power for detecting both the average 

treatment effect and the HTE in CRTs.

2.2 | Sample size requirement for the test of the HTE allowing for unequal cluster sizes

We derive a more general sample size expression for testing the HTE with a single effect 

modifier assuming the cluster sizes arise from a common, non-degenerate distribution, 

namely, mi f mi  with bounded first and second moments. We first assume that the effect 

modifier is measured at the individual level such that ρx < 1. To facilitate the derivation, we 

mean-center the cluster-level treatment in the model as follows,

Y ij = b1 + b2 W i − W‾ + b3Xij + b4 W i − W‾ Xij + λi + ϵij,

where b1 = β1 + β2W‾ , b2 = β2, b3 = β3 + β4W‾ , b4 = β4. Define the collection of design points 

Zij = 1, W i − W‾ , Xij, W i − W‾ Xij
T , and Zi = Zi1, …, Zimi

T . Given the value of σλ
2 and 

σϵ
2, the scaled maximum likelihood estimator of b = b1, b2, b3, b4

T , n b̂ − b , converges to 

a multivariate normal distribution with mean zero and variance Σn = nσy ∣ x
2 Un

−1, where 

Un = ∑i = 1
n Zi

TRi
−1Zi, and Ri = 1 − ρy ∣ x Imi + ρy ∣ xJmi is the exchangeable correlation matrix for 
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cluster i implied from model (2), where Imi and Jmi are mi × mi identity matrices and matrices 

of ones, respectively. Then the large-sample variance of nb̂4 is the lower-right element of 

the variance matrix limn ∞ Σn = σy ∣ x
2 limn ∞ n−1Un

−1.

To derive an explicit variance expression, we notice the inverse of the exchangeable 

correlation matrix is

Ri
−1 = 1

1 − ρy ∣ x
Imi − ρy ∣ x

1 − ρy ∣ x 1 + mi − 1 ρy ∣ x
Jmi .

Plugging this inverse expression into the generalized least squares variance, we show in Web 

Appendix A that an approximate sample size formula for testing H0:β4 = 0 under unequal 

cluster sizes is given by

nVar β̂4 = σy ∣ x
2 1 − ρy ∣ x

σw
2 σx

2 m‾ + 1 − ρx p‾ + ρxq‾
, (5)

where

q‾ = E −mi
2ρy ∣ x

1 + mi − 1 ρy ∣ x
and p‾ = − m‾ρy ∣ x

1 + m‾ − 1 ρy ∣ x
1 − CV2 m‾ρy ∣ x 1 − ρy ∣ x

1 + m‾ − 1 ρy ∣ x
2 .

Therefore, we obtain the required number of clusters for a two-sided α-level z-test to achieve 

100 1 − ζ % power as

n = z1 − α/2 + z1 − ζ
2σy ∣ x

2 1 − ρy ∣ x 1 + m‾ − 1 ρy ∣ x

m‾δ2σw
2 σx

2 1 + m‾ − 2 ρy ∣ x − m‾ − 1 ρxρy ∣ x

× 1 − CV2 m‾ρy ∣ x 1 − ρy ∣ x ρx − ρy ∣ x

1 + m‾ − 2 ρy ∣ x − m‾ − 1 ρxρy ∣ x 1 + m‾ − 1 ρy ∣ x
2

−1

Correction Factor θ1 CV

,
(6)

which, compared to (4), includes an additional correction factor, θ1 CV , due to cluster size 

variation. Depending on the magnitude of the covariate-ICC and the conditional outcome-

ICC, the correction factor may be larger, equal, or smaller than unity. To be more specific, 

when ρx > ρy ∣ x, θ1 CV > 1, and the sample size will be inflated due to unequal cluster sizes. 

In contrast, when ρx < ρy ∣ x, θ1 CV < 1, and cluster size variation reduces the required sample 

size. Finally, when ρx = ρy ∣ x, θ1 CV = 1 and the required sample size requirement becomes 

invariant to cluster size variation. Despite such explicit relationships, the correction factor 

should in general be close to one, especially when the mean cluster size is moderate to large 

(eg, 50 or above) because limm‾ ∞ θ1 CV = 1. Given the CV of cluster sizes rarely exceed one 

in CRTs, when the average cluster size is not too small (eg, < 20), Equation (6) suggests that 

unequal cluster sizes should have minimal impact on the sample size requirement for the test 

of the HTE with an individual-level effect modifier.
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Unequal cluster sizes, however, can have a larger impact on the required sample size when 

testing for a HTE when there is a cluster-level effect modifier (as compared with the 

results with an individual-level effect modifier). To see this, recall that a cluster-level effect 

modifier attributes the same value for each individual in a cluster, and therefore becomes a 

special case of the above derivation when the covariate-ICC, ρx = 1. In this case, the sample 

size formula (6) reduces to

n = z1 − α/2 + z1 − ζ
2σy ∣ x

2 1 + m‾ − 1 ρy ∣ x

m‾δ2σw
2 σx

2
× 1 − CV2 m‾ρy ∣ x 1 − ρy ∣ x

1 + m‾ − 1 ρy ∣ x
2

−1

Correction Factor θ2 CV

,
(7)

whose correction factor due to unequal cluster sizes, θ2 CV , has a form identical to the 

equations derived in van Breukelen et al11 and Candel and van Breukelen,12 except that their 

unconditional outcome-ICC is replaced by the conditional outcome-ICC, ρy ∣ x. Beyond this 

difference, the generic findings in van Breukelen et al11 hold for the test of the HTE with 

a cluster-level effect modifier, namely, the efficiency loss in estimating β4 due to unequal 

cluster sizes is within 15% with a moderate CV of cluster sizes (eg, 0.6). Only when the 

CV of cluster sizes is large (eg, 0.9) would we expect to see an efficiency loss over 20%. 

In addition, the correction factor, θ2 CV , is a parabolic function of ρy ∣ x, and peaks when 

ρy ∣ x = 1/ m‾ + 1 .11,13

To further illustrate these results, we present in Figure 1 the correction factor as a function 

of average cluster sizes, m‾ ∈ 20,100  and CV of cluster sizes ∈ 0.3, 0.9 , representing a 

moderate and an extreme degree of cluster size variation. We vary the covariate−ICC ∈ 0,1 , 

with the lower limit representing a fully independent individual-level covariate and the upper 

limit representing a cluster-level covariate. The conditional outcome-ICC is varied between 

0 and 0.2, as this value rarely exceeds 0.2 for commonly reported health outcomes.9 In 

Figure 1A where m‾ = 20 and CV = 0.3, the correction function is very close to 1 even when 

the covariate-ICC approaches 1 (ie, the case with a cluster-level effect modifier). With a 

larger CV = 0.9 in Figure 1B, the correction factor remains close to 1 except when the 

covariate-ICC approaches 1 and the outcome-ICC is small. In this case, the correction factor 

can reach slightly over 1.24, indicating a 24% efficiency loss in power and increase in 

sample size for a highly correlated individual-level effect modifier or a cluster-level effect 

modifier. Increasing the average cluster size, as shown in Figure 1C,D, notably, can further 

reduce the sensitivity of Var β̂4  to cluster size variation, because the peak contour region 

(where correction factor reaches its largest magnitude) moves to the upper left corner with 

the largest covariate-ICC and smallest conditional outcome-ICC.

2.3 | Sample size requirement for studying the covariate-adjusted average treatment 
effect allowing for unequal cluster sizes

While the linear mixed model (2) is primarily motivated by the analysis of the HTE, 

it also enables the covariate-adjusted analysis of the average treatment effect. Without 

loss of generality, if we assume that the effect modifier has global mean μ1 = 0
(otherwise one could mean center the covariates without altering the interpretation of 
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β4), the main effect parameter β2 can be interpreted as an average treatment effect 

parameter that characterizes the marginal treatment effect for the overall population. 

Model (2) implies that E Y ij ∣ W i = 1 = β1 + β2 whereas E Y ij ∣ W i = 0 = β1, and therefore 

β2 = E Y ij ∣ W i = 1 − E Y ij ∣ W i = 0  defines a valid average treatment effect parameter due to 

the fact that treatment indicator Zi is randomized at the cluster level. Similar observations 

were previously discussed in the context of individually randomized trials with analysis of 

covariance (ANCOVA) models,20,21 for which model (2) is a generalization to allow for 

cluster-level random effects and ICCs. Based on the derivation in Section 2.1, we show in 

Web Appendix A that

nVar β̂2 = σy ∣ x
2 1 + m‾ − 1 ρy ∣ x

σw
2 m‾

× 1 − CV2 m‾ρy ∣ x 1 − ρy ∣ x

1 + m‾ − 1 ρy ∣ x
2

−1
. (8)

This variance expression (8) leads to several key findings. First, if all cluster sizes are equal 

so that CV = 0, the variance expression nVar β̂2  has the identical form of the unadjusted 

linear mixed model analysis without covariates,1, 11 except that the marginal outcome-ICC 

ρy will be replaced by the conditional outcome-ICC ρy ∣ x. In the presence of cluster size 

variation, the corresponding sample size formula for an average treatment effect of β2 = Δ
becomes

n = t1 − α/2 n − 2 + t1 − ζ n − 2 2σy ∣ x
2 1 + m‾ − 1 ρy ∣ x

m‾Δ2σw
2

× 1 − CV2 m‾ρy ∣ x 1 − ρy ∣ x

1 + m‾ − 1 ρy ∣ x
2

−1

Correction Factor θ2 CV

,
(9)

where tq n − 2  denotes the q-quantile of the t-distribution with n − 2 degrees of freedom. 

Here, we choose the t-test and the between-within degrees of freedom (# of clusters—# 

of cluster-level covariates) as it frequently carries the nominal type I error rate even with 

a limited number of clusters.22 Note Equation (9) includes the same correction factor as 

suggested in van Breukelen et al11 for linear mixed model analysis without covariates, 

except that the marginal outcome-ICC ρy is replaced with the conditional outcome-ICC ρy ∣ x. 

In practice, it is often the case that adjusting for a prognostic covariate leads to a smaller 

conditional ICC such that ρy ∣ x < ρy, and this will inevitably reduce the variance for estimating 

the average treatment effect with model (2) compared to its counterpart without Xij. The 

reduction in variance can directly translate into a smaller required sample size to achieve 

the same level of power, providing a more cost-effective approach for studying the treatment 

effect in CRTs by leveraging baseline covariates. Finally, the correction factor, θ2 CV , in 

Equation (9) is identical to the correction factor in (7). This is somewhat expected because 

the treatment indicator in a CRT can be regarded as a cluster-level covariate and subject to 

the same efficiency impact due to cluster size variation.
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3 | GENERALIZATION TO MULTIPLE OR MULTIVARIATE EFFECT 

MODIFIERS

3.1 | Generic variance expressions for the HTE and average treatment effect estimators

While our main focus is to elucidate the impact of unequal cluster sizes for tests of the 

HTE and average treatment effect with a univariate effect modifier, it is possible to extend 

the sample size methodology in the presence of multivariate effect modifiers. Suppose 

Xij = Xij1, …, Xijp
T  is a p-dimensional vector of effect modifiers, the linear mixed model (2) 

can be extended as

Y ij = β1 + β2W i + β3
TXij + β4

TXijW i + λi + ϵij, λi N 0, σλ
2 , ϵij N 0, σϵ

2 . (10)

The specification of Xij includes the following cases: (i) Xij includes multiple univariate 

effect modifiers as linear terms; (ii) Xij involves a univariate, individual-level effect modifier 

but is further decomposed into cluster-level and individual-level components to address 

different effects for the aggregated and lower-level variations, or the so-called contextual 

effect; this is further addressed in Section 3.2; (iii) Xij involves a univariate, individual-level 

continuous effect modifier but with both linear and nonlinear terms; an example of this is 

given in Section 5 and Web Appendix D; (iv) combinations of the above. Below, we proceed 

with a general specification of Xij.

Suppose we are interested in jointly testing the null hypothesis of no HTE, H0:β4 = 0p × 1, and 

we denote β̂4 as the maximum likelihood estimator of the interaction parameters. Defining 

Ω4 = nVar β̂4  and Ω̂4 as its consistent estimator, we can proceed with the Wald statistic, 

Q = nβ̂4
TΩ̂4

−1β̂4. Under the null, the test statistic Q follows a central χ2-distribution with p
degrees of freedom. Therefore, the sample size requirement for testing a HTE of size β4 = δ
can be expressed by

1 − θ ≤ χ1 − α
2 p

∞

φ u; p, nδTΩ4
−1δ du, (11)

where φ u; p, ζ  is the density of the non-central χ2-distribution with p degrees of 

freedom and non-centrality parameter ζ. The characterization of the sample size formula, 

therefore, depends on an explicit expression of the variance matrix Ω4, or equivalently, the 

concentration matrix Ω4
−1, as it plays a key role in determining the non-centrality parameter.

Similar to Section 2.2, we assume the cluster sizes mi are sampled from a non-degenerate 

distribution with bounded first and second moments. This allows us to derive in Web 

Appendix B

Ω4 = nVar β̂4 = σy ∣ x
2 1 − ρy ∣ x 1 + m‾ − 1 ρy ∣ x

m‾σw
2 Λx

−1/2Θ CV

Γx
1 + m‾ − 2 ρy ∣ xΓx

1 − m‾ − 1 ρy ∣ xΓx
0 −1Λx

−1/2,
(12)
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where the p × p diagonal matrix Λx = diag σx1
2 , …, σxp

2  contains the marginal variance of each 

effect modifier, Γx
1 = Λx

−1/2 E XijXij
T − E Xij E Xij

T Λx
−1/2 is the marginal correlation matrix 

between p covariates (the diagonal elements are all 1 by definition of a marginal correlation 

matrix), and Γx
0 = Λx

−1/2 E XijXik
T − E Xij E Xik

T Λx
−1/2 is the multivariate counterpart of the 

covariate-ICC in the univariate case. The diagonal element of Γx
0 is the covariate-ICC of each 

covariate, while the off-diagonal elements represent the intraclass cross-correlations between 

two different covariates. The middle multiplier in (12), Θ CV , refers to a correction matrix, 

and can be considered as a multivariate extension of the correction factor, θ1 CV :

Θ CV

= Ip × p − CV2 m‾ρy ∣ x 1 − ρy ∣ x

1 + m‾ − 1 ρy ∣ x
2 Γx

1 + m‾ − 2 ρy ∣ xΓx
1 − m‾ − 1 ρy ∣ xΓx

0 −1 Γx
0 − ρy ∣ xΓx

1
−1

,
(13)

where Ip × p is a p × p identity matrix. We notice that the variance expression (5) is a 

special case of (12) when p = 1, because in this case, Γx
1 = 1, Γx

0 = ρx, and Λx = σx
2. With 

multivariate effect modifiers and p ≥ 2, the impact of unequal cluster sizes on the non-

centrality parameter and hence the statistical power is characterized by Θ CV , whose limit 

is given by limm‾ ∞ Θ CV = Ip × p. Therefore, it is reasonable to expect that unequal cluster 

sizes generally have minimal impact on the sample size requirement for the joint test of the 

HTE with individual-level effect modifiers as long as the mean of the cluster sizes is not too 

small. Finally, in the special case when Γx
0 = ρy ∣ xΓx

1 (resembling the condition ρx = ρy ∣ x in the 

univariate case), we have Θ CV = Ip × p and the impact of unequal cluster sizes for testing the 

HTE is negligible regardless of other design parameters.

If the multivariate effect modifiers are all at the cluster level, then by definition Γx
1 = Γx

0 = Γx, 

which all describe the marginal correlation matrix between the p cluster-level covariates. In 

this case, variance matrix (12) becomes

Ω4 = nVar β̂4 = σy ∣ x
2 1 + m‾ − 1 ρy ∣ x

m‾σw
2 Λx

−1/2Γx
−1Λx

−1/2

× 1 − CV2 m‾ρy ∣ x 1 − ρy ∣ x

1 + m‾ − 1 ρy ∣ x
2

−1

Correction Factor θ2 CV

, (14)

where we observe the correction matrix degenerates to a univariate correction factor θ2 CV , 

which takes the exact same form as the correction factor with a single cluster-level effect 

modifier.

While the main motivation of the linear mixed model (10) is to study a multivariate HTE, 

similar to Section 2.3, the model permits a covariate-adjusted estimator for the average 

treatment effect. Without loss of generality, we assume the multivariate effect modifiers 

are global mean centered such that E Xij = 0p × 1. In this case, β̂2 can be interpreted as a 
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covariate-adjusted average treatment effect estimator, similar to its counterpart in ANCOVA 

models for individually randomized trials.21 We show in Web Appendix B that

nVar β̂2 = σy ∣ x
2 1 + m‾ − 1 ρy ∣ x

σw
2 m‾

× θ2 CV , (15)

which has the identical form as (8) except that ρy ∣ x is interpreted as the outcome-ICC 

conditional on the set of multivariate effect modifiers. Intuitively, adjustment for Xij may 

reduce the conditional total variance of the outcome σy ∣ x
2  and the outcome-ICC ρy ∣ x compared 

to their marginal counterparts (due to explained variation and explained clustering), hence 

leading to a more efficient average treatment effect estimator and a smaller required sample 

size to reach the same level of power. In this regard, our study of the sample size and 

variance expressions also provides an alternative perspective to justify the necessity for 

covariate adjustment in CRTs. We will further demonstrate this efficiency perspective for the 

average treatment effect analysis in our simulation study in Section 4.

3.2 | Application to a univariate effect modifier allowing for between- and within-cluster 
effects

The derivations in Section 3.1 also have implications for analyses with a single individual-

level effect modifier, if the analysis proceeds by distinguishing the between-cluster and 

within-cluster effects from the effect modifier. We assume the effect modifier is global 

mean centered without loss of generality μ1 = 0 . In this case, the linear mixed model (10) 

becomes

Y ij = β1 + β2W i + β31X‾ i + β32 Xij − X‾ i + β41X‾ iW i + β42 Xij − X‾ i W i + λi + ϵij, λi N 0, σλ
2 , ϵij N 0, σϵ

2 ,

in which case the null hypothesis of no HTE is given by H0:β41 = β42 = 0. When it is assumed 

that β31 = β32 and β41 = β42, this model reduces to model (2) assuming homogeneous between- 

and within-cluster effects. The idea of distinguishing between-cluster and within-cluster 

effects was discussed, for example, in Neuhaus and Kalbfleisch23 and Kreft et al24 The 

association parameters of the cluster-specific mean X‾ i has also been used to describe the 

contextual effect in a CRT.7,25 We extend those ideas to include full treatment-by-covariate 

interaction terms to describe the HTE arising from the between-cluster and within-cluster 

variations of the individual-level effect modifier.

To facilitate the derivation of a more explicit variance matrix for sample size determination, 

we reparameterize the above model as follows:

Y ij = β1 + β2W i + β31
* X‾ i + β32Xij + β41

* X‾ iW i + β42XijW i + λi + ϵij, λi N 0, σλ
2 ,

ϵij N 0, σϵ
2 , (16)

where β31
* = β31 − β32 and β41

* = β41 − β42. It has been argued that β31
*  and β41

*  may be 

more interpretable than β31 and β41 as contextual effect parameters.26,27 Based on the 

reparameterization, the null hypothesis of no HTE is given by H0:β41
* = β42 = 0. For sample 

size determination, the generic variance expression (12) derived in Section 3.1 can be 
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applied with some simplifications. For brevity, we derive in Web Appendix C the form of the 

concentration matrix, Ω4
−1, which is

Ω4
−1 = m‾σw

2 σx
2

σy ∣ x
2 1 − ρy ∣ x 1 + m‾ − 1 ρy ∣ x

r CV 1 − ρy ∣ x θ2
−1 CV r CV 1 − ρy ∣ x θ2

−1 CV
r CV 1 − ρy ∣ x θ2

−1 CV 1 + m‾ − 2 ρy ∣ x − m‾ − 1 ρxρy ∣ x θ1
−1 CV

.
(17)

This explicit expression demonstrates that the impact of unequal cluster sizes for testing the 

HTE based on model (16) depends on the CV of cluster sizes only through r CV , θ1 CV , 

and θ2 CV . To understand the impact of unequal cluster sizes in the HTE analysis based 

on model (16), we plot the relative change in the determinant of the covariance matrix (or 

equivalently, concentration matrix), det Ω4
−1 = 1/det Ω4 , under unequal vs equal cluster sizes 

when average cluster sizes, m‾ ∈ 20,100  and CV of cluster sizes ∈ 0.3,0.9  in Figure 2. The 

choice of design parameters in Figure 2 follows exactly those in Figure 1. Mathematically, 

the relative change in determinant due to unequal cluster sizes is defined as

det Ω4

det Ω4 CV = 0
= 1 + m‾ − 2 ρy ∣ x − m‾ − 1 ρxρy ∣ x − r 0 1 − ρy ∣ x

1 + m‾ − 2 ρy ∣ x − m‾ − 1 ρxρy ∣ x θ1
−1 CV θ2

−1 CV − r CV 1 − ρy ∣ x θ2
−2 CV

= θ2 CV

1 − CV2 1 − ρy ∣ x
2

m‾ − 1 1 + m‾ − 1 ρy ∣ x
2 1 − CV2 m‾ρy ∣ x

1 + m‾ − 1 ρy ∣ x

−1

,

(18)

which surprisingly turns out to be free of the covariate-ICC due to the inclusion of a cluster-

level mean covariate in model (16). The detailed derivation of this expression is given in 

Web Appendix C. From Figure 2, we observe that the relative change in the determinant 

of Ω4 due to cluster size variation is minimum when the CV of cluster sizes is not large 

(eg, < 0.3), or when the mean cluster size is large and the conditional outcome-ICC is not 

small (eg, > 0.1), which is more similar to what we observe when testing the HTE with 

a cluster-level effect modifier. Because the determinant is a generic measure of the total 

information in a covariance matrix (also sometimes referred to as the generalized variance in 

the multivariate statistics literature28), it is reasonable to expect that cluster size variation has 

a larger impact on power for the test of the HTE based on model (16) when the CV is large, 

average cluster size is small and outcome-ICC is relatively small.

4 | SIMULATION STUDY

We conduct a simulation study to investigate the accuracy of our proposed sample size and 

power procedure for studying both the HTE and the average treatment effect in CRTs with 

unequal cluster sizes. The purpose of the study is several fold. First, we wish to confirm 

numerically that the predicted power by our formula agrees well with the empirical power of 

the Wald test for the HTE, provided that the test has a valid type I error rate. This exercise 

also enables us to empirically check the sensitivity of empirical power of the test of the 
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HTE to cluster size variation. Second, as the HTE model implies an unbiased estimator of 

the average treatment effect, we also investigate the accuracy of the proposed sample size 

procedure based on the adjusted average treatment effect estimator to confirm our analytical 

derivations. Finally, we wish to demonstrate, from a sample size saving perspective, that 

the covariate-adjusted average treatment effect estimator can be more efficient than the 

conventional unadjusted average treatment effect estimator. By quantifying the exact amount 

of sample size saving to achieve the same power, our study provides useful guidance when 

limited resources are available to design a CRT. To concentrate on the main idea, we focus 

on the scenario with an individual-level (continuous or binary) effect modifier, similar to 

Yang et al.6

4.1 | Simulation design

We consider two-arm CRTs with equal allocation of treatment groups, such that σw
2  is fixed 

at 1/4. Throughout, we fix the nominal type-I error rate at α = 5 % and the desired power 

at 1 − ζ = 80 %. We assume one individual-level effect modifier that is either continuous or 

binary. In either case, we consider the following parameters to compute the required number 

of clusters to achieve the desired level of power. The covariate ICC, ρx ∈ 0.10,0.25,0.50  and 

the conditional outcome-ICC (of the outcome), ρy ∣ x ∈ 0.01,0.05,0.10 . The covariate ICCs 

are chosen to reflect mildly to moderately correlated effect modifiers, and the outcome-ICCs 

are chosen to reflect the common values reported in CRTs, which rarely exceed 0.2.8,29 

The mean cluster size is chosen to be m‾ ∈ 20,50,100 , and the degree of cluster size 

variation is chosen to be CV ∈ 0,0.3,0.6,0.9 . These values are in accordance with previous 

simulations of CRTs with unequal cluster sizes.13,14 When the effect modifier is continuous, 

the marginal covariate variance, σx
2, is set to 1, and the true HTE parameter, β4 = δ, is among 

{0.10, 0.15, 0.25}. When the effect modifier is binary, we set the marginal prevalence to be 

μ1 = 0.3 and therefore σx
2 = μ1 1 − μ1 = 0.21; the true HTE parameter β4 = δ ∈ 0.25,0.35,0.45 . 

These various combinations of parameters for the binary and continuous effect modifiers 

lead to roughly similar sample size requirements holding all other parameters equal. Overall, 

there are 324 simulation scenarios in our study.

To confirm whether the predicted power by our formula agrees well with the empirical 

power of the test of the HTE given each combination of design parameters, the simulation 

proceeds as follows: (i) We calculate the required number of clusters n by solving Equation 

(6) and taking the smallest even number above to ensure an equal allocation of treatment 

groups. (ii) We obtain the predicted power based on our variance formula in Equation (5) 

(the result could be slightly over 80% due to rounding). (iii) When CV of cluster size is 

0, we set the cluster size to m‾ . When CV is above zero, we simulate cluster sizes from 

a Gamma distribution with the shape parameter set to CV−2 and rate parameter set to 

m‾ −1CV−2. (iv) Given ρx, we generate covariates as follows: For a binary effect modifier, 

we first simulate the cluster-specific prevalence πi from a beta distribution with shape 

parameters a = μ1 ρx
−1 − 1  and b = 1 − μ1 ρx

−1 − 1 , and then generate the individual-level 

covariate from Bernoulli πi . This ensures the marginal prevalence and the covariate-ICC 

to be μ1 and ρx. For a continuous covariate, the cluster-specific mean μi is generated from 

N 0, ρxσx
2 , and then the individual-level covariate is simulated from N 0.5 + μi, 1 − ρx σx

2 . 
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(v) The treatment W i is assigned at the cluster level with equal probability to treatment 

and control. (vi) We simulate the individual-level outcomes following model (2), with 

the intercept, β1 = 0; the main effect, β2 = 0.25; the main covariate effect, β3 = 0.1, and the 

specified HTE parameter β4 = δ. The conditional total variance is set to be σy ∣ x = 1. (vii) 

For each simulated trial, the linear mixed model (2) is fitted by the restricted maximum 

likelihood approach (REML), and the P-value for testing no HTE is obtained from the 

Wald test. Steps (iii)-(vii) are repeated 5000 times for each simulation scenario, and the 

empirical type I error rate (false rejection rate under H0:β4 = 0) and the empirical power 

(correct rejection rate under the alternative with β4 = δ ≠ 0) are recorded. Based on the 

Bernoulli model with a fixed target probability (0.05 or 0.8), the Monte Carlo SE with 5000 

simulations is 0.006 for empirical power and 0.003 for empirical type I error. Therefore, an 

empirical type I error rate within [0.044, 0.056] is considered nominal, and the difference 

between empirical power and predicted power within [−0.011, 0.011] is considered in close 

agreement. All analyses are done in R (version 4.0.1) using nlme package.30 Example 

simulation code can be found at https://github.com/ttyale/HTE.

Second, we evaluate the performance of our sample size procedure for the covariate-adjusted 

average treatment effect analysis in Equation (9). We retain the aforementioned simulation 

procedure except for Steps (i) and (vii). Here, in Step (i), we compute the required number 

of clusters for testing the average treatment effect using Equation (9), and round the results 

to the smallest nearest even integer above. In step (vii), we still fit the linear mixed model 

(2) but ensures that the effect modifier Xij is globally mean centered to have zero mean. 

This step does not affect the inference for the HTE parameter, but ensures that β̂2 can be 

interpreted as a (covariate-adjusted) average treatment effect estimator. The P-value for 

testing for no average treatment effect is obtained from the Wald t-test by fitting the linear 

mixed model. Finally, to illustrate the potential sample size saving for studying the average 

treatment effect under the HTE model, we conduct a parallel set of simulations where the 

outcomes are simulated from the linear mixed model (2) but the design and analysis proceed 

without Xij. In this setting, we still resume the aforementioned simulation procedure, again, 

except for steps (i) and (vii). Here, in step (i), we compute the required number of clusters 

for testing the average treatment effect using Equation (9), but replace ρy ∣ x with the marginal 

outcome-ICC ρy, and σy ∣ x
2  with the unadjusted variance σy

2. We use the formula derived in 

Yang et al6 to arrive at σy
2 ≈ σy ∣ x

2 + β3
2 + β4

2/2 + β3β4 σx
2, and to further induce the marginal 

outcome-ICC from the conditional outcome-ICC and covariate-ICC as ρy ≈ ωρy ∣ x + 1 − ω ρx, 

where the weight is given by ω = σy ∣ x
2 /σy

2. The required sample size is then estimated from the 

formula given ρy and compared with that estimated from formula (9) given ρy ∣ x to illustrate 

the potential sample size saving due to covariate adjustment with a single effect modifier. 

In Step (vii), we also fit the linear mixed model by omitting all terms with Xij to verify the 

accuracy of the unadjusted sample size procedure.

4.2 | Simulation results

Web Table 1 summarizes the estimated number of clusters n  using the proposed formula 

(9), the empirical type I error rate under the null of no HTE, the empirical power and the 

predicted power of the test of the HTE under δ = 0.15 with a continuous individual-level 
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effect modifier. To highlight the main findings, the results on type I error and power are also 

graphically summarized in Figures 3 and 4. In general, the test of the HTE maintains a valid 

type I error rate, and carries empirical power that agrees well with the analytical predictions 

across all scenarios. In extreme cases with CV = 0.9, the empirical power may be slightly 

lower than the predicted power when the number of clusters is small (Figure 3D), which is 

expected given our sample size approximation relies on asymptotic theory where n becomes 

sufficiently large. As shown by comparisons across different levels of CV, the estimated 

numbers of clusters are generally not dramatically affected by the degree of cluster size 

variation (by comparing different panels of Figure 3), except when the average cluster size is 

small. For example, when m‾ = 20, a large CV of cluster size can mildly inflate the required 

sample size to achieve the same power, especially when the difference between ρx and ρy ∣ x

is also large. However, when m‾ = 100, the impact of CV on required sample size becomes 

minimal, regardless of ICC parameters; this confirms our analytical findings in Section 2.2. 

Additional simulation results of the test of the HTE with different effect sizes, δ = 0.10 and 

δ = 0.25, and the same continuous effect modifier can be found in Web Tables 2 and 3, 

with qualitatively similar findings. Comparing across the results with different effect sizes, 

it appears that the required sample size for HTE analysis may be sensitive to effect size 

and becomes more sensitive to cluster size variation when the HTE is small. The parallel 

results for a binary effect modifier with δ = 0.25, δ = 0.35, and δ = 0.45 are presented in Web 

Tables 4 to 6. The results and patterns for the a binary effect modifier are similar to that for a 

continuous effect modifier, and confirms the accuracy of the proposed sample size formula.

Web Table 7 presents the required number of clusters n  for the test of the average treatment 

effect based on the HTE model with a treatment-by-covariate interaction term, the empirical 

type I error rate under the null of no average treatment effect, the empirical power and the 

predicted power for the test of the average treatment effect with a continuous effect modifier. 

Under the same parameter configuration as in Web Table 1, the induced average treatment 

effect from the HTE simulation model is fixed at 0.325 under δ = 0.15. Across all scenarios, 

the empirical type I error rates for the covariate-adjusted test of the average treatment effect 

are close to 0.05, and the empirical power is consistent with the predicted power except for 

a few extreme cases when the required number of clusters is small and the CV of cluster 

size is largest (CV = 0.9). Compared to Web Table 1, Web Table 7 also shows that the 

sample size for average treatment effect analysis can be more sensitive to the conditional 

outcome-ICC, ρy ∣ x, than that for the HTE analysis. The covariate-ICC, however, does not 

change the required sample size for adjusted average treatment effect analysis. Finally, we 

find that the sample size for the covariate-adjusted average treatment effect analysis can 

generally be more sensitive to the degree of cluster size variation than that for the HTE 

analysis, especially when the CV of cluster size becomes large. Web Tables 8 and 9 present 

the corresponding results for δ = 0.10 with an induced average treatment effect of 0.30, and 

δ = 0.25 with an induced average treatment effect of 0.375. Findings under these alternative 

effect sizes of the average treatment effect are similar to those in Web Table 7.

Web Table 10 presents the required number of clusters n  for the test of the unadjusted 

average treatment effect ignoring the continuous effect modifier, the empirical type I error 

rate of the test, the empirical power and the predicted power for the test of the unadjusted 
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average treatment effect with an induced average treatment effect of 0.325 δ = 0.15 . To help 

contrast with the results in Web Table 7, we plot the estimated sample size adjusting for the 

effect modifier vs that ignoring the effect modifier in Figure 5. Even with one continuous 

effect modifier, the estimated number of clusters ignoring the covariate is 2 to 6 larger than 

that needed when adjusting for the effect modifier. As we elaborated in Section 2.3, this 

is because the marginal outcome-ICC ρy can be larger than the conditional outcome-ICC 

given the effect modifier ρy ∣ x. Likewise, the marginal total variance of the outcome σy
2 can be 

smaller than the conditional total variance σy ∣ x
2 , due to explained variation. These two sources 

of changes lead to reduction in needed sample size when a covariate is considered in the 

design and analysis of a CRT. Web Tables 11 and 12 summarize the corresponding results 

with alternative values of the δ, and therefore an induced average treatment effect of 0.300 

and 0.375. The results are consistent with those in Web Table 10.

5 | ILLUSTRATIVE SAMPLE SIZE CALCULATION WITH THE STRIDE 

STUDY

To illustrate our proposed sample size procedure, we compute the required sample size 

for detecting the HTE and average treatment effect in the context of the design of the 

STRIDE trial. The STRIDE trial was a two-arm, pragmatic CRT with 5451 community-

dwelling individuals aged 70 or above and at high risk for a serious fall injury. Individuals 

were clustered in 86 primary care practices. Intervention and enhanced usual care were 

randomized at the practice level with a 1:1 ratio. The intervention included comprehensive 

assessment, recommendations, and motivational interview on fall risk factors as well as 

developing and implementing an individualized fall care plan, whereas the enhanced usual 

care included a falls-information pamphlet and were encouraged to discuss fall risk with 

their primary care provider. The average cluster size of the study was m‾ = 63, with an 

estimated CV of cluster size around 0.5. Here, we focus on a continuous secondary outcome, 

concern score about falling, and two potential effect modifiers measured at the individual 

level, age and self-rated health (SRH). Additional details of the study can be found at the 

clinicaltrials.gov (NCT02475850) and elsewhere.16,17,31

The concern about falling outcome ranged from 10 to 40 and was assessed using a 

modified Fall Efficacy Scale at 24 months post intervention.31 Throughout we consider 

two-sided tests with nominal 5% type I error rate and 20% type II error rate (80% power). 

Suppose we are interested in studying the potential effect modification with respect to the 

continuous individual-level covariate, age, which has marginal SD of 6.9 (assuming age 

is mean centered). We estimate the covariate-ICC of age using the STRIDE baseline data 

to be ρx = 0.025, and the conditional outcome-ICC to be ρy ∣ x = 0.01. Using formula (6), the 

required number of clusters to detect the age-related HTE with a standardized effect size, 

δσx/σy ∣ x = 0.1 (interpreted as the effect on SD unit increase in covariate on SD unit of the 

outcome) is estimated to be n = 52. In Table 1, we further vary the design parameters with 

conditional outcome-ICC, ρy ∣ x ∈ 0.01, 0.05 , covariate-ICC, ρx ∈ 0.01, 0.05, 0.10, 0.20 , and 

three other values of CV of cluster sizes as a sensitivity analysis for the same target effect 

size. It is apparent that the required number of clusters is relatively insensitive to the cluster 

size variation (leading to requiring at most 2 more clusters under CV = 0.75), which is not 
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surprising as we have shown that the correction factor for testing an individual-level HTE 

due to unequal cluster sizes is generally close to 1. However, the sample size for the HTE 

will be jointly affected by the outcome-ICC and covariate-ICC in a non-monotone fashion, 

consistent with the findings in Yang et al6 assuming equal cluster sizes. Furthermore, 

suppose we are interested in studying the potential effect modification with respect to the 

binary individual-level covariate, SRH, which measures whether one has good/excellent 

self-rated health. The marginal prevalence and the SD of SRH is 0.2 and 0.4, respectively; 

the covariate-ICC for this binary covariate is estimated by the modified moment estimator32 

to be ρx = 0.05. Assuming ρy ∣ x = 0.01, n = 80 clusters are required to detect a HTE effect size 

of δ/σy ∣ x = 0.2 (interpreted as the effect from change in SRH on the SD unit of the outcome). 

In Table 1, our sensitivity analysis by varying design parameters indicate that the sample 

size is insensitive to the cluster size variation, but will jointly depend on the values of the 

covariate-ICC and outcome-ICC.

We then illustrate the calculation of the sample size for the average treatment effect on the 

concern about falling outcome, but consider using the conditional outcome-ICC according 

to Section 2.3. Our analysis of the STRIDE data suggests that the conditional outcome-ICC 

given either the age or SRH covariate is around 0.01. Following the original protocol, the 

required number of clusters is estimated to be n = 12 to detect a standardized effect size of 

Δ/σy ∣ x = 0.3 when the CV of cluster sizes is 0.5. A larger CV can require 2 more clusters 

as shown in Table 1. If the conditional outcome-ICC increases to 0.05, the required number 

of clusters is estimated to be n = 76, indicating the sensitivity of the average treatment 

effect sample size to outcome-ICC. However, in general, the estimated sample size based on 

the conditional outcome-ICC can be smaller than the conventional approach based on the 

marginal outcome-ICC, as we demonstrated in the simulation study in Section 4.

Finally, a potential limitation of our sample size calculation for the HTE analysis with age in 

Table 1 is that we have assumed a linear HTE model without higher-order terms for age. In 

the case where nonlinear effects of age are expected, the approach proposed in Section 3.1 

can be applied to determine the required sample size for detecting the HTE. As a sensitivity 

analysis for the sample size to detect effect moderation by age, we assume a quadratic HTE 

model by additionally including quadratic age terms in both the main effect as well as the 

interaction effect (model details are provided in Web Appendix D), and combine Equations 

(11) and (12) to solve for the required number of clusters. We assume that the collection of 

age variables in each cluster is multivariate normal with mean zero, marginal variance σx
2 and 

common ICC ρx, under which condition we show in Web Appendix D that the variance of 

age squared is 2σx
4. Therefore, Λx = diag σx

2, 2σx
4 . Under this multivariate normal model, we 

further derive in Web Appendix D that

Γx
1 = 1 0

0 1 , Γx
0 =

ρx 0
0 ρx

2 .

Fixing the standardized effect size for linear age-related HTE as 0.1 as in Table 1, we vary 

the standardized effect size for quadratic age-related HTE from {0, 0.1, 0.2, 0.3} and present 

the sample size estimates in Table 2. If the true quadratic HTE is zero (or equivalently there 
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only exists linear HTE), an increased number of clusters is needed to attain 80% power 

based on the quadratic HTE model compared to the results under linear HTE model in Table 

1. However, a smaller number of clusters is needed to achieve 80% power when there indeed 

exists a positive quadratic HTE based on age squared, and the sample size estimates can 

be further reduced with a stronger quadratic HTE effect size. In Web Table 13, we further 

obtain the required sample sizes based on the quadratic HTE model but assuming that the 

linear HTE of age is in fact 0. The resulting sample sizes are no smaller than those in Table 

2, due to a reduced overall HTE signal, but may be either larger or smaller than those in 

Table 1. Taken together, these results suggest that the sample size estimates from a linear 

HTE model are generally conservative when there exists both linear and quadratic HTEs. 

However, the sample size estimates from a linear HTE model can be either smaller or larger 

when there only exists a quadratic HTE. Similar to Table 1, the CV of cluster sizes has 

negligible effect on the sample size for studying the HTE with an individual-level effect 

modifier.

6 | DISCUSSION

In this article, we propose a set of sample size procedures to account for unequal cluster 

sizes in CRTs detecting treatment effect heterogeneity. With a univariate, individual-level 

effect modifier, we show that the correction factor due to cluster size variability is 

close to unity under certain parameter regions, such that the procedure in Yang et al6 

usually provides a reasonable approximation despite their assumption of equal cluster sizes. 

However, when the effect modifier is measured at the cluster level, the correction factor 

can often be larger than unity, and therefore the required sample size for detecting the HTE 

can be more sensitive to the degree of cluster size variability. By focusing on a univariate 

effect modifier, our numerical studies demonstrate that the proposed sample size procedure 

is accurate in finite samples under common values of the CV of cluster sizes. In any case, 

the correction factor we proposed can be used in the design stage to formally quantify the 

amount of additional clusters required to achieve the desired power for studying the HTE 

in CRTs with unequal cluster sizes. Finally, we have also generalized our procedure to 

accommodate multiple effect modifiers by developing a correction matrix (which reduces to 

a scalar correction factor with multiple cluster-level effect modifiers), discuss its potential 

application for designing CRTs with an anticipated contextual effect in Section 3.2, and 

illustrate its use in powering a nonlinear HTE in Section 5.

There has been an extensive effort in studying the impact of unequal cluster sizes in 

CRTs on the estimation and inference of the average treatment effect; see, for example, 

Kerry et al10 and van Breukelen et al11 with a continuous outcome; Candel et al,12 Li 

and Tong13 for a binary outcome; Li and Tong14 for a count outcome. The consensus 

from these prior investigations is that the impact of cluster size variability depends on the 

choice of analysis. Whereas the impact of cluster size variability is much larger when the 

analysis proceeds by ignoring the outcome ICC (eg, cluster-level analysis or independence 

generalized estimating equations), the impact of cluster size variability can be milder when 

the estimation of treatment effect accounts for the outcome ICC (eg, a linear mixed model 

or generalized estimating equation with an exchangeable working correlation structure). In 

the latter case, the loss of power due to unequal cluster sizes needs to be compensated 
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for by including an additional 10% to 20% more clusters depending on the mean and CV 

of cluster sizes as well as the outcome ICC. However, these prior investigations have not 

considered covariates in the analytical models, and to the best of our knowledge, our work 

is the first to address the issue of unequal cluster sizes in CRTs when the interest lies in 

detecting the treatment-by-covariate interaction effect. When the covariate is measured at the 

cluster level, we show that the correction factor due to unequal cluster sizes has the same 

form of the expression as what was previously derived for studying the average treatment 

effect in CRTs by van Breukelen et al.11 This is intuitive because the interaction term can 

be regarded as a cluster-level covariate, just like the treatment variable. On the other hand, 

if the covariate is measured at the individual level, the impact of unequal cluster sizes on 

power is often much smaller, perhaps due to the additional information gain by leveraging 

within-cluster contrasts and informing the individual-level interaction effect. As we show 

in Equation (6), the amount of potential sample size inflation jointly depends on the mean 

and CV of cluster sizes, covariate-ICC and conditional outcome-ICC. Through graphical 

exploration, we have demonstrated that the largest variance inflation due to unequal cluster 

sizes in studying an individual-level HTE occurs when the covariate-ICC approaches one 

(in which case the individual-level covariate is highly correlated in each cluster and behaves 

like a cluster-level covariate) and the mean cluster size is small. In the special case when the 

covariate-ICC equals the conditional outcome-ICC, the correlation factor equals to one and 

we expect minimal impact of unequal cluster sizes for studying an individual-level HTE.

In addition to developing new design formulas for studying HTEs, we have further provided 

insights into studying the average treatment effect in CRTs. In particular, models (2) and 

(10) can be regarded as multilevel analysis of covariance (ANCOVA) models, incorporating 

a cluster-level random effect into the classical ANCOVA model for independent and 

identically distributed observations. Connecting with the literature on efficient ANCOVA 

analysis of individually randomized trials,6,21 we show that the HTE-motivated multilevel 

ANCOVA framework can also be used for potentially more efficient average treatment effect 

analysis. We provide a sample size formula for the covariate-adjusted average treatment 

effect analysis, which turns out to bear the same form as the sample size formula for the 

unadjusted average treatment effect even under unequal cluster sizes. A subtle difference, 

however, is that our sample size for the average treatment effect requires the conditional 

outcome variance, σy ∣ x, and the conditional outcome-ICC, ρy ∣ x, rather than the marginal 

counterpart in the traditional formula. Frequently, the adjustment of baseline covariates 

can explain residual variability as well as the degree of clustering in CRTs, as shown, 

for example, in the empirical study by Murray and Blistein.8 The reduction of residual 

variability as well as the degree of clustering can then translate into sample size savings 

without compromising the study power. Therefore, from a sample size point of view, our 

results offer an alternative justification for leveraging baseline covariates in CRTs. In Section 

4, our simulations demonstrate that one could save 2 to 6 clusters when powering on 

the average treatment effect by including a single continuous effect modifier with a small 

covariate effect and small to moderate covariate-ICC. We expect additional efficiency gain 

with more prognostic covariates, but this topic is subject to additional research. Relatedly, 

covariate adjustment has been recently written into a US FDA guidance document33 

for individually randomized trials, whereas no such guidance is currently available for 
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pragmatic CRTs; our findings may therefore also promote the application of the multilevel 

ANCOVA model in CRTs as a unifying framework for studying the HTE and the average 

treatment effect.

The investigation into the HTE is a trending topic for pragmatic CRTs, with continuing 

development of new statistical methodology. In this work, we focus on confirmatory 

HTE analysis with pre-specified effect modifiers and aim to quantify the design resources 

needed to achieve sufficient power for confirmatory HTE analysis. This sets us apart from 

the exploratory HTE analysis that is mostly data-driven and post-hoc, for which power 

analysis remains less relevant due to lack of pre-specification. To apply our sample size 

methodology, an additional assumption on the value of covariate-ICC is required beyond 

conventional assumptions in designing CRTs. However, reporting covariate-ICC has not 

yet become standard practice in CRTs and warrants additional research. Our view is that 

the lack of current covariate-ICC estimates does not invalidate our procedure, and we 

strongly encourage more empirical studies to report covariate-ICCs along with outcome-

ICCs, perhaps by exploiting existing databases in order to facilitate the planning of future 

CRTs with a HTE objective. Korevaar et al,34 have provided a good example of such a 

study by providing a comprehensive set of ICC estimates from the CLustered OUtcome 

Dataset (CLOUD) bank to assist in the planning of longitudinal and stepped wedge CRTs 

subject to complex correlation structures. On the other hand, we have also exemplified how 

sensitivity analysis can be carried out by varying values of the covariate-ICC in Section 5, 

and researchers may choose the most conservative sample size estimate without an accurate 

covariate-ICC estimate in the design stage. Alternatively, one can consider an internal 

pilot where the sample size for the larger study is re-estimated conditional on the updated 

covariate-ICC and outcome-ICC values from the pilot, extending the work of Lake et al35 

and van Schie and Moerbeek.36

One potential limitation of the current study is that we have focused on a continuous 

outcome. In practice, binary outcomes are also common in CRTs. While our proposed 

methods can provide a rough approximation when the HTE is measured based on the risk 

difference, they may not be directly applied when the HTE is measured based on the relative 

risk or odds ratio. To this end, we plan to conduct additional research to develop new sample 

size formulas for HTE analysis of CRTs based on generalized linear mixed models with 

non-identity link functions.
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FIGURE 1. 
The correction factor CF = θ1 CV  as a function of average cluster sizes m‾ ∈ 20,100 , 

coefficient of variation (CV) of cluster sizes ∈ 0.3, 0.9 , covariate ICC ∈ 0, 1  and outcome 

ICC ∈ 0, 0.2 . When the covariate ICC ρx = 1, the effect modifier is a cluster-level covariate. 

(A) m‾ = 20, CV = 0.3; (B) m‾ = 20, CV = 0.9; (C) m‾ = 100, CV = 0.3; (D) m‾ = 10, CV = 0.9
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FIGURE 2. 
The relative change (RC) in the determinant of the covariance matrix, det Ω4 / det Ω4 CV = 0 , 

as a function of average cluster sizes m‾ ∈ 20, 100 , coefficient of variation (CV) of cluster 

sizes ∈ 0.3, 0.9 , covariate ICC ∈ 0, 0.95  and outcome ICC ∈ 0, 0.2 . We consider the 

largest covariate-ICC to be 0.95 because model (16) is not estimable if Xij is a cluster-level 

covariate with ρx = 1. (A) m‾ = 20, CV = 0.3; (B) m‾ = 20, CV = 0.9;(C) m‾ = 100, CV = 0.3; 

(D) m‾ = 100, CV = 0.9
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FIGURE 3. 
Empirical type I error rate for studying the HTE as a function of the estimated sample size 

(number of clusters) with a continuous individual-level effect modifier, by four different 

coefficients of variation (CV) of cluster sizes. The dashed lines indicate the Monte Carlo 

error bounds based on 5000 simulations with a 5% nominal type I error rate. Details on the 

design parameters for each scenario are provided in Web Table 1. (A) CV = 0; (B) CV = 0.3; 

(C) CV = 0.6; (D) CV = 0.9

Tong et al. Page 25

Stat Med. Author manuscript; available in PMC 2023 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 4. 
Difference between the empirical and predicted power for studying the HTE as a function 

of the estimated sample sizes (number of clusters) with a continuous individual-level effect 

modifier, by four different coefficients of variation (CV) of cluster sizes. The effect size 

for power is set to be β4 = δ = 0.15. The dashed lines indicate the Monte Carlo error bounds 

based on 5000 simulations with 80% target power. Details on the design parameters for each 

scenario are provided in Web Table 1. (A) CV = 0; (B) CV = 0.3; (C) CV = 0.6; (D) CV = 

0.9
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FIGURE 5. 
Estimated sample size (number of clusters) for testing the average treatment effect based on 

the HTE model vs that based on the unadjusted linear mixed model when the outcomes are 

simulated with a continuous individual-level effect modifier. The effect size of the average 

treatment effect is induced from the HTE model and obtained as 0.325. The dashed lines 

indicate equal sample sizes. Details on the design parameters are provided in Web Tables 7 

and 10. (A) CV = 0; (B) CV = 0.3; (C) CV = 0.6; (D) CV = 0.9
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TABLE 1

Estimated required number of clusters n  for detecting the HTE with respect to a continuous potential effect 

modifier (age) and a binary potential effect modifier (self-rated health), as well as the covariate-adjusted 

average treatment effect (ATE), based on the continuous outcome, concern about failing in the STRIDE study

ρ y|x ρ x 

HTE (age) HTE (self-rated health) ATE

CV of cluster sizes CV of cluster sizes CV of cluster sizes

0 0.25 0.5 0.75 0 0.25 0.5 0.75 0 0.25 0.5 0.75

0.01 0.01 58 58 58 58 78 78 78 78 12 12 12 14

0.025 52 52 52 52 80 80 80 80

0.05 52 52 52 52 80 80 80 80

0.10 52 52 52 54 82 82 82 82

0.20 54 54 56 56 86 86 86 86

0.05 0.01 50 50 50 50 50 50 50 50 76 76 76 76

0.025 50 50 50 50 78 78 78 78

0.05 50 50 50 50 78 78 78 78

0.10 52 52 52 52 82 82 82 82

0.20 58 58 58 58 90 90 90 90

Note: The nominal type I error rate is 5% and the nominal power is 80%. Bold values indicate estimation based on the specified design 
assumptions, and the CV of cluster sizes, covariate-ICC, and conditional outcome-ICC are varied as a sensitivity analysis for sample size.
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TABLE 2

Estimated required number of clusters n  based on the quadratic HTE model with a continuous potential effect 

modifier (age) and the continuous outcome, concern about failing in the STRIDE study

ρ y|x ρ x 

HTE for Age2 = 0.0 HTE for Age2 = 0.1 HTE for Age2 = 0.2 HTE for Age2 = 0.3

CV of cluster sizes CV of cluster sizes CV of cluster sizes CV of cluster sizes

0 0.25 0.5 0.75 0 0.25 0.5 0.75 0 0.25 0.5 0.75 0 0.25 0.5 0.75

0.01 0.01 76 76 76 76 40 40 40 40 18 18 18 18 10 10 10 10

0.025 76 76 76 76 40 40 40 40 18 18 18 18 10 10 10 10

0.05 78 78 78 78 40 40 40 40 18 18 18 18 10 10 10 10

0.10 78 78 78 80 40 40 40 40 18 18 18 18 10 10 10 10

0.20 82 82 82 84 42 42 42 42 18 18 18 18 10 10 10 10

0.05 0.01 74 74 74 74 38 38 38 38 18 18 18 18 10 10 10 10

0.025 74 74 74 74 38 38 38 38 18 18 18 18 10 10 10 10

0.05 76 76 76 76 38 38 38 38 18 18 18 18 10 10 10 10

0.10 78 80 80 80 40 40 40 40 18 18 18 18 10 10 10 10

0.20 86 86 86 86 42 42 42 42 18 18 18 18 10 10 10 10

Note: The nominal type I error rate is 5% and the nominal power is 80%. Bold values indicate estimation based on the specified design 
assumptions, and the CV of cluster sizes, covariate-ICC, and conditional outcome-ICC are varied as a sensitivity analysis for sample size.
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