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Abstract

B cell differentiation into antibody-secreting plasma cells requires transcriptional, metabolic, 

and epigenetic remodeling. H3K27me3, a histone modification associated with gene silencing, 

is dynamically regulated during B cell differentiation. Although several studies have focused 

on mechanisms involving the gain of this modification in plasmablasts (PB), the role of active 

demethylation of H3K27me3 by UTX and JMDJ3 during B cell differentiation has not been 

examined. Here, this process was assessed using a pharmacological inhibitor of UTX and 

JMJD3, GSK-J4. Treatment of ex vivo stimulated mouse B cells with GSK-J4 led to an increase 

in plasmablast frequency without affecting the ability of the newly formed plasmablasts to 

secrete antibodies. Consistent with the role of UTX and JMJD3 in promoting gene expression, 

the majority of differentially expressed were downregulated upon GSK-J4 treatment. GSK-J4-

treated cells downregulated genes associated with signaling and P53 pathways. Inhibitor treated 

cells upregulated genes associated with cell cycle and proliferation, which correlated with an 

increase in actively proliferating cells. Unexpectedly, a majority of the downregulated transcripts 

corresponded to genes that in the wild-type setting were genes that gain H3K27me3 and 

downregulated in PB. Together, our results show that UTX and JMDJ3 are required to restrain 

B cell differentiation and suggests that they function as a rheostat for H3K27me3 to control this 

process.

INTRODUCTION

Humoral immunity relies on the ability of naïve B cell (nB) to differentiate into antibody 

secreting short-lived plasmablasts (PB) or long-lived post-mitotic plasma cells (PC). To 

allow for robust antibody secretion and differentiation, B cells undergo substantial changes 

in their transcriptional prolife as well as metabolism (1–4). nB and PC fates are regulated 

by distinct sets of transcription factors. Whereas PAX5 (5–8) and BACH2 (9, 10) promote 

the nB stage, BLIMP1 (11–13) and high levels of IRF4 (14, 15) promote PC formation. In 

addition, there is a growing appreciation for the epigenetic reprograming that occurs during 

B cell differentiation (16, 17). This is well exemplified by the fact that differentiating B 
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cells undergo cell-division coupled reprogramming of their accessible chromatin landscape 

and progressive DNA hypomethylation of their genome following stimulation with T-cell 

independent antigens (18, 19).

In addition to changes in DNA methylation to facilitate cell fate decisions, the distribution of 

histone modification also changes during B cell differentiation (18, 20, 21). Of particular 

note is the status of histone H3 lysine 27 trimethylation (H3K27me3) modifications 

at nB- and PB-specific genes. This histone modification is associated with a repressed 

chromatin state and gene silencing (22). H3K27me3 is deposited by EZH2 (23–25), a 

component of the PRC2 complex, and is enzymatically removed by two demethylases UTX 

(Ubiquitously transcribed tetratricopeptide repeat, X chromosome) and JMJD3 (Jumonji 

Domain-Containing Protein 3) (26, 27). UTX and JMJD3 are also termed KDM6A and 

KDM6B, respectively. In a recent study, H3K27me3 was shown to be dynamically regulated 

during B cell differentiation with roughly equal number of promoter regions that gain and 

lose this histone modification as B cells differentiate to PB (21). Deposition of H3K27me3 

by EZH2 has been shown to play an important role during B cell development (28, 29), 

germinal center formation and maintenance (30–32), as well as PB formation in response to 

T-independent antigens (21). However, a significant gap in knowledge persists concerning 

the role of UTX and JMJD3 in the epigenetic regulation of B cell differentiation and PC 

formation.

UTX and JMJD3 facilitate H3K27me3 demethylation via their Jumonji C domain in an 

iron and alpha-ketoglutarate dependent manner (33, 34). This process occurs via direct 

hydroxylation of the methyl group resulting in a formation of a hydroxymethyl intermediate, 

which is then released as a formaldehyde (35). UTX is X linked with a homolog, UTY, 

encoded on the Y chromosome. The demethylation activity of UTY is extremely low 

compared to UTX (26, 27, 36). In addition to their catalytic activity, UTX and JMJD3 

influence gene expression through interactions with a host of chromatin regulators, including 

BRG1 (37, 38) and CHD4 (38, 39), p300 (40), and most notably the MLL complex, which 

promotes H3K4 methylation (41, 42). The tumor suppressor p53 also interacts with UTX 

and JMJD3 (43). UTX and JMJD3 have been shown to function in various biological 

processes, including early embryonic development (44–46). Such roles were shown to be in 

part by facilitating resolution of bivalent promoters at retinoic acid inducible genes (47) and 

derepressing inactive enhancers (40). Other roles have included cardiac development (48), 

hematopoiesis (49), M2 macrophages differentiation (50), and regulation of various T cell 

subsets (37, 51–56).

In a clinical setting, mutations in UTX lead to a rare, congenital disorder characterized 

by distinct facial features, developmental delay, intellectual disability, and multi-organ 

malfunctions (57, 58). Furthermore, mutations in UTX have been identified in Diffuse Large 

B-cell Lymphoma (DLBCL) (59) and multiple myeloma (60–62). Mutations in JMJD3 have 

been described in Hodgkin’s Lymphomas (63) and DLBCL (64, 65). Together, this suggests 

that these enzymes are important regulators of B cell fate. Furthermore, changes in the 

expression of genes associated with PC and memory B cells have been reported following 

overexpression of JMJD3 in human germinal center B cells (63). However, the role of UTX 
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and JMJD3 in B cell differentiation has not been fully examined, thus leaving a significant 

gap in our knowledge of epigenetic regulation of PC formation.

In this study, we utilized a pharmacological inhibitor for UTX and JMJD3 to examine their 

role in regulating B cell differentiation using an ex vivo model system. The results showed 

that the demethylation enzymes are involved in controlling cell cycle, proliferation, and 

ultimately the frequency of B cells that differentiate into PB and are therefore critical for PB 

reprogramming and function.

METHODS

Mice

C57BL/6J mice (Stock# 000664) were purchased from Jackson Labs and bred on site. 

All animals were housed by the Emory Division of Animal Resources following protocols 

approved by the Emory Institutional Animal Care and Use Committee.

Ex vivo differentiation

Naïve splenic B cells were magnetically enriched by negative selection using CD43 (Ly-48) 

MicroBeads (Miltenyi Biotec 130-097-148) with >95% purity. Unless otherwise stated, 

purified B cells were cultured at 0.5 × 106 cells/ml of B cell media (RPMI 1640, 10% heat-

inactivated FBS, 0.05 mM 2-ME, 1X nonessential amino acids, 1X penicillin/streptomycin, 

10 mM HEPES, and 1 mM sodium pyruvate) supplemented with 20 μg/ml LPS (Sigma 

L2630), 20 ng/ml IL-2 (Biolegend 575406), and 5 ng/ml IL-5 (Biolegend 581504). LPS and 

cytokines were supplemented with half the above dose at 24 and 48hr of ex vivo culture as 

previously described (66). In some experiments, naïve B cells were stained with 5μM Cell 

Trace Violet (Life Technologies C34557) prior to culturing. GSK-J4 (Sigma SML0701) and 

GSK-J5 (Cayman Chemical, 12074) were dissolved in DMSO and diluted in B cell media. 

Cells were treated daily with 250nM GSK-J4 or DMSO. For CD40L stimulation, cells 

were seeded at 105 cells/ml in the above B-cell media containing CD40L (100 ng/ml, R&D 

Systems), IL-5 (5 ng/ml) and IL-4 (20 ng/ml, R&D Systems). Cultures were supplemented 

with the cytokines at each subsequent day of culture. For bromodeoxyuridine (BrdU) cell 

cycle analysis, cells were washed, resuspended in fresh media containing 10 μM BrdU, 

and incubated at 37°C for two hours. Cell proliferation analysis then performed using 

Phase-Flow FITC BrdU Kit following the manufacturer’s protocol (Biolegend 370704).

Flow Cytometry

Cells were resuspended at 106 per 100μl of FACS buffer (1X PBS, 1%BSA, and 

2mM EDTA) and blocked with anti-Fc (anti-CD16/CD32) (Tonbo Biosciences, 2.4G2). 

The following antibodies were used to for staining: B220-PE-Cy7 (Tonbo Biosciences 

RA3-6B2), CD138-BV711 (BD, 281–2), GL7 eFluor660 (eBioscience, GL-7), CD11b-FITC 

(Tonbo Biosciences, M1/70), and Ghost Dye™ Red 780 (Tonbo Biosciences 13–0865) to 

asses viability. The Annexin V FITC Apoptosis Detection Kit (eBioscience BMS500FI-100) 

was used to assess cell death. Cells were stained for 40 min and fixed using 1% 

paraformaldehyde.
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Enrichment of CD138+ PB was performed by staining with CD138-APC (BD, 281–2), 

followed by magnetic enrichment using anti-APC MicroBeads (Miltenyi # 130-090-855). 

For RNA-seq, GL7+ cells were further enriched from the CD138-depleted fractions using 

GL7-PE (Biolegend #144608) and anti-PE MicroBeads (Miltenyi #130-105-639).

Flow cytometry was performed on a BD LSRII using FACSDiva (v6.2) and analyzed 

using FlowJo software. The following gating strategy preceded all flow cytometry analyses 

presented. Cells were gated on 1) lymphocytes (forward light scatter [FSC]–area by side 

scatter [SSC]–area), 2) singlets (FSC-height by FSC- width), 3) singlets (SSC- height by 

SSC-width), 4) live cells (Viability Dye negative), with 5) the exclusion of contaminating 

macrophages bearing CD11b (Supplemental Figure2A).

Western Blot

Ex vivo cultured B cells were lysed on ice in RIPA buffer (150mM NaCl, 0.5% sodium 

deoxycholate, 0.1% SDS, 1% IGEPAL, 20% glycerol, 50mM Tris pH 8.0) for 20 min. 

Protein concentration was determined by a Bradford assay (BioRad Inc.). Primary antibody 

incubation was conducted at 4° C overnight, followed by several washes and a one-hour 

incubation with the secondary antibody. The following antibodies were used: anti-UTX 

(Cell Signaling, 33510S), anti-JMJD3 (LSBio, C96528), anti-KDM5B (Abcam, ab181089), 

anti-KDM5C (Proteintech 14426-1-AP), and anti-ACTIN (Santa Cruz, sc69877). Blots were 

developed using the Immunobilon Cresendo HRP Substrate (Sigma, WBLURO100) and 

visualized on Biorad ChemiDoc MP Imaging System.

Enzyme-Linked Immunosorbent Assay (ELISA)

Equal numbers of DMSO- or GSK-J4-treated plasmablasts were cultured in fresh B cell 

media. After 2.5hr, the supernatant was collected and used to perform ELISA. ELISA 

plates (Sigma M9410) were coated with goat anti-mouse Ig (Southern Biotechnology 

5300-05B) overnight at 4° C and blocked with 3% nonfat dry milk. Standard IgM antibody 

(Southern Biotechnology 5300-01B) and collected media supernatants were incubated for 

2 hr at room temperature, followed by washes, and incubation with HRP-conjugated 

goat anti-mouse secondary antibody (Southern Biotechnology 1021-05) for 2 hr at room 

temperature. The plates were developed using the TMB ELISA peroxidase substrate 

(Rockland 800-666-7625) and the reaction was stopped using 0.2M sulfuric acid. Plates 

were read using a Synergy HT Multi-Mode Microplate Reader (BioTek).

RNA-seq

RNA was isolated from magnetically enriched PB and ActB using Zymo Quick-RNA 

MicroPrep Kit (11-328M). Sequencing libraries were generated using mRNA HyperPrep Kit 

(KAPA Biosystems KR1352) with 500ng input RNA per sample. Final libraries were quality 

checked on a bioanalyzer, quantitated by quantitative PCR (qPCR), pooled at equimolar 

ratio, and sequenced on a HiSeq2500 using paired- end, 50-bp sequencing chemistry. 

TopHat227 was used to map the raw sequencing reads to the mm9 mouse genome. For 

each sample, reads that overlapped exons of unique ENTREZ genes were annotated using 

the GenomicRanges (v1.22.4) package in R/Bioconductor. Differential expression analysis 

was performed using Bioconductor package edgeR using FDR ≤ 0.05 and 1.5-fold change 
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(log2 = 0.58) (Supplemental Table 1). PCA was performed using vegan package and the 

indicated z-score normalized gene list. For gene set enrichment analysis (GSEA)(67), all 

detected genes were ranked by multiplying the sign of fold change by the −log10 (P value).

Data and Code Availability

All sequencing data have been deposited in NCBI Gene Expression Omnibus (GEO) under 

the accession codes GSE158139. Code and data processing scripts are available from the 

corresponding author upon request and at https://github.com/cdschar/.

RESULTS

H3K27me3 demethylases are upregulated during B cell differentiation

Previous work (21) described significant gains and losses in H3K27me3 modifications as B 

cells differentiated to PB in response to LPS, pointing to a potential role for the removal of 

these marks by histone demethylases. The expression of the two H3K27me3 demethylases 

(UTX and JMJD3) was examined in a previously published data set (68), which quantified 

gene expression during in vivo differentiation of nB following LPS stimulation. Analysis of 

this data revealed that compared to nB, Utx was upregulated several fold in newly formed 

plasmablasts (PB), while Jmjd3 expression showed a modest albeit statistically significant 

increase in expression (Figure 1A). Expression of UTX and JMJD3 was also examined 

in a second LPS-induced in vivo B-cell differentiation model dataset that correlated gene 

expression as a function of cell division (19). In that system, PB form after division 8 

and are phenotypically recognized by expression of the plasma cell maker CD138 (termed 

division 8+). Again, Utx expression was significantly higher in the division 8+ cells, 

which represent the newly formed PB compared to control earlier divisions (Figure 1B). 

Furthermore, consistent with the changes in gene expression, the protein levels of UTX and 

JMJD3 were higher in PB derived from ex vivo cultures compared to nB and not altered 

in expression by GSK-J4 treatment (Supplemental Figure 1A). In a similar manner, other 

histone modifiers that are known to be functionally affected by GSK-J4 were not altered 

in expression by the inhibitor (Supplemental Figure 1A). To determine whether change 

in H3K27me3 during B cell differentiation correlated with transcriptional differences, the 

change in promoter H3K27me3 enrichment (21) was plotted against the change in gene 

expression between nB and PB (68). Consistent with the repressive role of H3K27me3, 

the analysis revealed two major sets of genes: 1) genes that had high expression and low 

H3K27me3 levels in PB (Figure 1C; green quadrant); and 2) genes that had low expression 

and high H3K27me3 in PB compared to nB (Figure 1C; blue quadrant). H3K27me3 

enrichment at the abovementioned gene groups was quantified (Figure 1D). This analysis 

also revealed a group of genes that were upregulated in PB but exhibited a higher level of 

promoter H3K27me3 (Figure 1C; gray shade) and are therefore not likely to be regulated by 

this histone modification but rather by other epigenetic or transcriptional mechanisms.

To study the role of UTX and JMDJ3 during B cell differentiation, a pharmacological 

inhibitor, GSK-J4, known to inhibit the activity of these enzymes was utilized (69). In this 

system, naïve B cells were differentiated ex vivo with LPS, IL-2, and IL-5 as previously 

described (66).
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Treatment with GSK-J4 promotes PB formation

To examine the effect of the inhibitor-mediated loss of UTX and JMJD3 catalytic activity 

on B cell differentiation, nB were isolated and stimulated ex vivo with LPS, IL-2, and IL-5 

in the presence of 250nM GSK-J4 or DMSO control. After three days of culture, flow 

cytometry analysis revealed a significant increase in the frequency of CD138+ PB in the 

GSK-J4 treated cultures (Figure 2A) with a small but significant increase in the B220+GL7+ 

activated B cells (ActB) (Figure 2B). Importantly, an increase in PB following GSK-J4 

treatment was also observed when compared to the inactive control compound, GSK-J5 

(Figure 2C). To determine whether the observed phenotype was specific to TLR signaling, 

the effect of inhibitor treatment on PB formation was examined following stimulation with 

CD40L, IL-4, and IL-5 that mimic T-cell dependent B cell activation (70). Enhanced B cell 

differentiation was also observed following this mode of stimulation (Figure 2D).

To determine whether the UTX/JMJD3 inhibition affected the ability of cells to secrete 

antibodies, CD138+ PB from the LPS cultures were magnetically enriched after three days 

of ex vivo culture and an equal number of cells was plated in fresh media. Antibody 

secretion was then analyzed by ELISA and revealed no difference in the IgM antibody 

titers between the GSK-J4 and DMSO treated PB (Figure 2E), suggesting that UTX/JMJD3 

regulate the process of B cell differentiation but not the antibody secreting function of PB.

Inhibitor treatment alters B cell transcriptome

To define the mechanism by which treatment with GSK-J4 promotes B cell differentiation, 

RNA-seq was performed on magnetically enriched nB, as well ActB and PB derived from 

GSK-J4 or DMSO cultures at day 3 post LPS, IL-2, and IL-5 stimulation (Supplemental 

Figure 2B). Principal component analysis (PCA) revealed that the activation status was 

the major source of variation as principal component (PC) 1 separated nB from ActB and 

PB. PC2 separated ActB from PB, while PC3 stratified cells based on GSK-J4 treatment 

status (Figure 3A). Consistent with results of PCA, hierarchical clustering of samples and 

differentially expressed genes (DEG) between GSK-J4 and DMSO revealed that samples 

stratified based on cells type rather than treatment status (Figure 3B). Differential expression 

analysis of GSK-J4 and DMSO treated cells (1.5-fold change, FDR <0.05) revealed a 

skewing towards genes downregulated following drug treatment. In the ActB comparison, 

253 genes were downregulated (downDEG) and 106 were upregulated (upDEG). In the PB 

comparison, there were 352 downDEG and 84 upDEG (Figure 3C; Supplemental Table 1). 

Furthermore, a common set of 113 genes was downregulated in both comparisons (Figure 

3D). The observed enrichment for downregulated genes is consistent with inhibition of UTX 

and JMJD3, which in the wild-type setting promote gene expression. GSK-J4 has been 

shown to act, although with weaker activity, on KDM5B and KDM5C, the H3K4me2/3 

demethylases (69, 71). However, inhibition of H3K4me3 demethylases would be predicted 

to result in gene upregulation. Thus, this observation suggests that the inhibitor primarily 

acts on the UTX and JMJD3 demethylase pathway rather than others.

To identify the pathways altered following GSK-J4 treatment, gene set enrichment analysis 

(GSEA) (67) was performed on a ranked gene list for the ActB GSK-J4 v ActB DMSO 

comparison. This analysis revealed downregulation of genes associated with hypoxia, TNF 
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signaling, P53 pathways, and apoptosis (Figure 3E). Examples of genes downregulated 

following inhibitor treatment included Cdkn2a, encoding p16Ink4a and p19Arf, which inhibit 

the G1/S cell cycle transition (72) and regulate p53 stability (73), respectively. Other 

examples of down regulated DEG include Bnip3l, which promotes apoptosis (74), and Pdk1, 

which inactivates pyruvate dehydrogenase, thereby inhibiting the conversion of pyruvate 

into acetyl-CoA (75, 76) (Figure 3F). Despite dysregulation of several apoptotic factors, 

there was no difference in the frequency of apoptotic cells following inhibitor treatment. 

A small but significant increase in necrotic cells at 48hr post stimulation was observed 

(Supplemental Figure 1B and C), but this difference does not explain differences observed in 

the number of plasmablasts formed (Figure 2A and C).

Additionally, cell cycle and proliferation genes were upregulated following inhibitor 

treatment (Figure 3G). Some of the pathways dysregulated have been previously shown 

to be downregulated in the absence of EZH2 (21) and are upregulated as B cells progress 

through cell division and differentiate to PB (19). This suggested that the PB program may 

be initiated early or more strongly in GSK-J4 treated cells. To test this, expression of genes 

that were previously described to constitute a PC transcriptional signature was examined 

in inhibitor treated cells (77). GSEA analysis revealed upregulation of PC-signature genes 

in inhibitor treated ActB and PB (Figure 3H, Figure 3I, Supplemental Figure 1D). Taken 

together, GSK-J4 led to global changes in the B cell transcriptome, indicating a role for 

H3K27 demethylation in regulating the PB transcriptome.

Inhibitor treated cells exhibit increased proliferation

The downregulation of Cdkn2a and the p53 pathway combined with an upregulation of 

genes associated with cell cycle and proliferation following GSK-J4 treatment, led to the 

hypothesis that inhibitor treatment results in enhanced proliferation. To examine whether 

treatment with GSK-J4 altered cell division kinetics, nB were stained with CellTrace Violet 

(CTV) and stimulated ex vivo with LPS, IL-2, IL-5 in the presence of GSK-J4 or DMSO. 

Irrespective of treatment, cultured B cells underwent six cell divisions after three days of 

culture. However, analysis of PB frequency at each division revealed a significant increase 

in PB per division following inhibitor treatment, with PB increasing as early as division four 

(Figure 4A). To examine whether inhibitor treatment altered cell cycle distribution in treated 

cells, at day 3 post LPS stimulation, B cell cultures were pulsed with bromodeoxyuridine 

(BrdU) for 2 hours and analyzed by flow cytometry. GSK-J4 treatment led to a significant 

increase in the frequency of cells in the S phase of the cell cycle (Figure 4B). Further, 

analysis of BrdU by cell division revealed a significant increase in the frequency of BrdU+ 

cells at the early cell divisions (Figure 4C). Overall, while GSK-J4 treatment does not alter 

the total number of cell divisions, it does lead to an increase in actively proliferating cell (S 

phase cell cycle) with a proportional reduction of cells in the G1 phase.

DEG are enriched for genes regulated by H3K27me3

To determine whether inhibition of UTX and JMJD3 predominately affects genes regulated 

by H3K27me3 during B cell differentiation, genes downregulated in PB following GSK-J4 

treatment were overlaid on the scatterplot comparing PB/nB gene expression vs change in 

H3K27me3 enrichment in Figure 1. Consistent with the hypothesis that UTX and JMJD3 
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promote demethylation of H3K27me3 at genes upregulated in PB, several of GSK-J4 

downDEG fell in the “green” quadrant described above. This group includes genes such 

as Slc7a3, which encodes a sodium-independent transporter of cationic amino acids (78, 79) 

(Figure 5A, 5C). Other genes included Cth (80), Lars2 (81), Ddt (82), Fut1, Tmed6 (83), 

Galk1(84), Gstt1 (85), Abcb8 (86), that are involved in various aspects of protein synthesis 

or protein modification, secretion, vesicular trafficking and metabolism. Unexpectedly, the 

majority of the genes downregulated following inhibitor treatment correspond to genes that 

in the wild-type setting gain promoter H3K27me3 and are downregulated in PB (“blue” 

quadrant) (Figure 5A). H3K27me3 levels at GSK-J4 downDEG in the respective quadrants 

was quantified (Figure 5B). Thus, genes downregulated by inhibition of UTX and JMJD3 

are predominately enriched for regions that in the wild-type setting gain H3K27me3 during 

B cells differentiation. Due to the gain in H3K27me3, these genes are likely regulated 

in part by EZH2, which is the counterpart to UTX/JMJD3. In fact, GSK-J4 downDEG 

genes in the “blue” quadrant corresponded to genes that were significantly upregulated in 

EZH2-deficient PB and 29% were defined as DEG (21) (Figure 5C).

Examples of genes that are downregulated following GSK-J4 and have high levels of 

H3K27me3 in wild-type PB include Id3 (inhibitor of DNA-binding/differentiation 3), which 

forms heterodimers with E box proteins to inhibit their DNA binding (87), is normally 

repressed during plasma cell formation with concomitant accumulation of H3K27me3. 

Following GSK-J4 treatment, Id3 expression is super repressed in the PB (Figure 5D 

top). Spib, which regulates the ability of B cells to respond to external stimulation and 

inhibits germinal center B cell and PB formation (88), followed a similar path, normally 

accumulating H3K27me3 in PB and was super repressed in GSK-J4 treated PB (Figure 

5D bottom). Together, these data suggest that inhibition of UTX and JMJD3 leads to 

enhanced repression of a subset of B cell fate genes that gain H3K27me3, thus promoting 

PB formation.

To evaluate whether genes upregulated following inhibitor treatment were enriched for genes 

regulated by H3K4me3, we overlaid genes upregulated in PB following inhibitor treatment 

on a scatterplot comparing PB/nB gene expression (68) versus change in H3K4me3 

enrichment (18) in a manner similar to Figure 5A. A majority of the GSK-J4 upDEG 

corresponded to genes that exhibited minimal, if any, change in H3K4me3 methylation 

during B cell differentiation (Figures 5F and 5G). Thus, the data strongly suggest the 

genes upregulated following inhibitor treatment are the result of inhibiting H3K4me3 

demethylases.

DISCUSSION

This study investigated the role of histone H3K27me3 demethylation by UTX and JMJD3 

on B cell differentiation through the use of GSK-J4, a pharmacological inhibitor that 

functions as a competitor for their substrate α-ketoglutarate (69). GSK-J4 was previously 

shown to display high specificity for UTX and JMJD3 and H3K27me3 demethylation and 

acted at a lower specificity towards H3K4me3 demethylases (69, 71). GSK-J4 treatment of 

nB cells stimulated with LPS, IL-2, and IL-5 led an increase in the frequency of PB and 

dysregulation in gene expression. Despite promoting PB formation, GSK-J4 treatment had 
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no influence on the ability of treated cells to secrete antibodies. At the molecular level, 

GSK-J4 treatment during the differentiation process led to more genes being down regulated 

than expected. This observation suggests that the changes are likely driven by inhibition of 

UTX and JMJD3, which by removal of the inhibitory histone mark H3K27me3 normally 

promote gene expression. Some of these dysregulated genes included those associated with 

hypoxia, signaling, apoptosis, and P53 pathways, including cell cycle inhibitor Cdkn2a 
(72). The transcription factors SPIB and ID3, which are known PB repressors (70, 88), 

were also downregulated and may account for the upregulation of PC-signature genes. 

Other genes found to be upregulated by GSK-J4 treatment during the differentiation 

process were associated with cell cycle and proliferation. These changes in gene expression 

were correlated with an increase of actively proliferating BrdU+ cells following GSK-J4 

treatment of ex vivo differentiated nB. Thus, targeting cell cycle inhibitors and PB repressors 

are in part responsible for the increases in PB appearing following inhibition of these 

demethylases.

Epigenetic remodeling is necessary during B cell differentiation (18, 20, 21), and the 

histone modification H3K27me3 shows dynamic changes at thousands of loci with sites 

both gaining and losing the mark. A majority of GSK-J4 down modulated DEG were 

associated with changes in promoter localized H3K27me3 – although other changes can be 

observed in the gene body – during the differentiation process. This observation is consistent 

with the active and direct demethylase activities of UTX and JMDJ3 in which a subset 

of GSK-J4 downDEG corresponded to genes that normally lose promoter H3K27me3 and 

gain expression as B cells differentiate. Surprisingly, a number of GSK-J4 down modulated 

DEG matched genes that normally gain promoter H3K27me3 and are downregulated as B 

cells differentiate to PB. This included transcription factors known to repress the PB fate. 

Thus, UTX and JMJD3 might function as the rheostat or counterbalance for H3K27me3 

by counteracting the activity of EZH2, the H3K27 methyltransferase. Taken together, these 

data suggest that the level of promoter H3K27me3 and gene expression during B cell 

differentiation is modulated by three distinct mechanisms: 1) direct control of a gene by 

either UTX/JMJD3 or EZH2; 2) a balanced control in gene expression in which both UTX/

JMJD3 and EZH2 compete for the same genes, resulting in fine tuning of gene expression; 

or 3) indirect control of gene expression through passive loss of H3K27me3 through cell 

division in which EZH2 is no longer recruited to a locus.

There is growing evidence that the balance in the levels of histone modifications are 

necessary for proper B cell differentiation. Methylation of H3K4 is associated with gene 

activation and has been shown to play a critical role in B cells (89). Deletion of Kmt2d, 

the H3K4 methyltransferase, led to an increase in germinal center B cells as a result of 

enhanced proliferation capacity of follicular B cells lacking Kmt2d (90). Deletion of LSD1, 

the H3K4me1/2 demethylase, resulted in the opposite phenotype. B cells lacking LSD1 

showed reduced proliferation and differentiation following T cell independent stimulation 

(68), as well as reduced germinal center B cells (91). In a similar scenario, deletion of 

EZH2 resulted in reduction in germinal center and plasma cell formation and reduced 

proliferation (21, 30, 31); whereas, here, inhibition of UTX and JMJD3 led to increased PB 

formation and enhanced cell proliferation. Together, these results suggest that balanced level 
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of opposing histone modifications is necessary for maintaining B cell fate and controlling 

cell proliferation.

The importance of balanced levels of histone modification is well exemplified by the 

fact that mutations in various epigenetic modifiers are frequently found in cancer (92). 

In particular, gain of function mutations in EZH2 have been identified in various 

human malignancies, including DLBCL, which results in increased promoter H3K27me3 

methylation at cell cycle checkpoint genes including CDKN1A and genes associated with 

germinal center exit (30). However, mutations in UTX are typically loss-of-function or 

deletion, which leads to a failure to demethylate H3K27me3. This results in increased levels 

of H3K27me3, possibly mimicking EZH2 hyperactivation (61, 93). Furthermore, attempts to 

re-establish a homeostatic level of this histone modification have proved to be an effective 

therapeutic avenue for human cancers as EZH2 inhibitors are in clinical use and ongoing 

trials (94). A recent study has also proposed the use of EZH2 inhibitors for malignancies 

with UTX loss-of-function mutations. Treatment with EZH2 inhibitors led to reduced 

viability and cell cycle arrest of multiple myeloma cell lines lacking UTX and resulted 

in reduced tumor burden in vivo (62). Taken together, the balanced level of H3K27me3 is 

necessary to maintain homeostatic and prevent development human malignancies.

The role of UTX and JMJD3 has been examined in various cells types, including the 

hemopoietic lineage. Interestingly, several studies revealed demethylase independent roles 

for these enzymes in addition to their known role in active demethylation. The demethylase 

activity of UTX is required for the formation of invariant natural killer T cells; however, in 

mouse embryonic stem cells UTX cooperates with MLL4 complex and p300 to convert 

enhancers from an inactive to active state. This action occurs in the absence of the 

demethylase activity of UTX. In this setting, UTX promotes and enhances the activity of 

its binding partners to promote H3K4me1 and H3K27ac at enhancers (40). The inhibitor 

utilized in this study targets the catalytic activity of UTX and JMJD3 thus allowing for 

a targeted analysis of active H3K27me3 demethylation by both enzymes during B cell 

differentiation.

While the presented data strongly suggest that the observed increase in PB is the result of the 

inhibition H3K27me3 demethylases, the GSK-J4 has also been shown to act on other histone 

demethylase (69, 71). As such, it is remains possible that the observed PB following GSK-J4 

is a cumulative effect of inhibiting multiple demethylases, including UTX and JMDJ3. 

The development of new compounds specifically targeting the H3K27me3 demethylases is 

necessary to more definitely address the role of inhibition of UTX and JMJD3 in B cell 

differentiation.

Mutations in UTX and JMJD3 have been reported in various cancers and several studies 

identified GSK-J4 as a potential therapeutic treatment for a subset of malignancies driven 

by gain of function mutations in these genes (64, 95, 96). Despite the promising effects of 

GSK-J4 as a cancer treatment, this drug is not currently used in any clinical trials, likely 

due to its non-specific activity towards other demethyalses. The work presented here would 

suggest that targeted UTX/JMJD3 inhibition could result in increased PB and PC formation 

that may exacerbate normal immune responses in treated patients.
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In summary, the work described here demonstrates an important balance in the control of 

gene expression potentially regulated by the placement and removal of repressive histone 

modifications at histone H3K27. The dynamic changes in this histone modification at the 

targeted loci are likely critical for maintaining the cell fates as a B cell or as plasma cells 

following their complex differentiation process.
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nB naïve B cells

ActB activated B cell

PB plasmablast

PC plasma cell

CTV Cell Trace Violet
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Figure 1 –. H3K27me3 demethylases are upregulated during B cell differentiation.
(A) Expression in mRNA/cell of Utx and Jmjd3 in control nB and PB (Haines et al. 2018). 

(B) Expression in mRNA/cell of Utx and Jmjd3 per division (Barwick et al. 2016). (C) The 

log2FC change in gene expression between PB and nB (Haines et al. 2018) was plotted 

against the log2FC change in H3K27me3 between PB and nB (Guo et al. 2018). The total 

number of unique genes in each quadrant is indicated. (D) Quantification of H3K27me3 

levels in PB and nB
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Figure 2 –. GSK-J4 treatment leads to an increase in the frequency of CD138+ plasmablasts.
Representative plots and quantitation of the frequency of (A) CD138+ PB and (B) 

CD138−B220+GL7+ ActB after 3 days of ex vivo stimulation with LPS, IL-2, IL-5 in 

the presence of 250 nM GSK-J4 or DMSO control. (C) Representative plots and quantitation 

of the frequency of CD138+ PB after 3 days of ex vivo stimulation with LPS, IL-2, IL-5 

in the presence of 250 nM GSK-J4, 250 nM GSK-J5 (inactive compound), or DMSO. (D) 

Frequency of CD138+ PB at day four of ex vivo culture with CD40L, IL-4, IL-5 in the 

presence of 250 nM GSK-J4 or DMSO. (E) IgM antibody titers after 2.5 hr incubation of 

magnetically enriched PB from DMSO or 250 nM GSK-J4 treated cultures. Data are from 

two independent experiments with 3–4 mice each. Significance was determined by paired 

two-tailed Student’s t test.
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Figure 3 –. Inhibition of UTX and JMJD3 leads to global changes in gene expression.
RNA sequencing was performed on magnetically enriched ActB and PB from DMSO or 

250 nM GSK-J4 treated cultures as well as naïve B cell controls. (A) Principal component 

analysis of 10, 031 genes differentially expressed in a least one comparison RNA-seq data. 

The percentage in parentheses is the proportion of variation explained by each component 

and circles represent 99% confidence intervals for each group. (B) Hierarchical clustering 

of samples and DEG (FDR < 0.05, 1.5-fold change) between inhibitor GSK-J4 and DMSO 

cells. (C) Volcano plots of DEG (FDR < 0.05, 1.5-fold change) between GSK-J4 and 
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DMSO treated ActB (left) and PB (right). (D) Venn diagram representing the overlap of 

ActB and PB downDEG between inhibitor and DMSO treated cells. (E) Hallmark gene 

sets downregulated upon treatment with GSK-J4 treated ActB. GSEA was performed on a 

ranked gene list comparing ActB GSK-J4 vs DMSO treated cells. (F) Examples of genes 

downregulated in GSK-J4 treated cells. (G) Hallmark gene sets upregulated in GSK-J4 

treated ActB. (H) GSEA for a previously defined ASC-signature genes (Shi et al. 2015) 

in GSK-J4 treated ActB (left) and PB (right) versus control. (I) Heatmap showing the 

expression of the top 25 DEG from the ASC-signature gene set from (H) in GSK-J4 and 

DMSO treated ActB and PB. Data represent the mean of three biological replicates per 

group. * FDR < 0.05 and >1.5 fold change, # FDR < 0.05 with <1.5 fold change
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Figure 4 –. Inhibition of UTX and JMJD3 promotes cell proliferation
(A) Representative plots of CD138 versus CTV after three days of ex vivo culture (top) and 

quantification of the frequency of CD138+ plasmablasts per cell division (bottom) at day 3 

of ex vivo stimulation. (B) Frequency of cells at G1 (2N, BrdU-), S (BrdU+), and G2/M 

(4N, BrdU-) phases of the cell cycle following two-hour incubation with BrDU at day 3 of 

ex vivo stimulation in the presence of GSK-J4 or DMSO. (C) Representative plots of BrdU 

versus CTV for GSK-J4 and DMSO treated cells (top) with quantification of BrdU+ cells 

per division (bottom). Data are summary of two independent experiments with 3–4 mice 

each. Significance was determined by paired two-tailed Student’s t test (B) and two-way 

ANOVA followed by Sidak’s multiple comparisons test A,C). * p-value < 0.05, ** p-value 

<0.001.
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Figure 5 –. DEGs are enriched for genes regulated by H3K27me3 levels.
(A) The log2FC change in gene expression PB and nB (Haines et al. 2018) was plotting 

against the log2FC change in H3K27me3 between PB and nB (Guo et al. 2018) as in Figure 

1. GSK-J4 downDEG in PB comparison were represented by red dots. (B) Quantification of 

H3K27me3 levels in wild type nB and PB at GSK-J4 downDEG. (C) Average expression of 

GSK-J4 downDEG in the “blue” quadrant in A in EZH2-sufficient and -deficient PB (Guo 

et al. 2018). (D, E) Examples of GSK-J4 downDEG regulated by H3K27me3 levels. * FDR 

< 0.05 and >1.5 fold change, # FDR < 0.05 with <1.5 fold change. (F) The log2FC change 

in gene expression PB and nB (Haines et al. 2018) was plotting against the log2FC change 

in H3K4me3 between PB and nB (Scharer et al. 2018). GSK-J4 upDEG in PB comparison 

were represented by red dots. (G) Quantification of H3K4me3 levels in wild type nB and PB 

at GSK-J4 upDEG.
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