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Abstract

Background: Alzheimer’s disease (AD) is a progressive
neurodegenerative disease. AD is the main cause of de-
mentia worldwide and aging is the main risk factor for
developing the illness. AD classical diagnostic criteria rely
on clinical data. However, the development of a biological
definition of ADusing biomarkers that reflect the underling
neuropathology is needed.
Content: The aim of this review is to describe the main
outcomes when measuring classical and novel biomarkers
in biological fluids or neuroimaging.
Summary: Nowadays, there are three classical biomarkers
for the diagnosis of AD: Aβ42, t-Tau and p-Tau. The diag-
nostic use of cerebrospinal fluid biomarkers is limited due
to invasive collection by lumbar puncture with potential
side effects. Plasma/serum measurements are the gold
standard in clinics, because they are minimally invasive
and, in consequence, easily collected and processed. The
two main proteins implicated in the pathological process,
Aβ and Tau, can be visualized using neuroimaging tech-
niques, such as positron emission tomography.
Outlook: As it is currently accepted that AD starts decades
before clinical symptoms could be diagnosed, the oppor-
tunity to detect biological alterations prior to clinical
symptoms would allow early diagnosis or even perhaps
change treatment possibilities.

Keywords: Alzheimer’s disease; β-amyloid; blood; cere-
brospinal fluid; cognitive deficit; mild cognitive impair-
ment; neuroimaging.

Introduction

Alzheimer’s disease (AD) is a progressive neurodegenerative
disease. AD is the main cause of dementia worldwide and
aging is the main risk factor for developing the illness. It is
estimated that nowadays, 46.8 million people suffer from
dementia worldwide, and the prevalence will increase due to
population aging in the world, reaching by 2030 74.7 million
people. Only four drugs are currently approved by the FDA to
treat the illness: three cholinesterase inhibitors (donepezil,
rivastigmine and galantamine) and an uncompetitive
N-methyl-D-aspartate (NMDA) receptor modulator (mem-
antine). Unfortunately, none of these available drugs slow or
stop theprogressionof thedisease.Therefore,AD isbecoming
one of the greatest sanitary challenges of this century.

Clinically, AD is defined by decline of memory and
cognitive function. In addition, most patients suffer from
neuropsychiatric symptoms called “behavioral and psy-
chological symptoms of dementia”, such as depression,
over-activity, psychosis or aggressive behavior. Histological
features ofADare senile plaques,madeupof accumulations
ofβ-amyloid (Aβ) peptide, andneurofibrillary tangles (NFT),
which are fibrillar deposits of hyperphosphorylated Tau
protein (p-Tau). Other pathological events that seem to play
a key role in the disease include synaptic dysfunction,
inflammation or vascular dysregulation (Figure 1).

AD classical diagnostic criteria rely on clinical data.
However, the development of a biological definition of AD
using biomarkers that reflect the underling neuropa-
thology is needed. In a complex syndrome, such as in AD,
biomarkers would help in early diagnosis, staging of the
disease, assessing prognosis and response to treatment. In
addition, biomarkers could help to understand mecha-
nisms of disease and develop new treatment strategies.

According to the latest guidelines of the National
Institute of Aging and Alzheimer Association (NIA-AA) [1],
the term AD is applied whenever there is biomarker evi-
dence of presence of Aβ plaques and NFT. Currently
(Figure 2), the amyloid-Tau-neurodegeneration (AT(N))
classification define “A” biomarkers as amyloid positron
emission tomography (PET), cerebrospinal fluid (CSF)
Aβ42 and CSF Aβ42/Aβ40, “T” refers to Tau PET and CSF
p-Tau, and “N” is shown by structural magnetic resonance
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imaging, fluorodeoxyglucose (FDG), PET, CSF total Tau
(t-Tau) and neurofilament light chain protein (NFL) [2]. The
aim of this review is to describe the main outcomes when
measuring classical and novel biomarkers in biological
fluids or neuroimaging.

Biomarkers in fluids: cerebrospinal
fluid

CSF reflects metabolic processes in the brain owing to direct
contact between the brain and CSF and consequently, it has
beenbecomeauseful fluid forADdiagnosis. CSF biomarkers
could be consideredmore attractive than plasma biomarkers
as they show better correlation with 11C-Pittsburgh com-
poundB (PIB) PET imaging data andpresentmore predictive
values [3]. They also improve the certainty of diagnosis,
mainly in prodromal phase or atypical presentations [4].
Nowadays, there are three classical CSF biomarkers for the
diagnosis of AD: Aβ42, t-Tau and p-Tau.

AD patients vs. healthy controls (HC) and
other central nervous system (CNS)
pathologies

Aβ peptides such us Aβ42, Aβ40, Aβ37, Aβ38, sAPPα and
sAPPβ, were the first established molecular biomarkers for
AD [5]. Among them, Aβ42 specially correlates with phys-
iological and pathological symptoms with patients having
lower CSF levels of Aβ42 compared to HC due to cortical
amyloid depositions. However, plasma levels do not fulfill
this association [3]. On the other hand, low levels of Aβ40
have also been shown to be related with AD. Nevertheless,
its little size effect limits its use in diagnosis for AD.
Although the differences are significant between AD pa-
tients and control cohorts, they are minimal. Moreover,
Aβ37 and Aβ38 could help to distinguish AD from other
close-related forms of dementia [6] but they are not really
useful for clinical diagnosis alone as they show no signif-
icant differences between AD and controls in several
studies [3].

Figure 1: Biological markers of
histopathological alterations in AD.
Senile plaques, made up of accumulations
of β-amyloid (Aβ) peptide, neurofibrillary
tangles (NFT) formed by fibrillar deposits of
hyperphosphorylated Tau protein (p-Tau),
neuroinflammation, synaptic dysfunction
and neurodegeneration.

Figure 2: The AT(N) (amyloid-Tau-
neurodegeneration) classification define
“A” biomarkers as amyloid positron
emission tomography (PET), cerebrospinal
fluid (CSF) Aβ42 and CSF Aβ 42/40, “T”
refers to Tau PET and CSF p-Tau, and “N” is
shown by structural magnetic resonance
imaging, fluorodeoxyglucose (FDG) PET,
CSF total Tau (t-Tau) and neurofilament light
chain protein (NFL).
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sAPPα and sAPPβ are cleavage products of amyloid
precursor protein (APP). sAPPα levels seems to be lower
in atypical Parkinsonian syndrome compared with AD or
Parkinson’s disease (PD), suggesting an alteration of
APP metabolism [7]. However, sAPPα and sAPPβ are not
really useful in clinical diagnosis alone, as the differ-
ences between AD patients and HC are not significant but
especially sAPPα when taken together with other CSF
biomarkers could help increase diagnosis accuracy [3].
t-Tau and p-Tau (Thr 181) were the next CSF biomarkers
accepted. These markers are related to memory com-
plaints and are present in higher levels in the CSF of AD
patients. Mechanistically, t-Tau could be elevated ac-
cording to cortical neuronal loss and p-Tau elevation
would reflect cortical tangle formation. It is to note that
p-Tau is characteristic of AD and helps to distinguish AD
from other forms of dementia [3].

When these three markers (Aβ42, t-Tau and p-Tau)
are measured together, they show better specificity and
sensitivity than when measured alone [5]. Alterations in
these markers, although to a lesser extent, are also pre-
sent in mild cognitive impairment (MCI) compared to
stable mild cognitive impairment subjects [5]. They are
also able to predict the conversion of MCI to AD. The
main problem when using these biomarkers is that, due
to the inter-laboratory variability, there is a lack of
consensus regarding limits to consider “low Aβ42 levels”
and “high t-Tau levels” [3].

In addition to these classical biomarkers, new bio-
markers are emerging in the literature [5]. Growing interest
is developing toward neurodegeneration related markers,
such as NFL. NFL is the light protein of neurofilament and,
with either themediumor the heavy counterpart, makes up
neurofilament bundles that determine axonal caliber and
conduction velocity [8]. It is abundantly expressed in
myelinated axons and is promptly released into the CSF
and blood under axonal distress and degeneration. High
level of NFL may reflect ongoing damage and demyelin-
ation [9]. NFL levels in several studies present significance
and a big size effect indicating that axonal destruction is
prominent in AD [5]. These high levels correlate with
greater disease severity but not with disease duration.
Moreover, NFL may contribute to increase diagnosis ac-
curacy as it helps differentiating dementia with Lewy
bodies (DLB) and AD from PD dementia as in DLB and AD
there is an increase of NFL associated [7]. Increased age has
been associated with increased NFL levels too [10].

YKL-40, a marker related to glial and astrocytic activa-
tion, and other proteins like carnosinase I, chromogranin A
and neural cell adhesion molecule (NCAM), could be helpful
in early diagnosis [3] but the effect size is moderate [5].

By contrast, monocyte chemoattractant protein-1 (MCP-1)
or albumin ratio have not proven to be useful as diagnostic
markers [5].

There are also some studies that show that α-synuclein
is slightly higher in AD patients [11]. This hypothesis is
contrary to the fact that CSF α-synuclein levels are lower in
PDpatientswhen comparing to controls. It should be noted
that many of the studies suggesting this rise in CSF
α-synuclein levels in AD are studies where patients were
diagnosed according to clinical criteria alone so it is not
possible to know if there was present a comorbid Lewy
bodies pathology.

Finally, there are other new promising CSF biomarkers
such as neurogranin or TREM-2. In the last five years, a few
studies have appeared showing that the neuron-specific
postsynaptic protein neurogranin (which is mainly
expressed in regions affected in AD like cortex, hippo-
campus and amygdala) is higher in AD patients and this
increase seems specific of AD as it is not seen in other
neurodegenerative diseases. This increase may reflect
synapse degeneration [12]. On the other hand, recent
studies show that TREM2 which is an innate immune re-
ceptor expressed on the surface of microglia and is pro-
teolytically processed and released as a soluble fragment
(sTREM2) is increased in AD. Moreover, increased CSF
sTREM2 levels have been associated with higher CSF t-Tau
and p-Tau (Thr-181) [13]. Although their only a few studies
published, the literature suggests that levels may increase
early and peak prior to dementia.

To sum up (Table 1), the main CSF biomarkers to date
that have shown more consistency and should be used in
clinical practice and research are t-Tau, p-Tau, Aβ42 and
these markers have reached 85–90% accuracy. In addition
to these classical markers, and according to literature, it is
suggested that NFL could be included as a new biomarker.
Moreover, neurogranin seems a very promising and spe-
cific CSF biomarker with a large effect size butmore studies
are needed to check accuracy and usefulness.

AD patients vs. MCI patients

When comparingADpatients vs.MCI patients (Table 2), the
useful of the biomarkers above-mentioned vary. Only t-Tau
and p-Tau which keep being higher in AD patients, main-
tain a large effect size. On the other hand, Aβ42 levels
remain lower in AD patients but the effect size is smaller.
However, Aβ40 that presented a small decrease in CSF
levels when comparing to HC, shows no differences
comparing to MCI patients and Aβ38 that showed no
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differences when comparing AD patients vs. HC shows a
negligible increase when comparing to MCI patients [5].

Finally, neurogranin and YKL-40 levels were also
higher with a moderate effect size in AD patients when
comparing to MCI [14] but we could only find four studies
to date.

In conclusion, when comparing AD patients and MCI
patients, the best biomarkers are p-Tau and t-Tau, but
neurogranin and YKL-40 could also be really helpful.

Biomarkers in fluids: blood

The diagnostic use of CSF biomarkers is limited due to
invasive collection by lumbar puncture with potential side
effects. In this context, efforts are directed to discover
reliable blood biomarkers. Plasma/serum measurements
are the gold standard in clinics, because they areminimally
invasive and, in consequence, easily collected and pro-
cessed [15]. Moreover, patients can be followed up and

Table : Biomarkers in AD.

Biomarkers Description CSF Plasma Usefulness in diagnostic

Aβ Marker of APP metabolism. ↓ Levels in AD patients.
Great effect size.

No differences Recommended for CSF
diagnosis.

Aβ Marker of APP metabolism. ↓ Levels in AD patients.
Small effect size.

No differences Not really useful alone.

Aβ Marker of APP metabolism. No differences between
groups.

Not really useful alone.
May help to distinguish AD
from other close-related
forms of dementia.

sAPPα Cleavage product of APP. No differences between
groups.

Not really useful alone.

sAPPβ Cleavage product of APP. No differences between
groups.

Not really useful alone.

t-Tau and p-Tau
(Thr )

Markers related to memory
complaints.

↑ Levels in AD patients.
Large effect size.

↑ t-Tau levels in AD
patients. Large effect size

P-tau is characteristic of AD.
Recommended for CSF
diagnosis.

NFL Marker related to
neurodegeneration.

↑ Levels in AD patients.
Large effect size.

Recommended for CSF
diagnosis.

NSE Marker related to
neurodegeneration.

↑ Levels in AD patients.
Moderate effect size.

No differences Could be useful for CSF
diagnosis.

VLP- Marker related to
neurodegeneration.

↑ Levels in AD patients.
Moderate effect size.

Could be useful for CSF
diagnosis.

HFABP Marker related to
neurodegeneration.

↑ Levels in AD patients.
Moderate effect size.

No differences Could be useful for CSF
diagnosis.

Albumin-ratio Marker for BBB function. ↑ Levels in AD patients.
Small effect size.

Not really useful alone.

YKL- Marker for glial activation. ↑ Levels in AD patients.
Moderate effect size.

↑ Levels in AD patients.
Large effect but not
significant.

Could be useful for CSF
diagnosis.

MCP- Marker for glial activation. ↑ Levels in AD patients.
Small effect size.

No differences Not really useful alone.

GFAP Marker for glial activation. No differences between
groups.

Not really useful alone.

Neurogranin Marker for synapse
degeneration.

↑ Levels in AD patients.
Large effect size.

Specific for AD.
Very promising but few
studies published.

sTREM Marker related to
neurodegeneration.

↑ Levels in AD patients.
Moderate effect size.

Could be useful for CSF
diagnosis but few studies
published.

α-Synuclein Presynaptic neuronal
protein.

↑ Levels in AD patients.
Negligible effect size.

Not really useful alone.Most
of studies are performed
with probable AD patients.

↑, increase; ↓, decrease. Data obtained from Janelidze et al. [], Majbour [], Olsson et al. [], Suárez-Calvet [] and Wellington et al. [].
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screened over several years. However, developing blood
biomarkers for AD has proven difficult and more chal-
lenging than CSF for several reasons. Firstly, changes are
very small and heterogeneous because plasma/serum data
reflect a broad spectrum of changes; not all necessarily
related to AD. Secondly, only a fraction of brain proteins
gets into the bloodstream and these have to bemeasured in
amatrix containing high levels of plasma proteins, such as
albumin and IgG, introducing an important risk of inter-
ference in analytical methods [16]. Third, in addition to
dilution, brain proteins released into blood may be
degraded by proteases, metabolized in the liver or cleared
by the kidneys, which will introduce a variance that is
unrelated to brain changes and is difficult to control [17].
Additionally, with the exception of certain blood bio-
markers, like plasma Aβ [18] and plasma Tau [19], few
studies have directly explored the relationship between
CSF proteins and their blood-based analogs in the same

cohort; therefore, the extent to which peripheral molecular
changes accurately reflect CNS dynamics has yet to be
characterized at large scale [20].

Aβ levels

While numerous papers have described a high concor-
dance with amyloid PET measures of plaque burden and a
marked decrease in Aβ42 in CSF of AD patients, studies on
plasmaAβ42 as a biomarker have been disappointing, with
contradictory results. In this sense, different studies have
shown that plasma Aβ42 and Aβ40 levels can be increased,
reduced or even unchanged when AD and control in-
dividuals are compared [21, 22]. In addition, although
previous longitudinal studies had shown that high plasma
Aβ42 levels are a risk factor for developing AD [23], others
have associated low plasma Aβ42/Aβ40 ratios with
increased imminent risk for MCI and AD [24]. Thus, there is
a general agreement that this factor is nor sensitive neither
specific for early diagnosis [5].

Moreover, there seems to be no correlation between
CSF and plasma Aβ levels [25], supporting the hypothesis
that plasma Aβ levels reflect peripheral Aβ generation from
other tissues more than AD brain pathology. Indeed, Aβ
levels in blood fluctuate over time and among individuals
[15]. Besides, it binding to other proteins and thus
becoming trapped [26], plasma Aβ expression is influenced
by medications [27] and, noteworthy, blood platelets
contain high amounts of Aβ, which directly affects Aβ
plasma levels [28].

In addition, the poor disease association might also be
related to analytical shortcomings using ELISAmethods or
other standard immunoassays [29]. Some studies have
described that, due to its hydrophobicity, Aβ peptides
interact with many proteins of the plasma matrix such as
albumin, α2-macroglobulin or lipoproteins among others
[26]. This could cause epitope masking, hindering the
recognition of up to 50% of these amyloid peptides in the
immunoassays [30]. Therefore, this matrix effect could
affect the reliability of Aβ peptide quantifications in an
individual. In this context, Zetterberg’s group developed in
2011, a novel method based on the single-molecule array
(Simoa) technique for measurement of Aβ42 in plasma [31].
This technique is based on immunocapture of the protein
biomarker on magnetic beads, followed by the addition of
enzyme-labeled detection antibody, and allows the exact
quantification of Aβ42 with high sensitivity reducing ma-
trix interferences. The Swedish BioFINDER cohort study
tested this assay and found significantly lower plasma
Aβ42/Aβ40 ratio in both MCI and AD cases as compared

Table : Biomarkers in MCI-AD and MCI-Stable patients.

Biomarkers CSF Plasma Usefulness in
diagnostic

Aβ ↓ Levels in AD
patients. Smaller
effect size than
between patients
with AD and
controls.

No
differences.

Recommended
use.

Aβ No differences. ↑ Levels in AD
patients.
Negligible
size effect.

Not really useful.

Aβ ↑ Levels in AD
patients.
Negligible effect
size.

Only two studies
published.
Small effect size.

sAPPα No differences. Not really useful.
sAPPβ No differences. Not really useful.
t-Tau and
p-Tau (Thr
)

↑ t-Tau and p-Tau
levels in AD pa-
tients.
Large effect size.

Recommended
use.

Neurogranin ↑ Levels in AD
patients.
Moderate effect
size.

Promising rela-
tive new
biomarker.
Few studies
published.

YKL- ↑ Levels in AD
patients.
Moderate effect
size.

Promising rela-
tive new
biomarker.
Few studies
published.

↑, increase; ↓, decrease; MCI, mild cognitive impairment. Data
obtained from Janelidze et al. [] and Olsson et al. [].
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with controls [32]. Further, the same authors also devel-
oped an immunoprecipitation (IP) mass spectrometry (MS)
selected reaction monitoring method for quantification of
Aβ42 and Aβ40 in plasma. By using this technique, in a
small pilot clinical study based on clinically diagnosed
cases, only a trend for a reduction onboth plasmaAβ42 and
the Aβ42/Aβ40 ratio was observed in AD [33]. Interestingly,
using a similar IPMS method, significantly lower Aβ42
concentration and Aβ42/Aβ40 ratio were found in amyloid
PETpositive compared with PET negative cases [34].

Additional MS-based studies suggest that a ratio of a
certain APP fragment (APP669-711) to Aβ42 or Aβ40/Aβ42
in plasma identifies Aβ-positive individuals with high
sensitivity and specificity [35]. Specifically, plasma
APP669-711/Aβ42 and Aβ40/Aβ42 ratios were higher in
Aβ-positive than in Aβ-negative individuals [35]. These
promising results encourage for further studies in larger
clinical cohorts directed to evaluate plasma Aβ as a
screening tool for brain amyloidosis and AD.

Tau protein

Considering all plasma and serum biomarkers, t-Tau is the
only that discriminates patients with AD from controls in
most of the studies performed [5] showing aminor increase
in plasma Tau in AD patients, although with too large
overlap with controls to be diagnostically useful [19].
Interestingly, longitudinal data have showed significant
correlations between plasma tau levels and future cogni-
tive decline, as well as increases in atrophy measured by
MRI and in hypometabolism measured by FDG-PET during
the follow-up [19]. Noteworthy, tau protein in CSF has been
found to be present as truncated fragments [36], thus it is
possible that the development of assays based on specific
antibodies for these Tau fragments will improve perfor-
mance. Alternatively, measurement of t-Tau or p-Tau in
neuron-enriched exosome preparations may improve per-
formance for Tau as a blood biomarker [37], but further
studies are needed to validate this finding.

NFL protein

Nowadays, it is the most replicated blood biomarker for
AD. The first Simoamethod for quantification of the axonal
NFL protein in blood samples was published in 2016 [38].
Indeed, many studies have shown higher NFL concentra-
tions in patients with AD compared with age-matched
control subjects [39] and other studies have described that

blood NFL quantification could be used as a biomarker of
neurodegeneration in the preclinical stage of AD [40].

Interestingly, while the change in the MCI group has
been shown to be less pronounced, plasmaNFLwas highest
inMCI cases with positive amyloid PET scans, and predicted
faster cognitive decline, higher rate of future both brain at-
rophy (measuredbyMRI) andhypometabolismasmeasured
by FDG-PET [39]. Furthermore, in familial AD studies, NFL
appears to be altered around one decade before symptom
onset [41] with levels correlating with expected estimated
year of symptom onset as well as both cognitive and MRI
measures of disease stage [40].

Nevertheless, it is important to note that NFL is not a
specific feature for AD. Indeed, increased levels are found
in many other neurodegenerative disorders, such as fron-
totemporal dementia, progressive supranuclear palsy,
corticobasal syndrome, inflammatory conditions or acute
traumatic brain injury [42]. Therefore, although the diag-
nostic specificity of NFL is lacking, the semiautomated
measurement of NFL in blood offers the possibility of
multiple sample collections tomonitor disease progression
and potentially treatment response. Another possible
future application for plasma NFL is as a simple, nonin-
vasive and cheap screening test, at the first clinical eval-
uation of patients with cognitive disturbances, primarily to
rule out neurodegeneration.

Image biomarkers: PiB PET, FDGPET
and MRI

Imaging technologies have enabled a much deeper
comprehension of the complexly inter-related pathophys-
iological mechanisms underlying AD. The two main pro-
teins implicated in the pathological process, Aβ and Tau,
can be visualized using PET. Furthermore, the local impact
of neurodegeneration can also be minutely characterized:
defects in brain glucose metabolism, regional tissue atro-
phy and brain network disruption can be assessed with
PET, structural magnetic resonance imaging (MRI), and
functional MRI, respectively. Thus, carefully extracting
data from imaging the spatiotemporal dynamics of the
pathophysiology of AD should offer further insights on the
biology and assessment of the evolution of the disease in
concrete patients.

Amyloid-PET

Based on radiopharmaceuticals having a marked speci-
ficity and sensitivity for binding to amyloid plaques, such
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as PIB or 18F-florbetapir, this technique permits the visu-
alization of aggregated forms of Aβ (being unable to detect
the more pathogenic oligomeric soluble forms). Notably,
there is a broad consensus that a marked increase in Aβ
accumulation occurs in the AD brain. Mapping brain Aβ
has revealed that large areas in the medial and lateral as-
sociation cortex are especially prone to Aβ deposition even
in individuals without dementia [43]. Importantly, the first
stage in the development of AD seems to occur with Aβ
deposition in themedial parietal cortex. Indeed, in patients
suffering from autosomal-dominant Alzheimer’s disease
(ADAD), it seems that Aβ deposition takes place in the
striatum and medial temporal lobe (MTL) up to 20 years
before disease onset [44], and in the case of AD on a
background of aging, Aβ deposition begins in the medial
parietal and frontal cortex [43]. Importantly, Aβ accumu-
lation takes place throughout the association cortex, but
correlates very poorly with symptoms [45]. It is worthy to
note that amyloid-PET might be the only neuroimaging
technique in which more or less robust cut-points for AD
are flourishing: a profoundly exhaustive study comparing
diverse cut-point-establishingmethods has pointed that an
amyloid-PET universal centiloid value of 19 seems to be a
well determined cut-point in AD [46].

Tau-PET

The relative newness of Tau-PET ligands implies that not
much longitudinal studies regarding Tau accumulation
have been performed. However, following a first generation
of Tau tracers (e.g. 18F-flortaucipir) whose major problem
was off-target binding, a second generation was developed
(e.g. 18F-RO-948) and currently some studies are shedding
further light on the spatiotemporal dynamics of Tau accu-
mulation. Although the timing and physical location of Tau
pathology are uncertain, it might develop from the MTL:
significantly increased Tau tracer retention levels have been
found in various regions of patients suffering from AD,
including the MTL, inferior lateral temporal, posterior
cingulate and lateral parietal regions [47, 48]. The use of
second-generation Tau tracers has allowed to confirm that
ADpatients exhibit a higher tracer signal inmedial temporal
areas as well as throughout the posterior cingulate, lateral
parietal and occipital lobes and prefrontal cortex [49].
However, both experimental and clinical validation of Tau
tracers are still very scarce [50], and the amount of hyper-
phosphorylated Tau present in the brain below the detect-
able threshold is not known yet. These are some of the
reasons why a reliable cut-point for Tau-PET has not been
produced for the diagnosis of AD [46].

FDG-PET

Taking advantage of the glucose analog FDG, the use of
PET allows mapping brain glucose metabolism. Thus, it
permits to characterize metabolic activity, whose deficits
are normally interpreted as a loss of neuronal and/or
synaptic function, but could also reflect alterations in glial
cell function, increasingly considered nuclear to under-
stand AD neuropathology. Importantly, the spatial loca-
tion of hypometabolism differs among the different AD
syndromes, conceding an opportunity to discriminate the
actual phenotype: it begins in the MTL years before the
onset of the disease and then spreads to the lateral parietal
cortex in ADAD [51]; it is strongly correlated with Tau
deposition in early-onset Alzheimer’s disease [52]; and it
predominates in the MTL and medial parietal lobe in late-
onset Alzheimer’s disease [53]. On the contrary, hypo-
metabolism does not follow a distinctive pattern in normal
aging, despite following some frontal predominance.
Finally, as the disease develops, a characteristic topo-
graphical pattern of brain hypometabolism takes place in
the temporoparietal and posterior cingulate cortices [54].
However, the grade and location of hypometabolism
needed to establish a trustworthy threshold value for AD
patients has not been elucidated yet.

Structural MRI

Depending on a signal that originates from within the
body, structural MRI permits accurate, noninvasive mea-
surement of brain tissue volumes, thus being able to
properly locate pathophysiological features such as
regional brain atrophy, gray matter loss or white matter
damage. The main findings achieved by brain volumetric
measurement techniques have identified gray matter at-
rophy occurring of MTL structures in AD, but also in MCI,
seeming that the most consistent biomarker for conversion
from MCI to AD is the atrophy of the left MTL [55]. Further
parameters predicting the conversion from MCI to AD
include reduction in hippocampal and parahippocampal
gray matter volumes and the presence of a more vague
cortical loss in AD [56]. Furthermore, diffusion imaging
techniques, which take advantage of the fact that micro-
scopic water diffusion is anisotropic in the human brain
and use it to identify white matter tracts, have detected
deterioration of some major tracts in AD. Mainly, a
disruption of the cingulum (which connectsMTL structures
with the rest of the brain) occurs during the transitional
stages from normal aging to AD. Damage to the uncinate
fasciculus, involved in memory and emotional processes,
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has also been found [57]. Nonetheless, the number of brain
cells or white matter tracts that must be lost to detect and
define atrophy in AD is not currently known, and the
amount of evidence required to produce a reliable
threshold value of cortical thinning is currently lacked [46].

Functional MRI

Measuring MRI signals that reflect tissue perfusion,
functional MRI (fMRI) is based on the fact that different
brain regions that exhibit synchronous signal fluctua-
tions belong to the same brain network. A disruption of
these signals is interpreted as an alteration in network
connectivity and thus allows studying changes in brain
connectivity. Remarkably, a loss of functional connec-
tivity affecting critical regions of the default-mode
network (DMN), such as the posterior cingular cortex,
has been described to precede gray matter loss in AD [58].
Given that other dementias are constituted by alterations
of different networks [59], disruption of the DMN con-
nectivity signals measured by fMRI could possibly
become a biomarker pointing to AD. Last but not least,
disconnection occurring in the hippocampus and medial
prefrontal cortex also seem to portray the characteristic
AD neuropathology [60]. As some of the other imaging
techniques described, the lack of evidence has prevented
the establishment of a cut-point for fMRI signal alter-
ations to diagnose or discriminate AD patients.

Future perspectives: novel
biomarkers and fluids

Active research is being developed in the search for
noninvasiveness and easy access biological setups, such
as saliva [61]. Up-to-date, conflicting and nonconclusive
results have been obtainedwhenmeasuring Aβ42 [62–64]
or p-Tau [64, 65] in this fluid [66]. It is to note that
circadian variation could notably influence the compo-
sition of saliva. Furthermore, the oral health or medica-
tion could affect biomarkers detection. Therefore, is
necessary to standardize work protocol to obtain a
reproducible result [67].

In the last years, miRNAs in blood have appeared as
promising early AD biomarkers. MiRNAs are short non-
coding molecules that work as epigenetic factors, regu-
lating gene expression post-transcriptionally, by binding
to complementary sequences on target mRNAs. MiRNAs
are often encapsulated in exosomes, microvesicles or

apoptotic bodies, structures that can transport other sub-
stances. Exosomes containingmiRNAs can cross the blood-
brain barrier and mediate the cross-talk between blood,
brain and CSF [68]. MiRNAs carry out physiological but
also pathological function, and it seems that some of them
are dysregulated in AD. The most studied in AD have
binding sites in mRNAs that code for proteins that play a
key role in the disease: APP, Tau, BACE, PSEN2, MAPK …

Under physiological conditions, exosomes are capable of
transporting accumulated proteins (Aβ and Tau) to lyso-
somes or extracellular plasma for degradation, but under
pathological conditions, this clearance is disrupted. How-
ever, even though no conclusive results have been
described, it is to mention a recent review describing that
has-miR-146a, has-miR-125b and hsa-miR135a could be
differentially express in blood and CSF in AD compared
with control, other neurological diseases or even with MCI
individuals [68].

Conclusions

While AD classical diagnostic criteria rely on clinical data,
newer criteria are needed to identify the disease in its
earlier stages. It is currently accepted that AD starts de-
cades before clinical symptoms could be diagnosed. The
opportunity to detect biological alterations prior to clinical
symptoms would allow early diagnosis or even perhaps
change treatment possibilities.

Acknowledgments: M.H. Janeiro, C.G. Ardanaz, N. Sola-
Sevilla and M. Cortés-Erice are recipients of a fellowship
from theMinisterio de Ciencia, Innovación yUniversidades
(FPU).
Research funding: Thisworkwas supported by grants from
SAF2017-87619-P and SAF2017-87595-R from the Spanish
Government (Subprograma Estatal de Generacion del
Conocimiento, Micinn).
Author contributions: All authors have accepted
responsibility for the entire content of this manuscript
and approved its submission.
Competing interests: Authors state no conflict of interest.

References

1. Jack CR, Bennett DA, Blennow K, Carrillo MC, Dunn B,
Haeberlein SB, et al. NIA-AA Research Framework: toward a
biological definition of Alzheimer’s disease. Alzheimer’s
Dement 2018;14:535–62.

34 Janeiro et al.: Biomarkers in Alzheimer´s disease



2. Jack CR, Bennett DA, Blennow K, Carrillo MC, Feldman HH,
Frisoni GB, et al. A/T/N: an unbiased descriptive classification
scheme for Alzheimer disease biomarkers. Neurology 2016;87:
539–47.

3. Robinson R, Amin B, Guest P. Multiplexing biomarker methods,
proteomics and considerations for Alzheimer’s disease. In:
Guest P, editor. Proteomicmethods in neuropsychiatric research;
2017, vol 974, pp. 24–37.

4. Ortega RL, Dakterzada F, Arias A, Blasco E, Naudí A, Garcia FP,
et al. Usefulness of CSF biomarkers in predicting the progression
of amnesic and nonamnesic mild cognitive impairment to
Alzheimer’s disease. Curr Aging Sci 2019;12:35–42.

5. Olsson B, Lautner R, Andreasson U, Öhrfelt A, Portelius E,
Bjerke M, et al. CSF and blood biomarkers for the diagnosis of
Alzheimer’s disease: a systematic review and meta-analysis.
Lancet Neurol 2016;15:673–84.

6. Struyfs H, Van Broeck B, Timmers M, Fransen E, Sleegers K,
Van Broeckhoven C, et al. Diagnostic accuracy of cerebrospinal
fluid amyloid-beta isoforms for early and differential dementia
diagnosis. J Alzheimers Dis 2015;45:813–22.

7. Magdalinou NK, Paterson RW, Schott JM, Fox NC, Mummery C,
Blennow K, et al. A panel of nine cerebrospinal fluid biomarkers
may identify patients with atypical parkinsonian syndromes. J
Neurol Neurosurg Psychiatry 2015;86:1240–7.

8. Friede RL, Samorajski T. Axon caliber related to neurofilaments
andmicrotubules in sciatic nervefibers of rats andmice. Anat Rec
1970;167:379–87.

9. Bjerke M, Zetterberg H, Edman Å, Blennow K, Wallin A,
Andreasson U. Cerebrospinal fluid matrix metalloproteinases
and tissue inhibitor of metalloproteinases in combination with
subcortical and cortical biomarkers in vascular dementia and
Alzheimer’s disease. J Alzheimers Dis 2011;27:665–76.

10. Hall S, Öhrfelt A, Constantinescu R, Andreasson U, Surova Y,
Bostrom F, et al. Accuracy of a panel of 5 cerebrospinal fluid
biomarkers in the differential diagnosis of patients with
dementia and/or parkinsonian disorders. Arch Neurol 2012;69:
1445–52.

11. Majbour NK, Chiasserini D, Vaikath NN, Eusebi P, Tokuda T,
van de Berg W, et al. Increased levels of CSF total but not
oligomeric or phosphorylated forms of alpha-synuclein in
patients diagnosed with probable Alzheimer’s disease. Sci Rep
2017;7:40263.

12. WellingtonH,PatersonRW, Portelius E, TörnqvistU,MagdalinouN,
Fox NC, et al. Increased CSF neurogranin concentration is specific
to Alzheimer disease. Neurology 2016;86:829–35.

13. Suárez-CalvetM, Kleinberger G, Araque CaballeroMÁ, BrendelM,
Rominger A, Alcolea D, et al. sTREM2 cerebrospinal fluid levels
are a potential biomarker for microglia activity in early-stage
Alzheimer’s disease and associate with neuronal injury markers.
EMBO Mol Med 2016;8:466–76.

14. Janelidze S, Hertze J, Zetterberg H, LandqvistWaldöM, Santillo A,
Blennow K, et al. Cerebrospinal fluid neurogranin and YKL-40 as
biomarkers of Alzheimer’s disease. Ann Clin Transl Neurol 2016;
3:12–20.

15. Humpel C. Identifying and validating biomarkers for Alzheimer’s
disease. Trends Biotechnol 2011;29:26–32.

16. Blennow K, Zetterberg H. Understanding biomarkers of
neurodegeneration: ultrasensitive detection techniques pave the
way for mechanistic understanding. Nat Med 2015;21:217–9.

17. O’Bryant SE, Gupta V, Henriksen K, EdwardsM, Jeromin A, Lista S,
et al. Guidelines for the standardization of preanalytic variables
for blood-based biomarker studies in Alzheimer’s disease
research. Alzheimers Dement 2015;11:549–60.

18. Palmqvist S, Janelidze S, Stomrud E, Zetterberg H, Karl J, Zink K,
et al. Performance of fully automated plasma assays as screening
tests for Alzheimer disease-related β-amyloid. JAMANeurol 2019;
76:1060–9.

19. Mattsson N, Zetterberg H, Janelidze S, Insel PS, Andreasson U,
Stomrud E, et al. Plasma tau in Alzheimer disease. Neurology
2016;87:1827–35.

20. Whelan CD, Mattsson N, Nagle MW, Vijayaraghavan S, Hyde C,
Janelidze S, et al. Multiplex proteomics identifies novel CSF and
plasma biomarkers of early Alzheimer’s disease. Acta
Neuropathol Commun 2019;7:169.

21. Lövheim H, Elgh F, Johansson A, Zetterberg H, Blennow K,
HallmansG, et al. Plasma concentrations of free amyloidβ cannot
predict the development of Alzheimer’s disease. Alzheimer’s
Dement 2017;13:778–82.

22. Nabers A, Perna L, Lange J, Mons U, Schartner J, Güldenhaupt J,
et al. Amyloid blood biomarker detects Alzheimer’s disease.
EMBO Mol Med 2018;10:e8763.

23. Mayeux R, Honig LS, Tang M, Manly J, Stern Y, Schupf N, et al.
Plasma A[beta]40 and A[beta]42 and Alzheimer’s disease:
relation to age, mortality, and risk. Neurology 2003;61:1185–90.

24. Graff-Radford NR, Crook JE, Lucas J, Boeve BF, Knopman DS, Ivnik
RJ, et al. Association of low plasma Aβ42/Aβ40 ratios with
increased imminent risk for mild cognitive impairment and
Alzheimer disease. Arch Neurol 2007;64:354–62.

25. Hansson O, Zetterberg H, Vanmechelen E, Vanderstichele H,
Andreasson U, Londos E, et al. Evaluation of plasma Aβ40 and
Aβ42 as predictors of conversion to Alzheimer’s disease in
patients with mild cognitive impairment. Neurobiol Aging 2010;
31:357–67.

26. Kuo YM, EmmerlingMR, Lampert HC, Hempelman SR, Kokjohn TA,
Woods AS, et al. High levels of circulating Aβ42 are sequestered
by plasma proteins in Alzheimer’s disease. BiochemBiophys Res
Commun 1999;257:787–91.

27. Blasko I, KemmlerG, KramplaW, Jungwirth S,Wichart I, Jellinger K,
et al. Plasma amyloid β protein 42 in non-demented persons aged
75 years: effects of concomitant medication and medial temporal
lobe atrophy. Neurobiol Aging 2005;26:1135–43.

28. Borroni B, Agosti C, Marcello E, Di Luca M, Padovani A. Blood cell
markers in Alzheimer disease: amyloid Precursor Protein form
ratio in platelets. Exp Gerontol 2010;45:53–6.

29. Blennow K, Zetterberg H. Biomarkers for Alzheimer’s disease:
current status and prospects for the future. J Intern Med 2018;
284:643–63.

30. Pérez-Grijalba V, Fandos N, Canudas J, Insua D, Casabona D,
Lacosta AM, et al. Validation of immunoassay-based tools for the
comprehensive quantification of Aβ40 and Aβ42 peptides in
plasma. J Alzheimer’s Dis 2016;54:751–62.

31. Zetterberg H, Mörtberg E, Song L, Chang L, Provuncher GK, Patel
PP, et al. Hypoxia due to cardiac arrest induces a time-dependent
increase in serum amyloid β levels in humans. PloS One 2011;6:
e28263.

32. Janelidze S, Stomrud E, Palmqvist S, Zetterberg H, VanWesten D,
Jeromin A, et al. Plasma β-amyloid in Alzheimer’s disease and
vascular disease. Sci Rep 2016;6:26801.

Janeiro et al.: Biomarkers in Alzheimer´s disease 35



33. Pannee J, Törnqvist U, Westerlund A, Ingelsson M, Lannfelt L,
BrinkmalmG, et al. The amyloid-βdegradation pattern in plasma-
A possible tool for clinical trials in Alzheimer’s disease. Neurosci
Lett 2014;573:7–12.

34. Ovod V, Ramsey KN, Mawuenyega KG, Bollinger JG, Hicks T,
Schneider T, et al. Amyloid β concentrations and stable isotope
labeling kinetics of human plasma specific to central nervous
system amyloidosis. Alzheimer’s Dement 2017;13:841–9.

35. Nakamura A, Kaneko N, Villemagne VL, Kato T, Doecke J, Doré V,
et al. High performance plasma amyloid-β biomarkers for
Alzheimer’s disease. Nature 2018;554:249–54.

36. Meredith JE, Sankaranarayanan S, Guss V, Lanzetti AJ, Berisha F,
Neely RJ, et al. Characterization of novel CSF Tau and ptau
biomarkers for Alzheimer’s disease. PloS One 2013;8:e76523.

37. Fiandaca MS, Kapogiannis D, Mapstone M, Boxer A, Eitan E,
Schwartz JB, et al. Identification of preclinical Alzheimer’s
disease by a profile of pathogenic proteins in neurally derived
blood exosomes: a case-control study. Alzheimer’s Dement 2015;
11:600–7.

38. Gisslén M, Price RW, Andreasson U, Norgren N, Nilsson S,
Hagberg L, et al. Plasma concentration of the Neurofilament Light
Protein (NFL) is a biomarker of CNS injury in HIV infection: a cross-
sectional study. EBioMedicine 2016;3:135–40.

39. Mattsson N, Andreasson U, Zetterberg H, Blennow K, WeinerMW,
Aisen P, et al. Association of plasma neurofilament light with
neurodegeneration in patients with Alzheimer disease. JAMA
Neurol 2017;74:557–66.

40. Weston PSJ, Poole T, Ryan NS, Nair A, Liang Y, Macpherson K,
et al. Serum neurofilament light in familial Alzheimer disease: a
marker of early neurodegeneration. Neurology 2017;89:2167–75.

41. Preische O, Schultz SA, Apel A, Kuhle J, Kaeser SA, Barro C, et al.
Serum neurofilament dynamics predicts neurodegeneration and
clinical progression in presymptomatic Alzheimer’s disease. Nat
Med 2019;25:277–83.

42. Hansson O, Janelidze S, Hall S, Magdalinou N, Lees AJ,
Andreasson U, et al. Blood-basedNfL: a biomarker for differential
diagnosis of parkinsonian disorder. Neurology 2017;88:930–7.

43. Palmqvist S, Schöll M, Strandberg O, Mattsson N, Stomrud E,
Zetterberg H, et al. Earliest accumulation of β-amyloid occurs
within the default-mode network and concurrently affects brain
connectivity. Nat Commun 2017;8:1214.

44. Fleisher AS, Chen K, Quiroz YT, Jakimovich LJ, GomezMG, Langois
CM, et al. Florbetapir PET analysis of amyloid-β deposition in the
presenilin 1 E280A autosomal dominant Alzheimer’s disease
kindred: a cross-sectional study. Lancet Neurol 2012;11:1057–65.

45. Furst AJ, Rabinovici GD, Rostomian AH, Steed T, Alkalay A, Racine
C, et al. Cognition, glucose metabolism and amyloid burden in
Alzheimer’s disease. Neurobiol Aging 2012;33:215–25.

46. Jack CR, Wiste HJ, Weigand SD, Therneau TM, Lowe VJ, Knopman
DS, et al. Defining imaging biomarker cut points for brain aging
and Alzheimer’s disease. Alzheimers Dement 2017;13:205–16.

47. Braak H, Braak E. Neuropathological stageing of Alzheimer-
related changes. Acta Neuropathol 1991;82:239–59.

48. Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the
pathologic process in alzheimer disease: age categories from 1 to
100 years. J Neuropathol Exp Neurol 2011;70:960–9.

49. Wong DF, Comley RA, Kuwabara H, Rosenberg PB, Resnick SM,
Ostrowitzki S, et al. Characterization of 3 novel Tau

radiopharmaceuticals, 11C-RO-963, 11C-RO-643, and 18F-RO-
948, in healthy controls and in Alzheimer subjects. J Nucl Med
2018;59:1869–76.

50. Klunk WE. Molecular imaging: what is right and what is an
illusion? Alzheimer’s Dement Diagnosis. Assess Dis Monit 2018;
10:217–20.

51. Gordon BA, Blazey TM, Su Y, Hari-Raj A, Dincer A, Flores S, et al.
Spatial patterns of neuroimaging biomarker change in
individuals from families with autosomal dominant Alzheimer’s
disease: a longitudinal study. Lancet Neurol 2018;17:241–50.

52. Ossenkoppele R, Schonhaut DR, SchöllM, Lockhart SN, Ayakta N,
Baker SL, et al. Tau PET patterns mirror clinical and
neuroanatomical variability in Alzheimer’s disease. Brain 2016;
139:1551–67.

53. Silverman DH, Small GW, Chang CY, Lu CS, Kung De Aburto MA,
Chen W, et al. Positron emission tomography in evaluation of
dementia: regional brain metabolism and long-term outcome. J
Am Med Assoc 2001;286:2120–7.

54. Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo JL,
Blennow K, et al. Advancing research diagnostic criteria for
Alzheimer’s disease: the IWG-2 criteria. Lancet Neurol 2014;13:
614–29.

55. Ferreira LK, Diniz BS, Forlenza OV, Busatto GF, Zanetti MV.
Neurostructural predictors of Alzheimer’s disease: a meta-
analysis of VBM studies. Neurobiol Aging 2011;32:1733–41.

56. Karas GB, Scheltens P, Rombouts SARB, Visser PJ, Van Schijndel
RA, Fox NC, et al. Global and local gray matter loss in mild
cognitive impairment and Alzheimer’s disease. Neuroimage
2004;23:708–16.

57. Taoka T, Morikawa M, Akashi T, Miyasaka T, Nakagawa H,
Kiuchi K, et al. Fractional anisotropy: threshold dependence in
tract-based diffusion tensor analysis: evaluation of the uncinate
fasciculus in Alzheimer disease. Am J Neuroradiol 2009;30:
1700–3.

58. Gili T, Cercignani M, Serra L, Perri R, Giove F, Maraviglia B, et al.
Regional brain atrophy and functional disconnection across
Alzheimer’s disease evolution. J Neurol Neurosurg Psychiatry
2011;82:58–66.

59. Zhou J, Greicius MD, Gennatas ED, Growdon ME, Jang JY,
Rabinovici GD, et al. Divergent network connectivity changes in
behavioural variant frontotemporal dementia and Alzheimer’s
disease. Brain 2010;133:1352–67.

60. AllenG, BarnardH,McColl R, Hester AL, Fields JA,WeinerMF, et al.
Reduced hippocampal functional connectivity in Alzheimer
disease. Arch Neurol 2007;64:1482–7.

61. Sapkota S, Huan T, Tran T, Zheng J, Camicioli R, Li L, et al.
Alzheimer’s biomarkers from multiple modalities selectively
discriminate clinical status: relative importance of salivary
metabolomics panels, genetic, lifestyle, cognitive, functional
health and demographic risk markers. Front Aging Neurosci
2018;10:296.

62. Sabbagh MN, Shi J, Lee M, Arnold L, Al-Hasan Y, Heim J, et al.
Salivary beta amyloid protein levels are detectable and
differentiate patients with Alzheimer’s disease dementia from
normal controls: preliminary findings. BMC Neurol 2018;18:155.

63. Bermejo-Pareja F, Antequera D, Vargas T, Molina JA, Carro E.
Saliva levels of Abeta1-42 as potential biomarker of Alzheimer’s
disease: a pilot study. BMC Neurol 2010;10:108.

36 Janeiro et al.: Biomarkers in Alzheimer´s disease



64. ShiM, Sui YT, Peskind ER, Li G, HwangH, Devic I, et al. Salivary tau
species are potential biomarkers of Alzheimer’s disease. J
Alzheimer’s Dis 2011;27:299–305.

65. Ship JA, DeCarli C, Friedland RP, Baum BJ. Diminished
submandibular salivary flow in dementia of the Alzheimer Type. J
Gerontol 1990;45:M61–6.

66. Spielmann N, Saliva Wong D. Diagnostics and therapeutic
perspectives. Oral Dis 2011;17:345–54.

67. Reale M, Gonzales-Portillo I, Borlongan CV. Saliva, an easily
accessible fluid as diagnostic tool and potent stem cell source for

Alzheimer’s Disease: present and future applications. Brain Res
2020;1727:146535.

68. Nagaraj S, Zoltowska KM, Laskowska-Kaszub K, Wojda U.
microRNA diagnostic panel for Alzheimer’s disease and
epigenetic trade-off between neurodegeneration and cancer.
Ageing Res Rev 2019;49:125–43.

Article Note: A translation of this article can be found here: https://
doi.org/10.1515/almed-2020-0109.

Janeiro et al.: Biomarkers in Alzheimer´s disease 37

https://doi.org/10.1515/almed-2020-0109
https://doi.org/10.1515/almed-2020-0109

	Biomarkers in Alzheimer’s disease
	Introduction
	Biomarkers in fluids: cerebrospinal fluid
	AD patients vs. healthy controls (HC) and other central nervous system (CNS) pathologies
	AD patients vs. MCI patients

	Biomarkers in fluids: blood
	Aβ levels
	Tau protein
	NFL protein

	Image biomarkers: PiB PET, FDG PET and MRI
	Amyloid-PET
	Tau-PET
	FDG-PET
	Structural MRI
	Functional MRI

	Future perspectives: novel biomarkers and fluids
	Conclusions
	Acknowledgments
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1000
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.10000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /DEU <>
    /ENU ()
    /ENN ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName (ISO Coated v2 \(ECI\))
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.503940
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


