Table 1. Prediction accuracy (with 95% confidence interval) and sensitivity with respect to selected risk score thresholds that ensure ~80% specificity by Cox models using a single inferred AD-NC trait.
Amyloid-β | Tangles | Global AD Pathology | Pathologic AD | ||||||
---|---|---|---|---|---|---|---|---|---|
Y3 | Y5 | Y3 | Y5 | Y3 | Y5 | Y3 | Y5 | ||
NCI/MCI -> ADD | Accuracya (95% CI) | 0.798 (0.773, 0.822) | 0.788 (0.763, 0.813) | 0.802 (0.777, 0.825) | 0.795 (0.771, 0.818) | 0.801 (0.775, 0.823) | 0.796 (0.771, 0.819) | 0.809 (0.784, 0.831) | 0.803 (0.778, 0.826) |
Sensitivity b | 0.772 | 0.699 | 0.822 | 0.756 | 0.797 | 0.764 | 0.911 | 0.829 | |
Specificity c | 0.800 | 0.800 | 0.800 | 0.800 | 0.800 | 0.800 | 0.800 | 0.800 | |
NCI -> ADD | Accuracya (95% CI) | 0.796 (0.768, 0.823) | 0.792 (0.763, 0.7819) | 0.794 (0.765, 0.821) | 0.791 (0.761, 0.818) | 0.795 (0.767, 0.823) | 0.793 (0.764, 0.820) | 0.804 (0.775, 0.830) | 0.805 (0.777, 0.832) |
Sensitivity b | 0.650 | 0.634 | 0.550 | 0.609 | 0.600 | 0.658 | 0.950 | 0.902 | |
Specificity c | 0.800 | 0.800 | 0.800 | 0.800 | 0.800 | 0.800 | 0.800 | 0.800 |
Accuracy= (# True Positive Predictions + # True Negative Predictions) / (# of test samples)
Sensitivity = (# True Positive Predictions) / (# Positives in test samples) = True Positive Fraction
Specificity = (# True Negative Predictions) / (# Negatives in test samples) = 1−False Positive Fraction