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Abstract
Venous thromboembolism (VTE) is a common and impactful complication of cancer. Several clinical
prediction rules have been devised to estimate the risk of a thrombotic event in this patient population,
however they are associated with limitations. We aimed to develop a predictive model of cancer-
associated VTE using machine learning as a means to better integrate all available data, improve
prediction accuracy and allow applicability regardless of timing for systemic therapy administration. A
retrospective cohort was used to �t and validate the models, consisting of adult patients who had next
generation sequencing performed on their solid tumor for the years 2014 to 2019. A deep learning
survival model limited to demographic, cancer-speci�c, laboratory and pharmacological predictors was
selected based on results from training data for 23,800 individuals and was evaluated on an internal
validation set including 5,951 individuals, yielding a time-dependent concordance index of 0.72 (95% CI = 
0.70–0.74) for the �rst 6 months of observation. Adapted models also performed well overall compared
to the Khorana Score (KS) in two external cohorts of individuals starting systemic therapy; in an external
validation set of 1,250 patients, the C-index was 0.71 (95% CI = 0.65–0.77) for the deep learning model vs
0.66 (95% CI = 0.59–0.72) for the KS and in a smaller external cohort of 358 patients the C-index was
0.59 (95% CI = 0.50–0.69) for the deep learning model vs 0.56 (95% CI = 0.48–0.64) for the KS. The
proportions of patients accurately reclassi�ed by the deep learning model were 25% and 26% respectively.
In this large cohort of patients with a broad range of solid malignancies and at different phases of
systemic therapy, the use of deep learning resulted in improved accuracy for VTE incidence predictions.
Additional studies are needed to further assess the validity of this model.

Key Points
1. Deep learning for survival analysis can be used to accurately estimate the risk of cancer-associated

venous thromboembolism.

2. The newly developed time-dynamic model is distinguished from prior models which are commonly
restricted to baseline testing prior to systemic therapy.

Introduction
Cancer has long been known to confer an increased risk of venous thromboembolism (VTE).1 The
pathophysiological mechanisms are complex and remain incompletely elucidated.2 Cancer-associated
VTE is common, as approximately 20–30% of VTE episodes are associated with a malignancy.3 Those
events are clinically important, as they are a leading cause of mortality in patients with cancer.4 Several
randomized trials have demonstrated the effectiveness of pharmacological prophylaxis. However,
applicability has been limited by currently available VTE risk strati�cation tools.5,6 The most commonly
used approach to estimate the risk of cancer-associated VTE is the Khorana Score (KS), a clinical
prediction rule based on cancer type, peripheral blood cell counts and body mass index.7
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The KS was originally derived from a cohort of patients who had completed at least one cycle of a new
chemotherapy regimen. Using this prediction rule, patients are assigned to one of three categories
denoting their risk of VTE at 6 months. The KS has been extensively validated in multiple different
healthcare systems.8 In one large review, for a KS greater or equal to 2 and 3, sensitivity was 55.2% (95%
CI = 47.5%-62.6%) and 23.4% (95% CI = 18.4%-29.4%) respectively, while positive predictive value was
8.9% (95%CI = 7.3%-10.8%) and 11.0% (95% CI = 8.8%-13.8%) respectively.8 Several other clinical
prediction rules have been derived by different groups.9–16 They tend to be based on the predictors
already included in the KS, in addition to other clinical or tumor-speci�c characteristics, routine laboratory
test results, presence of germline thrombophilia mutations and chemotherapy administered. In most
cases, those algorithms have been derived in patients at the time new systemic therapy was started.

Machine learning (ML) is a computational approach where algorithms are derived automatically from
data. In the last decade, ML has found multiple real-world applications including in the medical �eld.17

ML methods are well suited to integrate large amounts of information and derive risk estimation models.
Given the proper conditions, ML algorithms can automatically identify complex interactions between
predictors which would otherwise be very di�cult to elucidate by traditional statistical methods under
human supervision. ML will tend to outperform clinical prediction rules, because ML models can easily
include multiple predictors and interactions, while clinical prediction rules must be simplistic as they are
limited by reliance on human computation.18

Recent evidence suggests that tumor somatic genetic alterations in�uence the risk of VTE.19–41 Notably,
in some cases gene-speci�c effects appear to be conditional to tumor type. Additionally, available data
seem to indicate an interaction of multiple genes, each contributing a small amount of information to risk
prediction, rather than a single gene mediating a large part of the risk. Given those elements of interaction
and the need to integrate data on multiple covariates, a ML approach could conceivably help optimize
VTE risk prediction based on tumor genomic alterations. In this work, we aimed to derive a ML model to
estimate the risk of cancer-associated VTE, incorporating cancer-speci�c genetic information.

Methods

Patient Cohorts
Approval was obtained from the Memorial Sloan Kettering (MSK) institutional review board before
initiating this project. The use of data from the ONCOTHROMB 12 − 01 study was authorized by the
institutional review board of the Hospital General Universitario Gregorio Marañón (Madrid, Spain). Three
cancer patient cohorts were derived: the �rst one (main MSK cohort) served to train and internally validate
the main model, while the two additional sets (external MSK cohort and ONCOTHROMB cohort) were
used for external validation and evaluation of transfer learning. The main MSK cohort consisted of all
adults who had MSK-IMPACT™ (Memorial Sloan Kettering Integrated Mutation Pro�ling of Actionable
Cancer Targets) sequencing performed on their solid tumor malignancy between 2014 and 2019. Patients
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were included regardless of cancer stage, time from cancer diagnosis or ongoing treatment with
anticoagulant or antiplatelet agent. Individuals entered the cohort once their MSK-IMPACT™ result was
reported in the clinical information system and were censored at the time of their last clinical note. They
were included in the analysis without any restriction based on timing for chemotherapy administration, as
reporting a more generalizable model was considered desirable. They were excluded if they had
sustained an episode of cancer-associated thrombosis before the MSK-IMPACT™ result was reported. All
sequencing included a patient speci�c peripheral blood normal control to differentiate between cancer
somatic and germline genetic alterations. VTE was de�ned as pulmonary embolism or lower extremity
deep vein thrombosis (DVT). Lower extremity DVT included thrombi involving the common iliac vein,
external iliac vein, common femoral vein, super�cial femoral vein, deep femoral vein, popliteal vein,
peroneal vein, anterior tibial vein, posterior tibial vein or a deep calf vein. All such events were included
regardless of the presence of symptoms. A VTE episode was considered cancer-associated if it occurred
after or within the 365 days preceding a diagnosis of solid neoplasm. Events were detected using a
review of anticoagulant prescriptions, keyword searches of radiology studies and the Clinical Event
Detection and Recording System (CEDARS) natural language processing (NLP) pipeline for patients who
were included in the cohort between 2014 and 2016, as described elsewhere.40 Patients who had MSK-
IMPACT™ performed between 2017 and 2019 were assessed only using CEDARS as applied to clinical
notes and radiology reports.42 Brie�y, clinical notes and radiology reports were parsed with the spaCy
NLP pipeline to derive individual word tokens and associated negation. Documents including any non-
negated token combination from a predetermined reference list were presented in chronological order via
a custom graphical user interface and reviewed manually. Token combinations for this second CEDARS
VTE event detection step are listed in Supplementary Table 1. All detected events were reviewed by two
adjudicators, always including a hematologist. A random subset of patients was audited manually to
estimate sensitivity and speci�city of the automatic event detection algorithms (see Supplementary
Information).

The external MSK cohort was aggregated separately for a retrospective study of the association of the KS
with overall survival.43 Patients were included if they had an active malignancy and were newly started
on chemotherapy between October 2017 and November 2019, provided they had su�cient information to
compute the KS. All solid tumor types were included. Event detection was conducted using International
Classi�cation of Diseases (ICD) 10 codes, a search of pharmacy records for full-dose anticoagulant
prescriptions and a text search of radiology reports. VTE was de�ned as pulmonary embolism or lower
extremity DVT. Positive �ndings were reviewed manually to ascertain the date of a VTE episode. The
ONCOTHROMB cohort was prospectively accrued at several hospitals in Spain and was used to derive
the TiC-Onco risk-assessment model as part of the ONCOTHROMB 12 − 01 study.14 The de�nition of VTE
included pulmonary embolism, lower extremity DVT, super�cial vein thrombosis, upper extremity DVT and
visceral vein thrombosis. Only individuals with cancer of the esophagus, colon, pancreas or lung were
included.
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Model Training, Hyperparameter Tuning and Evaluation of
Model Performance
The main MSK cohort dataset was randomly partitioned into a training set comprising 80% of individuals
and a validation set with the remainder, stratifying by outcome (VTE or death). The subset of patients
who could have their KS calculated was also evaluated separately (“KS subset” of the validation set). In
this group, the KS was assessed when an individual was prescribed systemic cancer treatment if this
occurred in the �rst 6 months after MSK-IMPACT™ report and there had been no treatment in the past
year. The 6-month window restriction was applied to allow for a reliable comparison with models
featuring genetic predictors. In the KS subset, predictions were made using laboratory and pharmacy data
updated at the time the KS was derived; genomic data was the same as reported in the index IMPACT
report.

We used three machine learning algorithms to model the cumulative incidence function of cancer-
associated VTE adjusting for the competing risk of death in the main MSK cohort training set: Fine-Gray
regression, random survival forests and DeepHit.44,45 Details on the choice of algorithm, computing
environment, statistical packages and main functions can be found in Supplementary Information.
Multivariate feature imputation was used to handle missing data. Continuous predictors used for the
DeepHit model were standardized to zero mean and unit variance. Model features were selected based on
prior knowledge of their potential contribution to predicting VTE events. Available features could be
broadly classi�ed into four groups: basic, lab, chemo and genetic (see Table 1). Those included age,
gender, cancer type, metastatic status, time from tumor sampling (i.e. biopsy or surgical resection of
tissue sample), time from cancer diagnosis, time elapsed since last systemic therapy administered
(strati�ed by pharmacological class), routine laboratory test results (most recent value available in the
prior 3 months for hemoglobin, total protein, albumin, sodium, potassium, chloride, blood urea nitrogen,
creatinine, carbon dioxide, glucose, calcium, aspartate transaminase (AST), alanine transaminase (ALT),
total bilirubin and alkaline phosphatase), tumor mutational burden and cancer somatic alterations in
oncogenes or tumor suppressor genes included in the �rst generation of the MSK-IMPACT™ panel. This
assay was described in detail elsewhere.46 Only oncogenic or potentially oncogenic alterations were
retained, including mutations, copy number alterations and fusions. We decided not to use the white
blood count, platelet count, activated partial thromboplastin time and prothrombin time because those
values tend to change daily secondarily to in�uence from chemotherapy (for blood cell counts) and
anticoagulation (for clotting times). We felt that even though those predictors might seemingly improve
accuracy, the �nal model could be less generalizable to other healthcare systems with different
approaches to laboratory testing. Features were combined into elementary subsets, and the latter were
used to derive 11 �nal feature sets destined to be included in models (see Supplementary Information).
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Table 1
Overview of Features Used in the Models

Group Feature Description

basic age age in years at time of cohort entry

sex male or female

cancer type bladder, breast, colorectal, esophagogastric, gynecological, head and
neck, hepatobiliary, high-grade glioma, low-grade glioma, lung, melanoma,
pancreatic adenocarcinoma, prostate adenocarcinoma, renal, soft tissue
sarcoma or other

metastatic
disease

presence or absence of metastasis

time from
tumor
sampling

time in days since biopsy or resection of MSK-IMPACT™ sample

time from
cancer
diagnosis

time in days since cancer was �rst diagnosed

lab most recent
laboratory
value in the
prior 3
months (15
individual
predictors)

albumin, hemoglobin, sodium, potassium, chloride, calcium, carbon
dioxide, glucose, urea, creatinine, total protein, AST, ALT, total bilirubin,
alkaline phosphatase

chemo time from
last systemic
treatment (13
individual
predictors)

time in days since last systemic anti-cancer treatment for each of
alkylating, antibiotic, antimetabolite, antimitotic, cyclin-dependent kinase
inhibitor, epidermal growth factor receptor inhibitor, immune, multikinase
inhibitor, PARP inhibitor, platin, SERM, VEGF inhibitor or other; capped at
28 days, equal to zero if drug prescribed but not yet administered

genetic presence of a
cancer
somatic
genetic
alteration (55
individual
predictors)

binary marker indicating the presence or absence of an oncogenic or
potentially oncogenic alteration (mutation, copy number alteration or
fusion) in each of 55 genes found to have an alteration frequency ≥ 1.5%
(see Supplemental Information for gene list)

AST: aspartate transaminase

ALT: alanine transaminase

PARP: poly ADP-ribose polymerase

SERM: selective estrogen receptor modulator

VEGF: vascular endothelial growth factor
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Group Feature Description

tumor
mutational
burden

number of somatic missense mutations per megabase (Mb) of tumor
genome

AST: aspartate transaminase

ALT: alanine transaminase

PARP: poly ADP-ribose polymerase

SERM: selective estrogen receptor modulator

VEGF: vascular endothelial growth factor

Optimal hyperparameters for random survival forests and DeepHit were determined using a grid search
and tree-structured Parzen estimators respectively. Metrics for all three model types were derived using
four iterations of �ve-fold cross-validation, producing 20 values of the metric that were averaged to
generate the overall metric. The con�dence interval was estimated with bootstrapping. The main metric
selected to evaluate models was the time-dependent concordance index as originally derived by Antolini
et al.47 This measurement quanti�es the ability of the predictive model to discriminate among subjects
with different event times along the cumulative incidence function continuum. An index of 1 indicates
perfect concordance between model predicted risk and actual survival, while a value of 0.5 means
random concordance. Calibration was assessed with plots of predicted vs observed risk of VTE at 6
months. Observed risk was computed with the Aalen-Johansen estimator in order to account for
censoring and the competing risk of death. Patients were categorized in 5 predicted risk group using
quantile cutoff points. Models were compared to the KS using the C-index and the
concordance/reclassi�cation table. We employed SHapley Additive exPlanations (SHAP) values to
interpret the results of our �nal machine learning model and gain insights into feature importance and
individual predictions. SHAP is a model-agnostic, uni�ed measure of feature importance that builds upon
the concept of Shapley values from cooperative game theory.48 This approach enables the allocation of a
fair contribution of each feature taking into account all possible feature combinations and their marginal
contributions to the prediction. In order to ensure the quality of performance report for the risk prediction
models described herein, we used the Transparent Reporting of a multivariable prediction model for
Individual Prognosis or Diagnosis (TRIPOD) tool (check-list in of Supplementary Table 2).49

Model Validation
The best model was selected based on the C-index and potential usefulness in clinical practice. This
model was re-�tted on the whole training set and evaluated on the validation set. All other models were
considered secondary. Secondary models designed to account for unavailable predictors were validated
on the external MSK cohort and the ONCOTHROMB cohort. We compared those models to the KS in
external cohorts using concordance/classi�cation tables. Using the KS, the high-risk group was de�ned
as having a score of 2 or more because this threshold was used in prior studies of pharmacological VTE
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prophylaxis.5,6,50 Risk was dichotomized for the DL models using a threshold of 9% risk of VTE at 6
months, because this was the observed risk for individuals with a KS of 2 or more in a large review.8 As a
means to further delineate the role of transfer learning in updating VTE prediction models, we evaluated
the �rst secondary model in its original state and after �ne-tuning the weights of the output layer on a
dedicated transfer learning set from the external MSK cohort.

Results

Model Development and Selection
See Fig. 1 for �ow diagram of the selection process for all three cohorts and Fig. 2 for an overview of
data �ow. A total of 29,751 individuals from the main MSK cohort were included in the �nal analysis. The
characteristics of patients in the main MSK cohort are shown in Table 2. The median age was 62 years.
The most frequent tumor type was lung, representing 16% of patients. Less than half of samples were
from a metastatic site, with 38% of cases falling into this category. The median time from cancer
diagnosis upon cohort entry was 256 days (IQR = 79-1075 days), see Fig. 3. The median observation time
was 239 days. Cancer-associated VTE occurred during the �rst 6 months of observation in 1,338 (4.5%)
of the patients. Cumulative incidence functions for this outcome were derived using Kaplan-Meier and
competing risk estimators (Fig. 4). The 6-month cumulative VTE estimates using the Kaplan-Meier
method and the competing risk estimator were almost identical (5.0% vs. 4.9%), but the difference was
more apparent when considering the full observation period (14.6% vs. 13.5%).
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Table 2
Characteristics of Patients

  Main MSK Cohort External
MSK
Cohort

ONCOTHROMB
Cohort

  Overall Training
Set

Validation
Set

   

Characteristic N = 
29,751

N = 
23,800

N = 5,951 N = 6,249 N = 358

Age in Years, Median (IQR) 62 (52,
71)

62 (52,
71)

62 (52,
70)

64 (53, 72) 65 (57, 72)

Female Sex, N (%) 16,424
(55)

13,101
(55)

3,323 (56) 3,637 (58) 118 (33)

Time From Cancer Diagnosis
in Days, Median (IQR)

256 (79,
1,075)

255 (80,
1,067)

262 (77,
1,108)

67 (37,
199)

42 (24, 65)

Time From Tumor Sampling
in Days, Median (IQR)

75 (39,
257)

75 (39,
258)

74 (39,
254)

NA NA

WBC in Thousand Cells/mcL,
Median (IQR)

6.5 (4.9,
8.6)

6.5 (4.9,
8.6)

6.4 (4.9,
8.5)

7.1 (5.8,
8.8)

8.0 (6.6, 10.0)

Missing, N 2,942 2,365 577 17 0

Hemoglobin in g/dL, Median
(IQR)

12.1
(10.7,
13.3)

12.1
(10.7,
13.3)

12.1
(10.8,
13.3)

12.9 (11.6,
13.9)

12.9 (11.4,
14.0)

Missing, N 2,939 2,363 576 17 0

Platelet Count in Thousand
Cells/mcL, Median (IQR)

231
(180,
293)

231
(180,
293)

232 (181,
296)

253 (205,
311)

279 (220, 343)

Missing, N 2,945 2,368 577 20 0

Albumin in g/dL, Median
(IQR)

4.0 (3.7,
4.3)

4.0 (3.7,
4.3)

4.0 (3.7,
4.3)

4.2 (3.9,
4.4)

4.0 (3.7, 4.3)

Missing, N 3,846 3,094 752 197 108

TMB Score in  Mutations/Mb,
Median (IQR)

4.40
(2.2, 7.0)

4.4 (2.2,
7.0)

3.9 (2.2,
7.0)

NA NA

Missing, N 1,374 1,065 309 NA NA

Cancer Type, N (%)          

Bladder 1,033
(3.5)

845 (3.6) 188 (3.2) 567 (9.1) 0
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  Main MSK Cohort External
MSK
Cohort

ONCOTHROMB
Cohort

  Overall Training
Set

Validation
Set

   

Breast 4,226
(14.0)

3,346
(14)

880
(15.0)

1,822
(29.0)

0

Colorectal 3,103
(10.0)

2,527
(11.0)

576 (9.7) 470 (7.5) 155 (43.3)

Esophagogastric 947
(3.2)

778 (3.3) 169 (2.8) 246 (3.9) 66 (18.4)

Gynecological 2,926
(9.8)

2,336
(9.8)

590 (9.9) 514 (8.2) 0

Head and Neck 643
(2.2)

513 (2.2) 130 (2.2) 680 (11.0) 0

hepatobiliary 857
(2.9)

704 (3.0) 153 (2.6) 138 (2.2) 0

High-Grade Glioma 913
(3.1)

743 (3.1) 170 (2.9) 4 (< 0.1) 0

Low-Grade Glioma 269
(0.9)

207 (0.9) 62 (1.0) 1 (< 0.1) 0

Lung 4,776
(16.0)

3,739
(16.0)

1,037
(17.0)

518 (8.3) 84 (23.5)

Melanoma 1,125
(3.8)

920 (3.9) 205 (3.4) 139 (2.2) 0

Other 3,974
(13.0)

3,166
(13.0)

808
(14.0)

408 (6.5) 0

Pancreatic Adenocarcinoma 1,342
(4.5)

1,096
(4.6)

246 (4.1) 365 (5.8) 53 (14.8)

Prostate Adenocarcinoma 1,974
(6.6)

1,572
(6.6)

402 (6.8) 164 (2.6) 0

Renal 590
(2.0)

463 (1.9) 127 (2.1) 129 (2.1) 0

Soft Tissue Sarcoma 1,053
(3.5)

845 (3.6) 208 (3.5) 84 (1.3) 0

Metastatic Disease, N (%) 11,225
(38)

8,993
(38)

2,232 (38) NA 155 (43)

Eleven models using distinct covariate sets were derived for each ML approach (see Supplementary
Information for detail of the feature sets used). The three approaches (Fine-Gray regression, random
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survival forests and DeepHit) were applied to each feature set on the main MSK cohort training set (n = 
23,800) using �ve-fold cross-validation. The time-dependent C-index results are provided in
Supplementary Table 3. The highest value was noted for the DeepHit model using the “extensive” feature
set, including demographics, cancer-speci�c characteristics, laboratory values, systemic treatment types
and genomic predictors (C-index = 0.74, 95% CI = 0.71–0.76). This result was similar to the ones obtained
with random survival forests (C-index = 0.73, 95% CI = 0.70–0.76) or Fine-Gray regression (C-index = 0.71,
95% CI = 0.69–0.74). The DeepHit model using the same predictors but excluding genomic information
performed similarly (C-index = 0.73, 95% CI = 0.70–0.75). This “limited” set included: age, sex, cancer type,
presence or absence of metastatic disease, time from tumor sampling, time from cancer diagnosis, time
from last systemic therapy administered for 13 drug classes, albumin, hemoglobin, sodium, potassium,
chloride, calcium, carbon dioxide, glucose, urea, creatinine, total protein, AST, ALT, total bilirubin and
alkaline phosphatase. Given the absence of a signi�cant improvement in concordance using genomic
predictors, we selected the limited feature set. The DeepHit approach was retained, considering that
increased complexity was justi�ed by the potential to use transfer learning in the future.

Internal Validation
Using the optimal hyperparameters derived from cross-validation, all models were re-�tted on the entirety
of the main MSK cohort training set and �nal metrics computed on the corresponding validation set (n = 
5,951). Con�dence intervals were estimated with bootstrapping. Results using DeepHit for the 11 feature
sets are shown in Supplementary Table 4. Using DeepHit and the limited covariate set, the time-
dependent C-index was 0.72 (95% CI = 0.70–0.74) on the main MSK cohort validation set. See Fig. 5 for
the receiver operating characteristic (ROC) curve and Fig. 6 for the cumulative incidence of VTE strati�ed
by predicted risk group. The calibration plot is shown in Supplementary Fig. 1; predicted risk estimates
were outside the con�dence interval of the observed risk for only one group. An additional analysis was
conducted on individuals who started observation less than one year after their initial cancer diagnosis.
In this group of 3,321 patients from the main MSK cohort validation set, the C-index was 0.74 (95% CI = 
0.71–0.77) for the DeepHit model featuring a limited set of predictors.

Concordance for the selected model (limited set of covariates) was preserved in the group of patients
newly started on systemic therapy (“KS subset” of the main MSK cohort validation set, n = 486), with a
time-dependent C-index of 0.74 for the selected DeepHit model (95% CI = 0.67–0.81). The time-dependent
C-index using the KS was 0.60 (95% CI = 0.51-.67) for the KS subset of the main MSK cohort validation
set. Most patients in the KS subset of the main MSK cohort validation set were at low risk of VTE, as 74%
of patients had a KS of 0 or 1 and only 26% had a KS ≥ 2. This is compared to values of 53% and 47%
respectively for a large meta-analysis of studies evaluating the KS.8

Inspection of Model Features
The mean absolute SHAP values were calculated for all the features in the selected model (limited set of
covariates). See Fig. 7 for the mean values (A) and distribution (B) of the top 20 features. Plasma
albumin was the most important feature in the selected DeepHit model, followed by presence of
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metastatic disease. Several other laboratory values were important predictors of the risk of VTE, including
plasma electrolytes (sodium, potassium, chloride and calcium), hemoglobin, glucose and alkaline
phosphatase. Higher sodium values, lower chloride and potassium values increased the predicted risk of
VTE. Systemic therapy overall was also an important predictor, with a signi�cant effect noted for
antimetabolites, antimitotics, antitumor antibiotics, platin analogues, immune checkpoint inhibitors and
VEGF inhibitors. Age and sex were among the top 20 features in the model, however only one cancer type
was included. The presence of colorectal cancer was associated with a lower risk of VTE compared with
other cancer types.

External Validation and Transfer Learning
The external MSK cohort included 6,249 patients and was randomly split in at 4:1 ratio into transfer
learning and validation sets. Secondary model A was derived from the main MSK cohort training set
using all the features already included in the �nal model, except for the ones for which values were
unknown in the external MSK cohort (metastatic status and time from procedure; see Supplementary
Table 5). This model was updated by retraining only the weights of the output layer on the transfer
learning set. As a means to assess the added value of transfer learning, the model was also retrained de
novo on the transfer learning set. The time-dependent C-index was 0.71 (95% CI = 0.65–0.77) for
secondary model A before transfer learning, compared with 0.73 (95% CI = 0.66–0.78) after transfer
learning and 0.72 (95% CI = 0.65–0.77) for the newly trained model. C-index for the KS was 0.66 (95% CI 
= 0.59–0.72) on the external MSK cohort validation set. See concordance/classi�cation matrix results in
Table 3; 25% of patients were reclassi�ed accurately by secondary model A. See Fig. 8 for the cumulative
incidence of VTE strati�ed by predicted risk group before transfer learning. Calibration plots are shown in
Supplementary Fig. 2; observed VTE risk was aligned with model predictions except for one interval for
secondary model A before transfer learning (A). All intervals were aligned with observed risk after transfer
learning (B). One predicted risk interval group was misaligned with observed risk in the model trained de
novo (C). The ONCOTHROMB cohort included 358 patients. Secondary model B was derived from the
main MSK cohort training set using all the features already included in the �nal model, except for the
ones for which values were unknown in the ONCOTHROMB cohort (systemic therapy type, sodium,
potassium, chloride, calcium, carbon dioxide, glucose, urea, total protein, AST, ALT and time from
procedure; see Supplementary Table 5). In the ONCOTHROMB cohort, the time-dependent C-index was
0.59 (95% CI = 0.50–0.69) for secondary model B compared to 0.56 for the KS (95% CI = 0.48–0.64). See
concordance/classi�cation matrix results in Table 4; 26% of patients were reclassi�ed accurately by
secondary model B. See Fig. 9 for the cumulative incidence of VTE strati�ed by predicted risk group. The
calibration plot is shown in Supplementary Fig. 3. Predicted risk estimates were outside the con�dence
interval of the observed risk for only one group, however the intervals were broad given the limited
number of patients in this cohort. Albumin was missing for 30% of individuals in this cohort. In the subset
of patients with a reported albumin value (N = 250), The C-index was 0.65 (95% CI = 0.56–0.74) for
secondary model B compared to 0.61 (95% CI = 0.52–0.71) for the KS.
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Table 3
Comparison Between the Khorana Score and Secondary Model A in the External MSK Cohort

  Khorana
Score*

DeepHit Model Risk
Group†

No. Incidence of VTE at 6 months‡
(%)

Concordant Low-Risk Low-Risk 743 3

High-Risk High-Risk 196 19

Reclassi�ed Low-Risk High-Risk 158 11

High-Risk Low-Risk 153 5

*High-risk group includes patients with a Khorana Score greater or equal to 2.

†High-risk de�ned as a predicted cumulative incidence of VTE at 6 months of 9% or greater, using
Secondary model A

‡Observed risk of VTE at 6 months computed using the Aalen-Johansen estimator

Table 4
Comparison Between the Khorana Score and Secondary Model B in the ONCOTHROMB Cohort

  Khorana
Score*

DeepHit Model Risk
Group†

No. Incidence of VTE at 6 months‡
(%)

Concordant Low-Risk Low-Risk 137 8

High-Risk High-Risk 127 16

Reclassi�ed Low-Risk High-Risk 48 13

High-Risk Low-Risk 46 7

**High-risk group includes patients with a Khorana Score greater or equal to 2.

†High-risk de�ned as a predicted cumulative incidence of VTE at 6 months of 9% or greater, using
Secondary model B

‡Observed risk of VTE at 6 months computed using the Aalen-Johansen estimator

Discussion
This is the �rst report of a deep learning model for the prediction of cancer-associated VTE. Our approach
is novel in several aspects. We have included a broad range of solid tumors and considered a diverse
group of patients at all phases of their cancer journey, regardless of systemic treatment status. The latter
allows VTE risk estimation for a much larger population of patients than what is currently possible using
the KS and related prediction rules, as the majority of risk assessment models reported in the literature
only consider patients started on a new chemotherapy regimen, limiting generalizability and applicability
to everyday clinical practice. Additionally, we purposefully selected a model estimating the cumulative
incidence function of VTE adjusting for the competing risk of death, as opposed to computing event
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probability at a �xed 6-month time point. This approach minimizes the potential for bias and allows end
users to compute the risk of VTE at any arbitrary time point during the validated observation period,
providing added �exibility in clinical applications.

The network architecture of the �nal model is conducive to the application of transfer learning, a
methodology which has been studied and applied extensively for neural networks.51 We evaluated
transfer learning with one external dataset. In this case, there was only a trend toward improvement in
model accuracy, arguably because concordance and calibration were already excellent with the original
model; this limited the ability of transfer learning to improve prediction modeling. Transfer learning could
potentially improve calibration when the model is ported to different cohorts and attenuate
inconsistencies in absolute risk estimates, a problem identi�ed in several studies evaluating the KS.52

This approach opens the door to a new paradigm for the prediction of cancer-associated VTE, a world
where models can be adapted to new healthcare settings in order to maximize external validity.

ML has been used by several groups to predict cancer-associated VTE, with encouraging results.53–57

The models presented in those reports were limited to a combination of demographic, cancer-speci�c and
routine laboratory assay predictors. This is the �rst attempt to use ML to estimate the risk of CAT based
on somatic genomic predictors in a large cohort of individuals with a solid tumor. There was no
signi�cant bene�t to adding genomic predictors to a model already including demographic, cancer-
speci�c, laboratory and pharmacological predictors in the cohort including all individuals regardless of
systemic therapy status. These �ndings suggest that even though cancer somatic genetic alterations
contain information about the risk of VTE, redundance exists with other predictors and there is a point at
which adding more covariates yields no marginal bene�t. The gene-speci�c information was limited to a
binary marker for oncogenes and tumor suppressor genes. It is possible that future work using more
granular information (e.g. alteration type, variant allele frequency) and including other genes (e.g.
coagulation factors, cytokines) would result in improved prediction accuracy. Interestingly, albumin was
the most important feature in the �nal model. An association between a decreased serum albumin level
and an increased risk of cancer-associated VTE has been reported previously.58 On the other hand, while
plasma electrolyte levels were important features in the model, those markers have not been previously
reported to be associated with the risk of cancer-associated thrombosis.

Concordance was preserved in the KS subset of the main MSK cohort validation set for the selected deep
learning model using a set of covariates including widely available clinical, pathological and laboratory
predictors. Concordance for this model was superior to what was obtained using the KS. Such
satisfactory performance in the subset of patients starting systemic therapy was con�rmed with a similar
model in the larger external MSK cohort validation set. The latter �ndings are important because this
group of patients commencing cancer treatment is currently the focus of pharmacological VTE
prophylaxis and has been featured prominently in other studies of a predictive model.

The main limitation of this work is the retrospective nature of the model derivation cohort. Relying on
medical records can affect sensitivity and increases the risk of bias in capturing events of interests.
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However, for a cohort of this size (29,751 individuals) prospective VTE event capture would be
prohibitively costly. We feel satisfactory precautions have been taken to ensure reliability of event capture
for this cohort. Notably, the cumulative incidence of VTE was consistent with values reported in other
studies, suggesting a low rate of missed cases. VTE cases were identi�ed in the main MSK cohort using a
novel NLP work�ow, which can conceivably be more sensitive than the use of billing data to �nd relevant
clinical events. Data missingness for covariates is unavoidable for large cohorts and can be problematic
when attempting to �t predictive models. The possible consequences in this case include decreased
model accuracy and more rarely a biased model if missingness is informative and not accounted for
properly during imputation. In this regard, we used multivariate feature imputation which uses the entire
set of available features to estimate the missing values. Also, missing data was not common and limited
to laboratory predictors (missingness between 10% -14% for most of the values with only the carbon
dioxide predictor missing for 36% of its values), so the impact on the �nal model is expected to be low in
the MSK cohorts. However, the substantial rate of missingness noted for albumin in the ONCOTHROMB
cohort might have contributed to inferior performance of the DeepHit model for which this laboratory
value was an important feature. Ultimately the value of the �nal model will greatly depend on its external
validity, i.e. its performance in other healthcare systems. As discussed in a recent set of guidelines for the
standardization of risk prediction model reporting in cancer-associated thrombosis, additional work will
be necessary before implementation in other healthcare systems.59

Conclusion
VTE is an important complication of cancer for which effective pharmacological prophylaxis methods
exist. Currently available prediction rules have limited accuracy in stratifying patients for VTE risk. Future
avenues to improve the overall bene�t of VTE prophylaxis in this group will be contingent on better
methods to quantify risk, a task for which ML is well-suited. The work presented here suggests that deep
learning for survival analysis can be used to estimate the risk of cancer-associated VTE with accuracy.
Future external validation studies are needed to assess generalizability of the model derived with this
cohort. The use of genomic predictors and transfer learning should be further explored and developed.
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Figure 1

Flow Diagram of Patient Selection for the Three Cohorts

A: Main MSK Cohort

B: External MSK Cohort
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C: ONCOTHROMB Cohort

*First sub-cohort consisted of adults with blood control drawn for MSK-IMPACT™ between 2014 and 2016

†Second sub-cohort consisted of adults with blood control drawn for MSK-IMPACT™ between 2017 and
2019

‡Patients randomly allocated, stratifying by event type.
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Figure 2

Diagram of Data Flow

A: The main MSK cohort training set is utilized to derive and assess the performance of models
corresponding to prede�ned feature sets using �ve-fold cross-validation. Three machine learning
algorithms are evaluated: Fine-Gray competing risk regression (FG), random survival forests (RSF) and
DeepHit (DH).

B: The models are compared based on their respective C-index and perceived clinical usefulness. The
feature set corresponding to the best model is selected and used to derive a new model from the entirety
of the main MSK cohort training set.

C: This �nal model is validated on the main MSK cohort validation set.

D: Secondary models A and B are derived using the same feature set as derived in (B), excluding features
for which the values are unknown in the external MSK cohort and the ONCOTHROMB cohort respectively.

E: Secondary model B is validated on the entirety of the ONCOTHROMB cohort.

F: Secondary model A is validated on the external MSK cohort validation set. As an exploratory analysis,
this model is updated on the external MSK cohort transfer learning set and validated on the
corresponding validation set.
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Figure 3

Distribution of Times from Cancer Diagnosis to Main MSK Cohort Entry

Cancer diagnosis time corresponds to �rst pathological evidence of neoplasia and cohort entry is de�ned
by report of MSK-IMPACT™ results.
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Figure 4

Cancer-Associated VTE Cumulative Incidence Functions in the Main MSK Cohort

Cumulative incidence functions were derived from the Kaplan-Meier and the competing risk estimators,
the latter using the Aalen-Johansen method.
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Figure 5

Receiver Operating Characteristic (ROC) Curve for the Selected Model

ROC plot computed using the selected DeepHit model featuring a limited set of covariates �tted on the
main MSK cohort training set and evaluated in the corresponding validation set.
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Figure 6

Cumulative Incidence of VTE Strati�ed by Predicted Risk Group for the Selected Model in the Main MSK
Cohort

Cumulative incidence functions were derived from the competing risk estimators. Patients grouped by
180-day VTE risk interval based on model prediction and using quantile cutoff points.
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Figure 7

Inspection of Model Features

A: Absolute contribution of the 20 features with the highest SHAP values

B: Distribution of SHAP values for the 20 features with the highest contribution
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Figure 8

Cumulative Incidence of VTE Strati�ed by Predicted Risk Group for Secondary Model A in the External
MSK Cohort Validation Set

Cumulative incidence functions were derived from the competing risk estimators. Patients grouped by
180-day VTE risk interval based on model prediction and using quantile cutoff points.
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Figure 9

Cumulative Incidence of VTE Strati�ed by Predicted Risk Group for Secondary Model B in the
ONCOTHROMB Cohort

Cumulative incidence functions were derived from the competing risk estimators. Patients grouped by
180-day VTE risk interval based on model prediction and using quantile cutoff points.

Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

SupplementaryInfo4272023.docx

https://assets.researchsquare.com/files/rs-2870367/v1/faf77d24f2471ed8489bb578.docx

