
General, Open-Source Vertex Modeling in Biological
Applications Using Tissue Forge
T.J. Sego (timothy.sego@u�.edu)

University of Florida
Tien Comlekoglu

University of Virginia
Shayn M. Peirce

University of Virginia
Douglas Desimone

University of Virginia
James A. Glazier

Indiana University

Article

Keywords:

Posted Date: May 8th, 2023

DOI: https://doi.org/10.21203/rs.3.rs-2886960/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Additional Declarations: No competing interests reported.

https://doi.org/10.21203/rs.3.rs-2886960/v1
mailto:timothy.sego@ufl.edu
https://doi.org/10.21203/rs.3.rs-2886960/v1
https://creativecommons.org/licenses/by/4.0/

General, Open-Source Vertex Modeling in Biological Applications Using Tissue

Forge

T.J. Sego1*, Tien Comlekoglu2, 3, Shayn M. Peirce2, Douglas Desimone3, James A. Glazier4

1 Department of Medicine, University of Florida, Gainesville, FL, USA

2 Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA

3 Department of Cell Biology, University of Virginia, Charlottesville, VA, USA

4 Department of Intelligent Engineering and Biocomplexity Institute, Indiana University,

Bloomington, IN, USA

* timothy.sego@ufl.edu

Abstract

Vertex models are a widespread approach for describing the biophysics and behaviors of

multicellular systems, especially of epithelial tissues. Vertex models describe a wide variety of

developmental scenarios and behaviors like cell rearrangement and tissue folding. Often, these

models are implemented as single-use or closed-source software, which inhibits reproducibility

and decreases accessibility for researchers with limited proficiency in software development and

numerical methods. We developed a physics-based vertex model methodology in Tissue Forge,

an open-source, particle-based modeling and simulation environment. Our methodology

describes the properties and processes of vertex model objects on the basis of vertices, which

allows integration of vertex modeling with the particle-based formalism of Tissue Forge,

enabling an environment for developing mixed-method models of multicellular systems. Our

methodology in Tissue Forge inherits all features provided by Tissue Forge, delivering open-

source, extensible vertex modeling with interactive simulation, real-time simulation visualization

and model sharing in the C, C++ and Python programming languages and a Jupyter Notebook.

Demonstrations show a vertex model of cell sorting and a mixed-method model of cell migration

combining vertex- and particle-based models. Our methodology provides accessible vertex

modeling for a broad range of scientific disciplines, and we welcome community-developed

contributions to our open-source software implementation.

Introduction

Epithelial sheets are instrumental in diverse physiological functions and in maintaining

the mechanical integrity of many tissues and organs. Understanding the mechanics and dynamics

of epithelial tissue is central to research on morphogenesis of tissues and organs early in

development and wound healing of physiologically complex tissues 1. Vertex modeling has been

https://sciwheel.com/work/citation?ids=260894&pre=&suf=&sa=0&dbf=0

2

particularly useful in understanding the mechanics of confluent epithelial tissues, especially the

movement of cells within epithelial sheets and the bending of epithelial sheets.

Vertex models (VMs) are off-lattice models where individual bodies (usually

representing cells) are represented by polygons in two dimensions and polyhedrons in three

dimensions, and tissues are represented by a connected mesh of these polygons or polyhedral

elements. Neighboring bodies share vertices and edges, and faces in three dimensions, and the

motion of the vertices is dictated by approximations of the mechanical interactions within and

between the bodies, faces, and edges, which result in drag and forces that act upon the vertices.

VMs have been applied to study a variety of physical phenomena, from the rheology of foams

and soap bubbles to those of biological tissues 2–5. Vertex methods have been increasingly

adopted to investigate biological tissue morphogenesis, convergent extension, ventral furrow

formation, and neurulation among others 6–8.

The original two-dimensional (2D) VM, where polygonal bodies are connected in a flat

or deformed plane, has been extended to more complicated formulations. We refer to these as

2.5-dimensional (2.5D) or three-dimensional (3D), where bodies are represented as a monolayer

quasi-cylindrical of 3D polyhedra (2.5D) or a bulk mesh aggregate of polyhedra (3D) 9. VMs can

reproduce common topological transitions of vertices, edges, and faces and body rearrangement

within the mesh representation of a tissue as a result of forces generated within cells, such as

anisotropic or differential contraction of edges resulting from actomyosin contraction, or external

forces applied to tissues. Topological processes include adjacent bodies coming into contact and

extending a shared edge while detaching two previously adjacent bodies and destroying their

shared edge (a two dimensional T1 transition), multiple T1 transitions resulting in the classic

“rosette formation” phenomenon, cell extrusion from the epithelial sheet (or disappearance of a
cell) represented by collapsing a face into a vertex (T2 transition), formation of new contacts

between bodies as they collide (T3 transition), and division of a body into two adjacent bodies to

represent, for example, mitosis (Division). These behaviors emerge from the explicit

representation of resultant forces on discrete vertices. Resultant forces are calculated as the sum

of explicit forces with a gradient of an “effective energy” functional that integrates mathematical
representations of multiple physical processes. This combination of explicit forces and effective-

energy-based forces is also used in Cellular Potts (Glazier-Graner-Hogeweg), center- and

particle-based modeling methods 10. For further discussion of VMs, their applications, and

numerical methods, we recommend the reviews by Fletcher et al. and Alt, Ganguly, and Salbreux
11,12.

Studying epithelial dynamics at relevant biological scales necessitates the construction of

reproducible, reusable computational models 13. Most software implementations of published

VMs are either not publicly available, or are single-use implementations with limited to no

support for usage and extension by others. While some publicly available software exist for

general development and application of VMs 14,15, so far none supports model specification in

multiple programming languages with features to overall research productivity like real-time

data visualization, event-based modeling and interactive simulation. Here, we introduce a novel,

physics-based VM methodology and its implementation in the Tissue Forge interactive

https://sciwheel.com/work/citation?ids=14315589,14315596,14315598,12009769&pre=&pre=&pre=&pre=&suf=&suf=&suf=&suf=&sa=0,0,0,0&dbf=0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=9175756,14176043,7964597&pre=&pre=&pre=&suf=&suf=&suf=&sa=0,0,0&dbf=0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=13189246&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=10208403&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=1084233,4836177&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0
https://sciwheel.com/work/citation?ids=13362781&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=7378452,12801803&pre=&pre=&suf=&suf=&sa=0,0&dbf=0&dbf=0

3

biophysics modeling and simulation environment 16. This methodology allows for

computationally efficient handling of mesh topology expected of the VM formalism and enables

general VM development and application through generalization of dynamical models that can

be applied to a mesh. Implementation of the VM methodology in Tissue Forge provides all

capabilities already available in Tissue Forge, such as event-based modeling, interactive

simulation, support for the C, C++ and Python programming languages and Jupyter Notebook

execution, model and simulation data sharing, and real-time simulation visualization, as well as

seamless integration of VMs with particle-based and subcellular modeling methods. For

instructions on installing Tissue Forge v0.1.0, which includes the work presented here, see

Supplementary 1.

Models and Methods

The VM methodology describes the dynamics, properties and processes of model objects

constructed from vertices in a mesh. A vertex in the VM methodology represents a region of

space. All space that is described by a VM is contained within the mesh, and the topology of the

mesh describes kinematic relationships between the regions of space represented by a vertex.

The topology of a mesh is defined in terms of higher-dimensional mesh objects. A surface is a

two-dimensional mesh object that occupies a simply connected area and has a perimeter, normal

vector and straight edges. A body is a three-dimensional mesh object that occupies a connected

volume. All VM objects ultimately resolve to a set of vertices with relationships that define the

topology of the mesh, and all VM properties and dynamics resolve to properties and dynamics of

vertices according to the mesh objects that the vertices define. As such, vertices in the VM

methodology have defined measures like area and volume according to the higher-dimensional

VM objects that they define so that model physics on the basis of higher-dimensional mesh

object consistently translate to physics on the basis of vertices. This is to say, models that define

physics for higher-dimensional objects (e.g., a force on a surface) ultimately produce forces that

act on the vertices that define those higher-dimensional objects. The VM methodology defines

two classes of temporal processes in VM dynamics, which either act continuously in time to

update vertex position, or discretely in time to change mesh topology. In general, a total force 𝑓𝑖𝒱(𝒱) acts on each vertex 𝒱 and updates its position according to overdamped dynamics where,

for vertex position 𝑟𝑖(𝒱) and drag 𝑀𝒱(𝒱), 𝑓𝑖𝒱(𝒱) = 𝑀𝒱(𝒱) 𝑑𝑟𝑖(𝒱)𝑑𝑡 . (1)

Topological Structure and Properties

A vertex can define an arbitrary number of surfaces, and a surface is defined by an ordered set of

three or more vertices. For a surface 𝒮𝑖 and vertices 𝒱𝑖1 , 𝒱𝑖2 , … that define the surface, we write

the surface as the cycle 𝒮𝑖 = {𝒱𝑖1 , 𝒱𝑖2 , … } and 𝒱𝑖1 ∈ 𝒮𝑖 when describing a vertex that defines a

surface. A surface can define at most two bodies, and a body is defined by an unordered set of

four or more surfaces with appropriately shared vertices to enclose a connected volume. For a

body ℬ𝑗 and surfaces 𝒮𝑗1 , 𝒮𝑗2 , … that define the body, we also write the body as the set ℬ𝑗 =

https://sciwheel.com/work/citation?ids=14204346&pre=&suf=&sa=0&dbf=0

4

{𝒮𝑗1 , 𝒮𝑗2 , … } and 𝒮𝑗1 ∈ ℬ𝑗 when describing a surface that defines the body. For a mesh ℳ, a

vertex in a three-dimensional VM can then be succinctly written as 𝒱𝑖 ∈ 𝒮𝑗 ∈ ℬ𝑘 ∈ ℳ, and

likewise for a two-dimensional VM as 𝒱𝑖 ∈ 𝒮𝑗 ∈ ℳ. Resolving a body ℬ to its constituent

vertices is also defined as the operator 𝒵(ℬ), 𝒵(ℬ) = {𝒱 ∶ 𝒱 ∈ 𝒮 ∈ ℬ} (2)

The VM methodology does not explicitly define edges, since each edge connects two vertices

and so is implicitly described by the cycles of vertices that define surfaces (e.g., two adjacent

vertices in a cycle implies an edge). This convention and the definition of a surface, namely that

edges are straight, provide sufficient information to identify and describe all edges of the mesh.

We do sometimes refer to edges, which we mean only in the graph-theoretic sense. We describe

two vertices joined by an edge as connected, and the same for two surfaces that share at least one

vertex, and for two bodies that share a surface.

The VM methodology imposes that each surface is a flat, convex polygon so that a

surface can be described using a triangulation according to its constituent vertices. Each vertex

that defines a surface defines two triangles of the surface, and all triangles of a surface share a

point at the centroid of the surface. For surface 𝒮, the centroid of the surface 𝐶𝑖𝒮(𝒮) is the mean

of the positions of the vertices that define the surface, 𝐶𝑖𝒮(𝒮) = 1|𝒮| ∑ 𝑟𝑖(𝒱)𝒱∈𝒮 . (3)

A triangulation 𝑇(𝒮𝑗) = {𝒯𝑗1 , 𝒯𝑗2 , … } of surface 𝒮𝑗 defines local normal vectors and

contributions of area and volume on the basis of vertices. Each triangle 𝒯𝑗𝑘 = {𝒱𝑗𝑘 , 𝒱𝑗𝑘+1} ⊂ 𝒮𝑗

is geometrically described by positions {𝑟𝑖(𝒱𝑗𝑘), 𝑟𝑖(𝒱𝑗𝑘+1), 𝐶𝑖𝒮(𝒮𝑗)}. The normal vector 𝜂𝑖𝒮(𝒮)

of a surface 𝒮 is defined as the normalized sum of normal vectors 𝜂𝑖𝒯 of the triangles in the

triangulation of 𝒮,

𝜂𝑖𝒮(𝒮) = ∑ 𝜂𝑖𝒯(𝒯)𝒯∈𝑇(𝒮)‖∑ 𝜂𝑖𝒯(𝒯)𝒯∈𝑇(𝒮) ‖. (4)

The normal vector of a triangle 𝒯𝑗 = {𝒱𝑗1 , 𝒱𝑗2} is calculated using the cross product of the

positions of the vertices that define the triangle relative to the centroid of the surface, 𝜂𝑖𝒯(𝒯𝑗) = 𝜖𝑖𝑚𝑛 (𝑟𝑚(𝒱𝑗1) − 𝐶𝑚𝒮 (𝒮)) (𝑟𝑛(𝒱𝑗2) − 𝐶𝑛𝒮(𝒮)) , 𝒯𝑗 ∈ 𝑇(𝒮). (5)

Here 𝜖𝑖𝑚𝑛 is the permutation tensor.

The area 𝐴𝒮(𝒮) of surface 𝒮 is defined as the sum of areas 𝐴𝒯 of the triangles in the

triangulation of 𝒮,

5

𝐴𝒮(𝒮) = ∑ 𝐴𝒯(𝒯)𝒯∈𝑇(𝒮) , (6)

where the area of a triangle 𝒯 is calculated using (5), 𝐴𝒯(𝒯) = 12 ‖𝜂𝑖𝒯(𝒯)‖. (7)

It follows that the surface area 𝐴ℬ(ℬ) of a body ℬ is the sum of areas of the surfaces that define

the body, 𝐴ℬ(ℬ) = ∑ 𝐴𝒮(𝒮)𝒮∈ℬ , (8)

and the centroid 𝐶𝑖ℬ(ℬ) is the weighted sum of the centroids of all surfaces that define the body, 𝐶𝑖ℬ(ℬ) = 1𝐴ℬ(ℬ) ∑ 𝐶𝑖𝒮(𝒮)𝐴𝒮(𝒮)𝒮∈ℬ . (9)

The area 𝐴𝒱(𝒱) of a vertex 𝒱 is defined as the sum of area contributions 𝐴𝒱,𝒮(𝒱; 𝒮) over all

surfaces defined by the vertex, 𝐴𝒱(𝒱) = ∑ 𝐴𝒱,𝒮(𝒱; 𝒮)𝒮∶𝒱∈𝒮 , (10)

where each vertex is assumed to contribute half of the area of each triangle that it defines, 𝐴𝒱,𝒮(𝒱; 𝒮) = 12 ∑ 𝐴𝒯(𝒯)𝒯∈𝑇(𝒮)∶𝒱∈𝒯 . (11)

The volume 𝑉ℬ(ℬ) of a body ℬ is defined using the Divergence Theorem in terms of the

volume contributions 𝑉𝒮 of each surface that defines the body, 𝑉ℬ(ℬ) = ∑ 𝛼(ℬ, 𝒮)𝑉𝒮(𝒮)𝒮∈ℬ . (12)

Here 𝛼(ℬ, 𝒮) = 1 when the normal vector of surface 𝒮 is outward-facing with respect to body ℬ,

and 𝛼(ℬ, 𝒮) = −1 when the normal vector of 𝒮 is inward-facing. The volume contribution of

each surface is defined as a summation of volume contributions 𝒱𝒯 of the triangles in the

triangulation of the surface, 𝑉𝒮(𝒮) = ∑ 𝑉𝒯(𝒯)𝒯∈𝑇(𝒮) , (13)

6

and the volume contribution of each triangle is calculated using (3) and (5), 𝑉𝒯(𝒯) = 16 𝐶𝑖𝒮(𝒮)𝜂𝑖𝒯(𝒯), 𝒯 ∈ 𝑇(𝒮). (14)

It follows that the volume 𝑉𝒱(𝒱) of a vertex 𝒱 is the sum of volume contributions of the vertex

to each body that it defines, 𝑉𝒱(𝒱) = ∑ 𝑉𝒱,ℬ(𝒱; ℬ)ℬ∶𝒱∈𝒵(ℬ) , (15)

where the volume contribution of a vertex to a body is defined as proportional to the volume of

the body (12) and relative area contribution of the vertex to the body using (8) and (11), 𝑉𝒱,ℬ(𝒱; ℬ) = 𝑉ℬ(ℬ)𝐴ℬ(ℬ) ∑ 𝐴𝒱,𝒮(𝒱; 𝒮)𝒮∈ℬ . (16)

The vertex drag 𝑀𝒱 of (1) is derived by considering the equivalent equation of motion for a

body when treated as a particle. The VM methodology assumes that a body ℬ subjected to a

uniformly applied force exhibits a corresponding bulk displacement proportionally to a drag 𝜌(ℬ)𝑉ℬ(ℬ) and experiences no deformation. On the basis of vertices, the equivalent drag of a

vertex with respect to a body is then equal to the volume contribution of the vertex to the body

and body drag parameter 𝜌(ℬ) such that 𝑀𝒱(𝒱) = ∑ 𝜌(ℬ)𝑉𝒱,ℬ(𝒱; ℬ)ℬ∶𝒱∈𝒵(ℬ) . (17)

For a two-dimensional VM, the same derivations hold but for surfaces using (11).

Actors

The structure of the VM methodology provides a consistent framework for defining VM

properties and processes on the basis of various mesh objects and deriving their corresponding

forces on the vertices that define those mesh objects. In general, we refer to a model that

produces forces on vertices to implement a VM object property or process an actor. The

definition of an actor can consist of explicit or implicit forces that result from the configurations

of various mesh objects, so long as it resolves to a description of forces on vertices. Typical

biological models include multiple actors, and the VM methodology assumes that all actors act

simultaneously.

Explicit traction forces that uniformly act on a surface directly translate to forces acting

on the vertices of the surface using (11). For a uniform traction force 𝜏𝑖(𝒮) acting on surface 𝒮,

a corresponding force 𝑓𝑖𝒱,𝒮(𝒱; 𝒮) acts on each vertex 𝒱 that defines the surface,

7

𝑓𝑖𝒱,𝒮(𝒱; 𝒮) = 𝐴𝒱,𝒮(𝒱; 𝒮)𝜏𝑖(𝒮), 𝒱 ∈ 𝒮. (18)

Likewise, body forces that uniformly act on a body directly translate to forces acting on the

vertices of the body using (16). For a uniform body force 𝑓𝑖ℬ(ℬ) acting on body ℬ, a

corresponding force 𝑓𝑖𝒱,ℬ(𝒱; ℬ) acts on each vertex 𝒱 that defines the surfaces of the body,

𝑓𝑖𝒱,ℬ(𝒱; ℬ) = 𝑉𝒱,ℬ(𝒱; ℬ)𝑉ℬ(ℬ) 𝑓𝑖ℬ(ℬ), 𝒱 ∈ 𝒵(ℬ). (19)

Energy-based actors can define forces through a scalar-valued function that defines an

effective energy. Any effective energy that can be written in terms of the position of one or more

vertices implicitly describes forces acting on those vertices, where the forces act to minimize the

effective energy. In general, an effective energy function ℋ that can be written in terms of the

position of a vertex 𝒱 implicitly describes a corresponding force 𝑓𝑖𝒱,ℋ(𝒱), 𝑓𝑖𝒱,ℋ(𝒱) = − 𝜕ℋ𝜕𝑟𝑖(𝒱). (20)

For example, suppose an effective energy ℋ𝑎𝑑ℎ(ℬ1, ℬ2) describes adhesion between bodies ℬ1

and ℬ2. A scalar-valued monotonic function of the area of their shared surfaces (i.e., ℬ1⋂ℬ2)

produces compressive forces in shared surfaces when the function is monotonically increasing,

and tensile forces in shared surfaces when the function is monotonically decreasing. In the

simplest case, a linear function of surface area as defined in (6) and an adhesion parameter 𝜆𝑎𝑑ℎ(ℬ1, ℬ2) can produce such behavior, ℋ𝑎𝑑ℎ(ℬ1, ℬ2) = 𝜆𝑎𝑑ℎ(ℬ1, ℬ2) ∑ 𝐴𝒮(𝒮)𝒮∈ℬ1⋂ℬ2 .
(21)

Using (6), (7), (5) and (3), (20) can produce a compact expression for the force 𝑓𝑖𝒱,𝑎𝑑ℎ(𝒱)

acting on each relevant vertex according to (21),

𝑓𝑖𝒱(𝒱) = − 𝜆𝑎𝑑ℎ(ℬ1, ℬ2)2 ∑ ∑ 𝜕‖𝜂𝑗𝒯(𝒯)‖𝜕𝑟𝑖(𝒱)𝒯∈𝑇(𝒮)𝒮∈ℬ1⋂ℬ2 , ∀𝒱 ∈ 𝒵(ℬ1⋂ℬ2). (22)

Currently available actors developed in this work are described in Implementation.

Dynamic Topology

Changes in mesh topology are temporally discrete events. These events occur whenever

connectedness of mesh objects change or when mesh objects are created or destroyed (e.g., at

mitosis, cell death, junctional rearrangement). The VM methodology supports changes to the

topology of a mesh while enforcing the defined rules for mesh objects (e.g., a surface is a cycle

of three or more vertices). The VM methodology applies local operations that transform the

8

topology of the mesh to improve the quality of the mesh, called quality operations. For example,

when the area of a surface becomes sufficiently small, the VM methodology converts the surface

into a vertex (i.e., a T2 transformation, Figure 1). In general, a quality operation can occur when

its condition is satisfied, and the connectivity of each mesh object can be affected by a quality

operation at most once per simulation step. This work primarily focuses on quality operations for

two-dimensional simulations. The transformations on three-dimensional meshes are more

complex and we will discuss them in future work. For example, a geometric criterion for the T2

transformation is well defined (see below) but, to our knowledge, no general criterion exists to

define a reverse T2 transformation in a three-dimensional VM, which would describe the

topological dynamics of the surfaces of a cell infiltrating across a monolayer (e.g., during

transendothelial extravasation by neutrophils).

Figure 1. Examples of automatic mesh quality operations in two-dimensional simulation. Vertices are merged when they are too

close (“Vertex merge”) and a vertex splits if the resulting edge is predicted to grow (“Vertex split”, top row). A surface becomes
a vertex if its area is too small (“Surface demote”, middle row). Two surfaces collide if a vertex from a surface penetrates the
perimeter of a nearby surface (“Vertex insert”, bottom row). Quality operations on bodies convert a body to a vertex when the
volume of the body is too small. T1 and T3 transformations are completely reversible by automatic mesh quality operations,

whereas T2 transformations can be reversed by replacing a vertex with a surface.

When two connected vertices approach each other, the area of the triangle that they both

define goes to zero according to (5) and (7). As such, the two vertices are merged into one

9

vertex in a vertex merge operation (Figure 1, top row left). The vertex merge operation is

restricted to only occur for vertices that define surface cycles of four or more vertices, since the

operation decrements the number of vertices that define at least one surface. One vertex of a

vertex merge operation is randomly selected for removal, and the removed vertex is replaced by

the remaining vertex in the cycle of all surfaces that the removed vertex defines.

A vertex split operation creates a new, connected vertex from an existing vertex (Figure

1, top row right). The criterion for the vertex split operation is adapted from 17, which derives an

analytic expression for the growth rate of an edge that would be created during a candidate

vertex split from a given effective energy and vertex connectivity, and accepts the vertex split on

the condition that the edge would grow. Since the VM methodology does not impose any set of

actors or upper bound on the connectedness of a vertex, it instead employs an approximation for

the growth rate of an edge that would be created by a candidate vertex split operation using the

connectedness of a vertex and local forces (Figure 2). The total relative force on all connected

vertices of the candidate vertex is calculated relative to the force acting on the candidate vertex.

A candidate topology is calculated from a cut plane that intersects the candidate vertex and

normal to the total relative force on all connected vertices. In the candidate topology, the two

vertices of the split are connected and separated by a small and equal displacement along or

opposite the normal of the cut plane, moving from the candidate vertex, and all vertices

connected to the candidate vertex are instead connected to whichever vertex of the split is on the

same side of the cut plane. The total relative force on all connected vertices of each vertex of the

split is calculated, excluding the force contribution by the vertices of the split, where each vertex

of the split is assumed to experience half the force experienced by the candidate vertex. The

vertex split operation is accepted when the total relative force on each vertex of the split is

oriented away from the cut plane (i.e., when the new edge is in tension). It follows that a T1

transformation consists of consecutive vertex merge and vertex split operations.

https://sciwheel.com/work/citation?ids=14176039&pre=&suf=&sa=0&dbf=0

10

Figure 2. Diagram of a possible vertex split operation on a candidate vertex. The total relative force (green arrow) on connected

vertices is calculated with respect to the force acting on a candidate vertex (top left). A candidate topology is calculated from a

cut plane that intersects the candidate vertex with a normal along the total relative force, which places two vertices of the split

operation on opposite sides of the cut plane and separated by a small distance (i.e., the “split distance”, bottom left). The vertex

split operation is accepted when the newly created edge of the vertex split operation (green dashed line) is predicted to be in

tension (top right) and rejected when in compression (bottom right). Circles and lines indicate vertices and edges, respectively.

Blue and orange vertices indicate the vertices that define two different surfaces in the candidate topology. Blue and orange

arrows indicate the total relative force on each vertex of the split operation in the candidate topology.

Like the vertex merge operation, the VM methodology defines the surface demote

operation to handle when a surface becomes too small (Figure 1, middle row). In such a scenario,

the area of the surface goes to zero according to (6), as does the area of all triangles of its

triangulation according to (7) and the area contribution of the vertices that define it according to

(11). The surface demote operation handles this scenario by creating a new vertex at the

centroid of the surface according to (3) and then replacing the surface with the new vertex.

Connectivity of the new vertex is determined by replacing all vertices in the cycle of the

removed surface with the new vertex in the cycle of each surface that was connected to the

removed surface (Figure 3A). For connected surface cycles with multiple replaced vertices (i.e.,

one or more edges), the replacement inserts the new vertex once. Connected surface cycles with

less than three vertices as a result of the replacement are also removed to prevent invalid mesh

topologies. The surface demote operation only occurs for surfaces that do not define body sets of

four surfaces, since the operation decrements the number of surfaces in all body sets that contain

the removed surface. As such, the surface demote operation cannot remove a body from a mesh

but can remove one or more connected surfaces, which significantly decreases the algorithmic

complexity of handling topological changes. The surface demote operations performs a T2

transformation.

11

Figure 3. Automatic mesh quality operations can convert surfaces and bodies to a vertex. A: Schematic of a surface demote

operation, which converts a surface to a vertex. Beginning with an initial set of connected surfaces (top), a surface is selected for

conversion to a vertex (middle, red). A new vertex (green dot) is created at the centroid of the selected surface, and the

connectivity of the new vertex (green lines) is determined by replacing the vertices of the converted surface that define surfaces

connected to it (relevant edges shown as blue lines). Connected surfaces that are invalidated by the operation are also removed

(bottom). B: Consecutive body demote operations, which convert a body to a vertex, on a mesh of connected cubes. From top to

bottom, cubes are selected (white) and made to reduce their volume to zero, resulting in a body demote operation. A body demote

operation that does not invalidate any other body only converts its target body to a vertex, but any invalidated body is also

converted to the resulting vertex (bottom two rows).

The VM methodology defines the body demote operation to handle when a body becomes

too small. When a body becomes too small, its volume goes to zero according to (12), and so on

for the area of each surface in its set, the area of each triangle, and the area and volume

contributions of each vertex. The body demote operation creates a new vertex at the centroid of

the body according to (9) and then replaces the body with the new vertex. The body demote

operation also removes all bodies that are invalidated by the operation, as well as the surfaces

that define them but no remaining bodies (Figure 3B). The body demote operation first

determines which, if any, additional bodies are removed by the following algorithm,

1. Initialize the current set of removed bodies as the removed body of the body demote

operation.

12

2. Get the current set of surfaces of the current set of removed bodies.

3. Get all surfaces that would be removed by performing a surface demote operation on

each surface in the current set of surfaces.

4. Add any bodies to the current set of removed bodies that are invalidated by 3.

5. If any bodies were added to the current set of removed bodies in 4, then go to 2.

After determining which bodies are removed, the body demote operation removes those bodies

and the surfaces that only define them. The body demote operation then performs a surface

demote operation on each surface that defines both one of the bodies that was removed and a

body that was not removed.

The VM methodology defines the vertex insert operations to handle when two

unconnected surfaces collide. When a vertex of a surface penetrates the edge of an unconnected

surface, the vertex is inserted into the cycle of the unconnected surface, between the two vertices

of the penetrated edge. The vertex insert operation performs the T3 transformation. Note that a

vertex split operation can disconnect two connected surfaces if they share only one vertex

(Figure 1, bottom row).

Implementation

The VM methodology is implemented as a module and solver of Tissue Forge, a particle-based

modeling and simulation environment 16. The Tissue Forge module, which we refer to as the VM

module, consists of 1) a user interface for model object-, type- and event-based specification and

mesh creation and manipulation; 2) methods for simulation data visualization, importing and

exporting; and 3) the solver, which we refer to as the VM solver. In the Tissue Forge

implementation, a vertex corresponds to an underlying Tissue Forge particle. The VM solver

translates a VM specification and the configuration of a mesh into properties of, and forces on,

those Tissue Forge particles for integration according to (1) for a domain with no-flux boundary

conditions. After Tissue Forge updates the position of each particle using explicit time

integration, the solver then implements quality operations according to the configuration of the

mesh.

The VM solver automatically disables the vertex insert operation when three-dimensional

objects are present in a simulation, since quality operations for three-dimensional collisions are

not currently defined. Hence, three-dimensional collision detection is reserved for future work.

The VM module provides an interface to particularize all parameters associated with each quality

operation (e.g., split distance, Figure 2), or to completely disable all quality operations (i.e.,

simulate a static topology). The VM solver also implements VMs with fixed vertex drag by

default, and uses the variable formalism for vertex drag presented in this manuscript when a

model specification provides a drag parameter as in (17).

Like the rest of current Tissue Forge (v0.1.0), the VM module supports modeling and

simulation in the C, C++ and Python programming languages, and interactive simulation in

IPython and Jupyter Notebooks. Custom simulations events (e.g., mesh object creation,

modification and destruction) can occur at any time during simulation. VM simulations can be

saved and loaded to and from file, and mesh objects can be created using exported data from

https://sciwheel.com/work/citation?ids=14204346&pre=&suf=&sa=0&dbf=0

13

popular mesh modeling software like Blender in various three-dimensional data formats (e.g.,

“.blend”, “.obj”, “.stl”).

The VM module follows the main principles of the Tissue Forge user interface for

specifying objects and dynamics in a model. A two-dimensional Tissue Forge VM specification

defines surface types, and a three-dimensional specification also defines body types. Surface and

body types are categorical descriptors by which surface and body instances, respectively, are

identified for type-based model descriptions. As such, each surface is an instance of a surface

type, and each body is an instance of a body type. A Tissue Forge VM specification creates

instances of actors and applies them to mesh objects by instance or type, which in Tissue Forge

is called binding. Binding actors to mesh objects and types is additive in that successive binding

operations of various actors to the same object or type constructs a summation of model terms

that describe the dynamics of the object or type. Actors allow modifications to the parameters of

the model that they implement so that the dynamics of objects or types can be changed during

simulation. At the time of writing this manuscript, the VM module provides the following actors

for binding to surfaces and surface types,

Adhesion. Models adhesion as a compressive or tensile force that acts along the shared

edges of connected surfaces

Convex Polygon Constraint. Imposes a force so that surfaces are convex. Automatically

applied

Edge Tension. Applies a tensile force between connected vertices of surfaces

Flat Surface Constraint. Imposes a force so that surfaces are flat. Automatically applied

Normal Stress. Uniformly applies a force on surfaces along their normal vector

Perimeter Constraint. Applies a force between connected vertices of surfaces so that

their perimeter tends towards a value

Surface Area Constraint. Applies a surface pressure so that the area of surfaces tends

towards a value

Surface Traction. Uniformly applies a force over surfaces

For bodies and body types, the VM module provides the following actors,

Adhesion. Models adhesion as a compressive or tensile force that acts on the shared

surfaces of connected bodies

Body Force. Uniformly applies a force over bodies

Surface Area Constraint. Applies a surface pressure so that the surface area of bodies

tends towards a value

Volume Constraint. Applies a pressure so that the volume of bodies tends towards a

value

Expressions for all implemented actors are available in Supplementary 2. The software

implementation of the actor formalism facilitates community-driven development and project-

specific customization by modularizing each actor into separate source code with a simple

interface. Adding a new actor to the VM module, including loading from and saving to file and

14

adding to all supported software language interfaces, almost entirely consists of developing the

source code to implement the actor itself.

The VM module supports constructing and modifying a mesh at various levels of detail.

Individual mesh objects can be manually constructed and assembled (e.g., explicitly creating

vertices, then surfaces from vertices, then bodies from surfaces; splitting a surface or body into

two), and the VM solver will respect the topology of the assembled mesh. The VM module

provides a library of functions for rapidly generating primitive two- and three-dimensional

meshes, which can be further refined into more complex meshes (Figure 4A). Mesh objects can

also be constructed from imported data in three-dimensional file formats using built-in Tissue

Forge functionality (Figure 4B and C). Mesh manipulations can also be performed during

simulation through Tissue Forge events, which allows for implementing model events like cell

division and wounding a tissue. The VM solver also provides support for using various Tissue

Forge modeling features like explicit forces or bonded interactions (Figure 4D).

15

Figure 4. Select examples of vertex model capabilities in Tissue Forge. A: Mesh generators can quickly assemble simple meshes

(left), which can be subsequently transformed into different shapes and topologies (right). B: Complex 3D meshes describing

tissue structures like a vasculature are developed in mesh-editing software like Blender and imported to create executable vertex-

model meshes. See Supplementary 3 and 4. C: Detailed views of the Tissue Forge mesh that was generated from the imported

Blender mesh shown in B. D: A model can impose event-based manipulations on a mesh during simulation, or apply modeling

features from Tissue Forge. From left to right, a two-dimensional tissue is wounded during simulation by removing a surface, and

contractility is applied to every edge along the wound using Tissue Forge bonded interactions.

The VM solver employs a number of performance-enhancing strategies to provide real-

time, interactive VM simulation. Vertices, surfaces and bodies are stored in contiguous blocks of

16

memory, which are automatically reallocated if more mesh objects are requested during a

simulation. Each vertex, surface and body is assigned a unique identification integer that

corresponds to its location in the array of vertices, surfaces and bodies, respectively. The VM

module user interface provides handles to safely interact with mesh objects during simulation

(e.g., in the event of memory reallocation). Each mesh object stores a reference to all mesh

objects that define it, and to those that it defines, which are also refreshed during reallocation of

mesh objects. This internal referencing scheme leverages the actor formalism, which implements

a model in terms of forces on vertices, to safely parallelize the computations of VM dynamics

over all mesh vertices. Rendering is parallelized over surfaces, and surfaces are rendered by

assembling triangles according to the triangulation of each surface.

Quality operations are parallelized such that all changes to mesh topology in a simulation

step occur in parallel without race conditions. We consider operations at each level of the

hierarchy of mesh objects from most primitive (vertices) to most complex (bodies). For each

level of the hierarchy, we calculate all operations that could happen. We accept operations that

do not affect any mesh object that is affected by any other operation, or that was affected by

operations at previously evaluated levels of the hierarchy. We order the evaluation of operations

by assigning a priority to each operation based on the mesh object that “owns” the operation,
where the priority of the operation increases with decreasing identification integer of the owning

mesh object. For vertex merge operations, the vertex with the lesser identification integer owns

the operation. For vertex split operations, the vertex that splits owns the operation. For surface

and body demote operations, the removed surface and body, respectively, owns the operation.

For vertex insert operations, the penetrated surface owns the operation. Creation and destruction

of mesh objects are serial procedures, since they affect contiguous memory of stored mesh

objects (and particles, in the case of vertices). We also require that each operation leaves the

mesh in a valid state (e.g., no surfaces with less than three vertices) to eliminate the need for

mesh cleanup after all operations are performed, and also to make each operation available for

mesh modification during simulation construction. Otherwise, parallelization of operations

employs standard multithreading features (e.g., mutexes) to evaluate all operation criteria and

perform all operation-specific peripheral calculations in parallel. Rendering is parallelized over

surfaces, and surfaces are rendered by assembling triangles according to the triangulation of each

surface.

Results

This section presents results using the VM methodology as described in Models and Methods.

Results are intended to convey some (but not all) of the most critical features and capabilities of

the VM methodology relevant to applications in cell-based spatial modeling. All models were

developed with unitless dimensions and simulated using our implementation in Tissue Forge.

Cell Sorting

Multicellular aggregates of two different types, when initially randomly distributed, will

rearrange by type. The differential adhesion hypothesis proposes that rearrangement by type

17

occurs through minimization of intercellular adhesion energy 18. The same has been shown using

cell-based modeling methodologies like the Cellular Potts model 19 and vertex modeling 20.

The Tissue Forge implementation of the VM methodology well supports modeling and

simulation of cell sorting in multicellular aggregates. We reproduced the two-dimensional cell

sorting simulation from 20 using the built-in actors provided in the Tissue Forge implementation

of the VM methodology. The VM of cell sorting represents each cell as a surface, and models a

deformable cell area using a surface area constraint, cell circularity using a perimeter constraint,

intercellular adhesion (e.g., cadherins, homophilic and heterophilic adhesion), cell-environment

adhesion using edge tension, and random motility using a Tissue Forge built-in random force

(applied to vertices). The total effective energy of each cell 𝒮 of type 𝜏(𝒮) for the surface area

constraint, perimeter constraint, edge tension and adhesion is ℋ(𝒮) = 𝜆𝑎𝑟𝑒𝑎(𝜏(𝒮)) (𝐴𝒮(𝒮) − 𝐴𝑜(𝜏(𝒮)))2
+ 𝜆𝑝𝑒𝑟(𝜏(𝒮)) (𝐿(𝒮) − 𝐿𝑜(𝜏(𝒮)))2
+ 𝜆𝑡𝑒𝑛(𝜏(𝒮)) ∑ ‖𝑟𝑖(𝒱𝑗) − 𝑟𝑖(𝒱𝑗+1)‖𝒱𝑗∈𝒮+ 12 ∑ 𝜆𝑎𝑑ℎ(𝜏(𝒮), 𝜏(𝒮′))𝐶(𝒮, 𝒮′)𝒮′∈𝑁(𝒮) .

(23)

Here 𝐴𝒮(𝒮) is the area of cell 𝒮 as defined in (6), 𝐴𝑜(𝜏) is the target area of type 𝜏, 𝐿(𝒮) is the

perimeter of cell 𝒮, 𝐿𝑜 is the target perimeter of type 𝜏, 𝐶(𝒮, 𝒮′) is the length of edges shared by

cells 𝒮 and 𝒮′, 𝑁(𝒮) is the set of surfaces connected to 𝒮, and 𝜆𝑎𝑟𝑒𝑎(𝜏), 𝜆𝑝𝑒𝑟(𝜏), 𝜆𝑡𝑒𝑛(𝜏) and 𝜆𝑎𝑑ℎ(𝜏) are area constraint, perimeter constraint, edge tension and adhesion model parameters of

type 𝜏, respectively. Note that the original model includes cell-environment adhesion using a

surface energy term and does not use edge tension. Our implementation accomplishes the same

with edge tension and appropriate adjustment in adhesion parameters. Note also that the Tissue

Forge implementation of VM adhesion counts adhesion energy on the basis of edge (hence the

pre-multiplier of one-half), whereas the original model counts adhesion energy along an edge for

each surface that shares the edge. We used a merge distance (i.e., the distance threshold below

which a vertex merge operation is performed on two vertices) equal to that of the original model

and assumed a split distance equal to twice the merge distance (to prevent automatic successive

vertex split and merge operations). We also applied a random force of equal magnitude as that in

the original model to all vertices, and used a time step equal to half the value in the source

simulation, as we found that the vertex split operation could cause numerical instabilities when

using the original time step value (Table 1). To compare results to those of the original

simulation, we quantified cell sorting by computing the fractional length of heterotypic

boundaries every 100 simulation steps, where the fractional length at each reported time is the

total length of heterotypic boundaries normalized by the same measurement at time 0. For the

source code for our implementation, see Supplementary 5.

https://sciwheel.com/work/citation?ids=318734&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=880669&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=3160674&pre=&suf=&sa=0&dbf=0
https://sciwheel.com/work/citation?ids=3160674&pre=&suf=&sa=0&dbf=0

18

Table 1. Model parameters used in the vertex model of cell sorting. All parameters are taken or derived from 20, except for the

time step (reduced by a factor of two for numerical stability) and split distance (twice the merge distance, to prevent automatic

successive vertex split and merge operations). Cell types 1 and 2 correspond to red and white cells shown in Figure 5.

Name Symbol Value

Time step n/a 0.00250

Merge distance n/a 0.100

Split distance n/a 0.200

Random force magnitude n/a 8.94

Damping coefficient 𝑀 1.00

Target area 𝐴𝑜(1), 𝐴𝑜(2) 1.00

Area constraint model parameter 𝜆𝑎𝑟𝑒𝑎(1), 𝜆𝑎𝑟𝑒𝑎(2) 50.0

Target perimeter 𝐿𝑜(1), 𝐿𝑜(2) 2√𝜋

Perimeter model parameter 𝜆𝑝𝑒𝑟(1), 𝜆𝑝𝑒𝑟(2) 1.00

Edge tension model parameter: type 1 𝜆𝑡𝑒𝑛(1) 10.0

Edge tension model parameter: type 2 𝜆𝑡𝑒𝑛(2) 20.0

Adhesion model parameter: type 1 – type 1 interface 𝜆𝑎𝑑ℎ(1,  1) -18.0

Adhesion model parameter: type 1 – type 2 interface 𝜆𝑎𝑑ℎ(1,  2) -26.0

Adhesion model parameter: type 2 – type 2 interface 𝜆𝑎𝑑ℎ(2,  2) -38.0

The simulation was initialized as a square and each cell was randomly assigned to one of

the two cell types. The simulation was executed for 1,000 hours of simulation time (400,000

steps, Figure 5). In general, sorting by phenotype occurred similarly to the original simulation

and at a comparable rate. By simulation time 100, stratification had already occurred as

evidenced by three major aggregates of one of the cell types (shown as white in Figure 5A) and a

few smaller aggregates by cell type. Rounding of phenotypic aggregates also occurred by

simulation time 1,000, demonstrating minimization of adhesion energy at heterotypic interfaces.

We also observed marginally slower organization by phenotype than the original simulation, the

cause of which is currently unclear, whether due to system stochasticity and sensitivity to the

initial configuration of the system, or to differences in methods related to topological dynamics

(Figure 5B).

https://sciwheel.com/work/citation?ids=3160674&pre=&suf=&sa=0&dbf=0

19

Figure 5. Simulation of cell sorting in Tissue Forge. A: A multicellular aggregate is initialized with a random distribution of two

cell types (type 1, red and type 2, white). The aggregate organizes by cell type through differential adhesion. B: Fractional length

of heterotypic contacts over the first 100 hours of simulation. Fractional length at each reported time is measured as the total

length of heterotypic contacts at the reported time divided by the same measurement at time 0.

Cell Migration

The VM module in Tissue Forge provides a straightforward way to develop and employ models

that combine explicit models of cell shape using vertex modeling with particle-based biophysical

models that Tissue Forge naturally supports. Computational models of the biomechanical and

biomolecular details of cell migration can be constructed using such mixed-method approaches,

where a vertex model describes the shape of a cell, and particle-based models describe the

extracellular matrix (ECM) and its interactions with cells leading to changes in cell shape. In

general, integrin transmembrane receptors link the cell cytoskeleton to nearby ECM proteins,

which serve as anchors for the cytoskeleton that then generates protrusive (e.g., through

pseudopodia, lamellipodia and/or filopodia) or contractile (e.g., through stress fibers) forces 21.

We developed a simple, quasi-two-dimensional model of cell migration over a substrate

of ECM. The model considers the migration of a single cell represented as a surface according to

https://sciwheel.com/work/citation?ids=11037752&pre=&suf=&sa=0&dbf=0

20

the VM methodology. Our simulation initializes a single cell as a hexagon of area 1.0 on a

substrate of ECM and imposes a bias on the cell such that it migrates across the spatial domain

through interactions with the substrate. To show that interactions with the ECM produce cell

migration, the substrate in the simulation is initialized as a distribution of ECM fibers of random

length and orientation within the space between two sine waves of fixed width, amplitude, and

period, which constrains the possible trajectories that the cell can travel along. The total effective

energy of the cell includes an area constraint and edge tension, ℋ(𝒮) = 𝜆𝑎𝑟𝑒𝑎(𝐴𝒮(𝒮) − 𝐴𝑜)2 + 𝜆𝑡𝑒𝑛 ∑ ‖𝑟𝑖(𝒱𝑗) − 𝑟𝑖(𝒱𝑗+1)‖2
𝒱𝑗∈𝒮 , (24)

where 𝐴𝒮(𝒮) is the area of cell 𝒮, 𝐴𝑜 is a target area, and 𝜆𝑎𝑟𝑒𝑎 and 𝜆𝑡𝑒𝑛 are the strengths of the

area constraint and edge tension, respectively.

The model describes a biochemically homogeneous ECM arranged as individual,

interacting, deformable fibers, where each fiber consists of particles that represent segments of

ECM fiber, henceforth referred to as fiber segment particles. Each fiber is a Tissue Forge cluster,

which permits defining different interactions between fiber segment particles in the same and

different fibers. Each fiber is assembled by placing fiber segment particles along a line and then

assigning a Tissue Forge bonded interaction (i.e., an interaction that occurs between an explicit

sets of particles) between neighboring fiber segment particles. A bonded interaction between

adjacent fiber segment particles of the same fiber models tensile rigidity using the potential, 𝑈𝑡𝑒𝑛𝑠𝑖𝑙𝑒(𝑟) = 𝑘𝑡𝑒𝑛𝑠𝑖𝑙𝑒(𝑟 − 𝑟𝑜,𝑡𝑒𝑛𝑠𝑖𝑙𝑒)2, (25)

where 𝑟 is the distance between the bonded two particles, 𝑟𝑜,𝑡𝑒𝑛𝑠𝑖𝑙𝑒 is a target length, and 𝑘𝑡𝑒𝑛𝑠𝑖𝑙𝑒

is the fiber elastic modulus. A second bonded interaction between a fiber segment particle and

the two adjacent fiber segment particles in the same fiber models bending rigidity using the

potential, 𝑈𝑏𝑒𝑛𝑑𝑖𝑛𝑔(𝜃) = 𝑘𝑏𝑒𝑛𝑑𝑖𝑛𝑔(𝜃 − 𝜃𝑜,𝑏𝑒𝑛𝑑𝑖𝑛𝑔)2, (26)

where 𝜃 is the angle between the two adjacent fiber segment particles, 𝜃𝑜,𝑏𝑒𝑛𝑑𝑖𝑛𝑔 is a target

angle and 𝑘𝑏𝑒𝑛𝑑𝑖𝑛𝑔 is the fiber bending modulus. We consider adhesion and neglect friction

between fibers by modeling the interactions between fibers as interactions between fiber segment

particles in different fibers according to the potential, 𝑈𝑖𝑛𝑡𝑒𝑟(𝑟) = 𝑘𝑖𝑛𝑡𝑒𝑟 (1 − 𝑒−𝑎𝑖𝑛𝑡𝑒𝑟(𝑟−𝑟𝑜,𝑖𝑛𝑡𝑒𝑟))2, (27)

where 𝑟𝑜,𝑖𝑛𝑡𝑒𝑟 is a target length and 𝑘𝑖𝑛𝑡𝑒𝑟 and 𝑎𝑖𝑛𝑡𝑒𝑟 are the fiber adhesion magnitude and width

parameters, respectively.

We model integrins as particles that are constrained to lie within the area occupied by the

cell. Each integrin particle interacts with a fiber through a bonded interaction between the

21

integrin and a fiber segment particle. The bonded interaction between an integrin and fiber

segment particle occurs according to the potential, 𝑈𝑖𝑛𝑡𝑒𝑔(𝑟) = 𝑘𝑖𝑛𝑡𝑒𝑔(𝑟 − 𝑟𝑜,𝑖𝑛𝑡𝑒𝑔)2, (28)

where 𝑟𝑜,𝑖𝑛𝑡𝑒𝑔 is a target length and 𝑘𝑖𝑛𝑡𝑒𝑔 is the fiber-integrin elastic modulus. Our model

considers protrusive forces generated by the cytoskeleton (through polymerization of

cytoskeletal elements) on the cell membrane. We model the cytoskeleton as bonded interactions

between each integrin and the two leading vertices of the cell (here, the right-most two vertices),

which is possible in the Tissue Forge implementation of the VM methodology because each

vertex corresponds to an underlying Tissue Forge particle. Bonded interactions between integrins

and vertices occur according to the potential, 𝑈𝑐𝑦𝑡𝑜(𝑟) = 𝑘𝑐𝑦𝑡𝑜𝑟, (29)

where 𝑘𝑐𝑦𝑡𝑜 is the cytoskeleton model parameter. Hence, deformations in cell shape occur

through coupling of the cytoskeleton and local ECM.

We assume that the cell has a fixed number of integrins, and that recycling of integrins is

governed by cell shape, location of each integrin on the cell (i.e., in the area occupied by the

cell), and the ECM distribution in the neighborhood of the cell. When an integrin is created, a

fiber segment particle is randomly selected within a distance of 5% and 25% of the circumradius

of the initial cell shape from the leading edge of the cell, and the integrin is placed on the cell

directly above the selected fiber segment particle. We assume a polarized state by implementing

a pre-established, fixed “forward” direction of migration (i.e., the direction along which the cell

tends to move), where the two forward-most vertices of the cell at the time of integrin creation

define the leading edge (i.e., which edge is the leading edge can change). Once bonded

interactions are established between an integrin and the two vertices of the leading edge, the

bonded interactions do not change vertices (e.g., when a different edge becomes the leading

edge). A bonded interaction between an integrin and a vertex is destroyed when the length of the

bonded interaction exceeds 150% of the circumradius of the initial cell shape. An integrin is

destroyed when either its position is no longer in the area occupied by the cell, or both of its

bonded interactions with vertices of the cell are destroyed. Model events for creation and

destruction of integrins are implemented using the Tissue Forge event system. All interaction

potentials and bonded interactions are implemented using built-in Tissue Forge features. All

parameters of the model are listed in Table 2. The source code for our implementation is

available in Supplementary 6.

Table 2. Model parameters used in the mixed-method model of cell migration. Parameters are estimated for a fiber segment and

integrin particle radius of 0.01 and initial cell hexagon circumradius of 1.00.

Name Symbol Value

Time step n/a 0.01

Number of integrins n/a 100

New integrin distance range from leading edge n/a [0.0310, 0.155]

Maximum integrin bond length n/a 0.921

Fiber particle length range n/a [10, 100]

22

Substrate width n/a 1.00

Substrate period n/a 4.00

Damping coefficient – vertices 𝑀

1.00

Damping coefficient – fiber segment particles 1.00

Damping coefficient – integrins 0.100

Target area 𝐴𝑜 1.00

Strength of the area constraint 𝜆𝑎𝑟𝑒𝑎 1.00

Strength of the edge tension 𝜆𝑡𝑒𝑛 0.500

Fiber tensile target length 𝑟𝑜,𝑡𝑒𝑛𝑠𝑖𝑙𝑒 0.0100

Fiber elastic modulus 𝑘𝑡𝑒𝑛𝑠𝑖𝑙𝑒 10.0

Fiber bending target angle 𝜃𝑜,𝑏𝑒𝑛𝑑𝑖𝑛𝑔 𝜋

Fiber bending modulus 𝑘𝑏𝑒𝑛𝑑𝑖𝑛𝑔 1.00×10-4

Fiber adhesion target length 𝑟𝑜,𝑖𝑛𝑡𝑒𝑟 0.0200

Fiber adhesion magnitude parameter 𝑘𝑖𝑛𝑡𝑒𝑟 0.00100

Fiber adhesion width parameter 𝑎𝑖𝑛𝑡𝑒𝑟 12.0

Fiber-integrin target length 𝑟𝑜,𝑖𝑛𝑡𝑒𝑔 0.0100

Fiber-integrin elastic modulus 𝑘𝑖𝑛𝑡𝑒𝑔 1.00

Cytoskeleton model parameter 𝑘𝑐𝑦𝑡𝑜 -0.0100

Simulation showed that the model readily produces a cell that migrates along an ECM

substrate and therefore demonstrates the ability to generate testable predictions of force

generation and plastic deformation of the ECM during single cell migration (Figure 6). After

2,000 simulation steps, the simulated cell traversed most of the substrate while leaving behind

observable deformations in the fibers of the ECM (Figure 6, inset). Changes in the ECM

distribution were also observed as nearby fibers accumulated due to inter-fiber adhesion.

Changes in cell shape tended to orient the leading edge of the cell orthogonally to the path of the

substrate, which we also observed in test simulations that used more than six vertices to model

cell shape.

23

Figure 6. Simulation of single cell migration over extracellular matrix fibers using combined vertex- and particle-based modeling

in Tissue Forge. Integrins (green particles) bind to extracellular matrix fibers (red particles) and generate protrusive forces (green

lines) on the vertices that describe the shape of the cell (red polygon). Detailed view shows deformations in the ECM caused by

force generation during cell migration.

Discussion

The VM methodology supports a flexible mesh structure with no upper bound on vertex order

and defines a flexible, physics- and vertex-based formalism for describing VM dynamics. The

Tissue Forge VM module exploits this formalism to provide a modular and extensible software

package that seamlessly integrates with Tissue Forge particle-based modeling features, allowing

for convenient, powerful, mixed-method modeling. The Tissue Forge VM module is general-

purpose, publicly available, open-source vertex modeling and simulation software with

permissible licensing. The module supports collaborative model development in multiple

languages, interactive simulation execution with real-time visualization, and the generation of

publishable and sharable results.

The VM module provides for vertex models useful modeling and simulation capabilities

already available in Tissue Forge for particle-based modeling. For example, the Tissue Forge

event system provides a straightforward way to develop application-specific event-driven

simulation and agent-based models. The VM module also supports declarative model

specification and construction of vertex models through cumulative application of individual

vertex model mechanisms at the levels of both model objects and object types (i.e., binding

24

actors to objects and object types). The VM module provides a sizable collection of built-in

actors and supports developing and distributing additional actors in the C++ and C programming

languages.

We demonstrated both the vertex model example of cell sorting (Figure 5) and a novel,

multi-method model of cell migration on a deformable fiber ECM (Figure 6). The ability to

combine vertex and particle-based models may be especially helpful when developing detailed

multicellular models of tissues that consider biophysical aspects that particle-based methods are

well-suited to describe (e.g., transport dissipative particle dynamics modeling of convection, as

already supported by Tissue Forge). With the work in this project, Tissue Forge now supports

combining vertex-based and particle-based modeling methods as appropriate for a particular

modeling application.

Reproducing an existing vertex model simulation of cell sorting showed differences that

will require methodological research. Our simulations required a smaller time step than of the

source paper’s to produce a stable simulation. Cell sorting was also slightly slower than in the
source simulation for identical model parameters. A likely cause of these differences is the

difference in handling the T1 transformation. T1 transformations in our methodology occur as a

result of consecutive vertex merge and vertex split operations, which occur as a consequence of

the mechanics of the vertices and are not imposed (e.g., a vertex split operation is not forced to

occur after a vertex merge operation). In the reproduced simulation, the T1 transformation

always occurs when two vertices are sufficiently close, and the resulting two vertices are

arranged such that their edge is orthogonal to the edge of the original two vertices 22. If these

differences in methodology cause differences in numerical stability and simulation results like

those that we observed, then the T1 transformation of the original simulation may neglect

significant effects of highly localized mechanical forces by constraining junctional

rearrangement to configurations that are independent of local forces.

The quality operations presented here currently target flat or convex surfaces, resulting in

stable support for two-dimensional vertex modeling, and limited support for complex three-

dimensional vertex modeling. These operations include all well-established two-dimensional

topological transformations, including the so-called T1, T2 and T3 transformations, as well as

reverse transformations for both T1 and T3 transformations. Future efforts will expand support

for three-dimensional vertex modeling, such as defining and implementing a reverse T2 (i.e., a

“surface promotion” operation) transformation in complex three-dimensional meshes.

Additionally, future work will develop support for periodic boundary conditions, vertex-surface

collision events (i.e., three-dimensional T3 transformations), edge-based mesh actors,

convenience features for supporting detailed data generation and analysis, generalization of

vertex model specification, and two- and three-dimensional state-based modeling to allow for

mixed-method particle transport and diffusion on and across surfaces.

Conclusion

This work developed a VM methodology and implemented it in the open-source, publicly

available Tissue Forge modeling and simulation environment. Our work provides a general and

https://sciwheel.com/work/citation?ids=1133969&pre=&suf=&sa=0&dbf=0

25

extensible framework for developing and employing vertex models of multicellular systems in

multiple programming languages, with robust support for collaborative model development and

sharing of simulation results. Implementation of our VM methodology in Tissue Forge provides

a straightforward path to combining vertex- and particle-based methodologies for new modeling

applications. Our hope is that the work presented here provides readily available vertex modeling

capability for a broad range of applications in the life sciences and lowers the barrier to

employing well-established vertex models by researchers with little to no background of

software development. We invite biologists, modelers and software developers to provide

feedback and contribute new features and/or feature requests throughout continuing development

and improvement of our VM methodology and its implementation in Tissue Forge.

Acknowledgments

T.J.S. and J.A.G. acknowledge funding from National Institutes of Health grant U24 EB028887.

T.C. acknowledges funding from National Institutes of Health grant T32-GM145443. S.M.P.

acknowledges funding from National Institutes of Health grant R01 HL155143-01. D.D.

acknowledges funding from National Institutes of Health grant R35 GM131865.

Author Contributions

T.J.S. and T.C. contributed to conception and design of the work, acquisition, analysis and

interpretation of data, creation of new software used in the work, and drafting and revision of the

work. S.M.P. and D.D. contributed to revision of the work. J.A.G. contributed to conception of

the work, analysis and interpretation of data, and revision of the work.

Competing Interests

The authors declare no competing interests.

Data Availability

Implementation source code is publicly available at https://github.com/tissue-forge/tissue-forge.

Source code for all simulations is available in Supplementary Information.

Supplementary Information

1. Installing Tissue Forge: Instructions for installing and using Tissue Forge.

2. Actor Forms: Equations for all implemented actors.

3. capillary_loop.py: Python script for importing Blender-generated mesh data of a local

vasculature and constructing a Tissue Forge mesh from it.

4. CapillaryLoop.obj: Blender-generated mesh data of a local vasculature.

5. cell_sorting.py: Vertex model simulation of two-dimensional cell sorting.

6. cell_migration.py: Mixed-method model and simulation of single cell migration over an

ECM substrate.

References

26

1. Guillot, C. & Lecuit, T. Mechanics of epithelial tissue homeostasis and morphogenesis.

Science 340, 1185–1189 (2013).

2. Marder, M. Soap-bubble growth. Phys. Rev. A 36, 438–440 (1987).

3. Okuzono, T. & Kawasaki, K. Intermittent flow behavior of random foams: A computer

experiment on foam rheology. Phys. Rev. E 51, 1246–1253 (1995).

4. Okuda, S., Inoue, Y., Eiraku, M., Adachi, T. & Sasai, Y. Vertex dynamics simulations of

viscosity-dependent deformation during tissue morphogenesis. Biomech. Model.

Mechanobiol. 14, 413–425 (2015).

5. Erdemci-Tandogan, G. & Manning, M. L. Effect of cellular rearrangement time delays on

the rheology of vertex models for confluent tissues. PLoS Comput. Biol. 17, e1009049

(2021).

6. Wang, X. et al. Anisotropy links cell shapes to tissue flow during convergent extension.

Proc Natl Acad Sci USA 117, 13541–13551 (2020).

7. Spahn, P. & Reuter, R. A vertex model of Drosophila ventral furrow formation. PLoS

ONE 8, e75051 (2013).

8. Inoue, Y. et al. Mechanical roles of apical constriction, cell elongation, and cell migration

during neural tube formation in Xenopus. Biomech. Model. Mechanobiol. 15, 1733–1746

(2016).

https://sciwheel.com/work/bibliography/260894
https://sciwheel.com/work/bibliography/260894
https://sciwheel.com/work/bibliography/14315589
https://sciwheel.com/work/bibliography/14315596
https://sciwheel.com/work/bibliography/14315596
https://sciwheel.com/work/bibliography/14315598
https://sciwheel.com/work/bibliography/14315598
https://sciwheel.com/work/bibliography/14315598
https://sciwheel.com/work/bibliography/12009769
https://sciwheel.com/work/bibliography/12009769
https://sciwheel.com/work/bibliography/12009769
https://sciwheel.com/work/bibliography/9175756
https://sciwheel.com/work/bibliography/9175756
https://sciwheel.com/work/bibliography/14176043
https://sciwheel.com/work/bibliography/14176043
https://sciwheel.com/work/bibliography/7964597
https://sciwheel.com/work/bibliography/7964597
https://sciwheel.com/work/bibliography/7964597

27

9. Okuda, S., Inoue, Y. & Adachi, T. Three-dimensional vertex model for simulating

multicellular morphogenesis. Biophys. Physicobiol. 12, 13–20 (2015).

10. Metzcar, J., Wang, Y., Heiland, R. & Macklin, P. A Review of Cell-Based

Computational Modeling in Cancer Biology. JCO Clin. Cancer Inform. 3, 1–13 (2019).

11. Fletcher, A. G., Osterfield, M., Baker, R. E. & Shvartsman, S. Y. Vertex models of

epithelial morphogenesis. Biophys. J. 106, 2291–2304 (2014).

12. Alt, S., Ganguly, P. & Salbreux, G. Vertex models: from cell mechanics to tissue

morphogenesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 372, (2017).

13. Karr, J. et al. Model integration in computational biology: the role of reproducibility,

credibility and utility. Front. Syst. Biol. 2, (2022).

14. Sussman, D. M. cellGPU: Massively parallel simulations of dynamic vertex models.

Comput. Phys. Commun. 219, 400–406 (2017).

15. Cooper, F. et al. Chaste: cancer, heart and soft tissue environment. JOSS 5, 1848 (2020).

16. Sego, T. J., Sluka, J., Sauro, H. & Glazier, J. Tissue forge: interactive biological and

biophysics simulation environment. BioRxiv (2022) doi:10.1101/2022.11.28.518300.

17. Spencer, M. A., Jabeen, Z. & Lubensky, D. K. Vertex stability and topological transitions

in vertex models of foams and epithelia. Eur. Phys. J. E Soft Matter 40, 2 (2017).

https://sciwheel.com/work/bibliography/13189246
https://sciwheel.com/work/bibliography/13189246
https://sciwheel.com/work/bibliography/10208403
https://sciwheel.com/work/bibliography/10208403
https://sciwheel.com/work/bibliography/1084233
https://sciwheel.com/work/bibliography/1084233
https://sciwheel.com/work/bibliography/4836177
https://sciwheel.com/work/bibliography/4836177
https://sciwheel.com/work/bibliography/13362781
https://sciwheel.com/work/bibliography/13362781
https://sciwheel.com/work/bibliography/7378452
https://sciwheel.com/work/bibliography/7378452
https://sciwheel.com/work/bibliography/12801803
https://sciwheel.com/work/bibliography/14204346
https://sciwheel.com/work/bibliography/14204346
https://sciwheel.com/work/bibliography/14176039
https://sciwheel.com/work/bibliography/14176039

28

18. Steinberg, M. S. Reconstruction of tissues by dissociated cells. Some morphogenetic

tissue movements and the sorting out of embryonic cells may have a common

explanation. Science 141, 401–408 (1963).

19. Graner, F. & Glazier, J. A. Simulation of biological cell sorting using a two-dimensional

extended Potts model. Phys. Rev. Lett. 69, 2013–2016 (1992).

20. Osborne, J. M., Fletcher, A. G., Pitt-Francis, J. M., Maini, P. K. & Gavaghan, D. J.

Comparing individual-based approaches to modelling the self-organization of

multicellular tissues. PLoS Comput. Biol. 13, e1005387 (2017).

21. SenGupta, S., Parent, C. A. & Bear, J. E. The principles of directed cell migration. Nat.

Rev. Mol. Cell Biol. 22, 529–547 (2021).

22. Fletcher, A. G., Osborne, J. M., Maini, P. K. & Gavaghan, D. J. Implementing vertex

dynamics models of cell populations in biology within a consistent computational

framework. Prog. Biophys. Mol. Biol. 113, 299–326 (2013).

https://sciwheel.com/work/bibliography/318734
https://sciwheel.com/work/bibliography/318734
https://sciwheel.com/work/bibliography/318734
https://sciwheel.com/work/bibliography/880669
https://sciwheel.com/work/bibliography/880669
https://sciwheel.com/work/bibliography/3160674
https://sciwheel.com/work/bibliography/3160674
https://sciwheel.com/work/bibliography/3160674
https://sciwheel.com/work/bibliography/11037752
https://sciwheel.com/work/bibliography/11037752
https://sciwheel.com/work/bibliography/1133969
https://sciwheel.com/work/bibliography/1133969
https://sciwheel.com/work/bibliography/1133969

Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

SI.zip

https://assets.researchsquare.com/files/rs-2886960/v1/1c169c3a98e217f3274595bc.zip

