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Abstract

Various neurological diseases affect the morphology of myelinated axons. Quantitative analysis 

of these structures and changes occurring due to neurodegeneration or neuroregeneration is 

of great importance for characterization of disease state and treatment response. This paper 

proposes a robust, meta-learning based pipeline for segmentation of axons and surrounding 

myelin sheaths in electron microscopy images. This is the first step towards computation of 

electron microscopy related bio-markers of hypoglossal nerve degeneration/regeneration. This 

segmentation task is challenging due to large variations in morphology and texture of myelinated 

axons at different levels of degeneration and very limited availability of annotated data. To 

overcome these difficulties, the proposed pipeline uses a meta learning-based training strategy and 

a U-net like encoder decoder deep neural network. Experiments on unseen test data collected at 

different magnification levels (i.e, trained on 500X and 1200X images, and tested on 250X and 

2500X images) showed improved segmentation performance by 5% to 7% compared to a regularly 

trained, comparable deep learning network.
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I. INTRODUCTION

An axon is a cable-like structure that extends from a neuron. Axons are responsible 

for the transmission of electrical signals between neurons and peripheral tissues. In the 

central and peripheral nervous systems, most axons are wrapped in a spiral fashion with a 

myelin sheath [1], as illustrated in Figure 1. A myelin sheath is an extended and modified 

plasma membrane that functions as an insulator [2]. Various neurological diseases affect the 

morphology of axons and the myelin sheaths surrounding them. High-resolution electron 

microscopy is used to capture the subtle morphological changes in the nervous system in 

general and in myelinated axons in particular (Figure 2). Quantitative analysis of these 

structures is of great importance for characterization of disease state and treatment response 

[3]–[6]. Image segmentation is the first step towards this goal. Various segmentation 

methods using deep learning approaches have been proposed for segmentation of axons 

and myelin sheaths around them. For example, [7] created a framework based on U-net for 

segmentation of axons and myelin sheaths in 2D images of scanning electron microscopy 

(SEM) and transmission electron microscopy (TEM); [8]–[10] proposed a software package 

using a deep neural network for 3D instance segmentation of axons and myelin; [11] 

introduced a 3D image dataset, AxonEM, for instance segmentation of axons in brain 

cortical regions. These models rely on the availability of large amounts of annotated data 

for training. This is a problem due to: (1) labor-intensive and expertise-required nature of 

the image segmentation process; (2) limited availability of diseased samples; (3) different 

imaging parameters for the existing data; and (4) large appearance variations in the data 

caused by neurodegeneration/regeneration.

Recently, few-shot learning and meta learning methods have been introduced to improve 

the generalization capabilities of deep learning models to improve performance on unseen 

data [12]–[16]. [17] proposed a self-supervised few shot learning scheme to address scarce 

annotated data for medical image segmentation. [18] proposed a meta learning algorithm 

to capture the variety between slides for volumetric segmentation of medical images. This 

model was trained and tested on different sets of organs.

In this work, we present a meta learning-based deep learning system (Figure 3) for robust 

segmentation of axons and myelin sheaths in electron microscopy images of distal axons 

of hypoglossal neurons. Our group previously published qualitative evidence that distal 

axons of hypoglossal neurons exhibited degenerative changes following CTB-SAP-induced 

hypoglossal degeneration [20]. The proposed system will be used to enable effective 

quantitative analysis of electron microscopy-related bio-markers (myelin thickness and 

morphology, as well as axon number, size, and morphology) of hypoglossal degeneration 

and regeneration.

II. METHODS

A. Core deep neural network

We used U-net network [21] as the core model for our segmentation pipeline. Input to the 

network is a single channel 2D grayscale image. Output from the network is a 3-channel 

2D segmentation mask corresponding to axon, myelin, and background regions in the input 
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image. The network’s encoder uses the ResNet-34 model [22] as the backbone. It’s a fully 

convolutional deep neural network with shortcut connections to learn residual features. The 

encoder includes three primary layers with 16, 32, and 64 filters, respectively.

B. Meta learning optimization

Meta-learning algorithms can be categorized into three main groups: (1) metric-based, 

(2) model-based, and (3) optimization-based [15], [16], [23] approaches. The metric-
based approaches learn data representations by comparing two feature mappings, one 

corresponding to a support item, the other to a query item. These approaches rely on 

siamese networks [24], matching networks [25], relation networks [26], or prototypical 

networks [27] for comparison. The model-based approaches accomplish rapid learning by 

updating only a subset of network parameters based on value-memory location relationships. 

In order to generate a prediction, artificial neural networks (ANN) typically employ all of 

their parameters. This process necessitates updating of all these parameters in each training 

cycle. Unlike the regular ANNs, the model-based approaches employ a human-like learning 

mechanism. They bind the learned values (contents) to some specific locations of memory 

using Memory-Augmented Neural Networks (MANN) [28] enabling updating of specific 

network parameters. The optimization-based approaches enhance model generalization by 

utilizing a complex pipeline for training. In this work, we utilize an optimization-based 

approach that improves the generalization capabilities of a U-net [21] like encoder-decoder 

network architecture designed for image segmentation. This method begins by sampling a 

batch of N tasks (N-ways) following a distribution p T . Then each task randomly selects a 

subdataset including m data points (m-shots) from the whole dataset. These N subdatasets 

do not overlap with one another. We partition each subdataset into two disjoint sets: a 

support set T s and a query set T q. The neural network is trained with an interleaved training 

procedure, comprised of inner and outer update loops [23]. First, the neural network is 

trained on the support sets in the inner loop. Then, it is fine-tuned using prior information 

extracted from query sets in the outer loop. Figure 3 illustrates the general overview of the 

optimization based training approach. Practical implementation for this approach can use 

algorithms such as Model-Agnostic Meta-Learning (MAML) [23], [29] or Reptile learning 

[30].

Assuming that our neural network model has a set of parameters θ, the inner loop in MAML 

optimizes the parameters of this network for each task individually by minimizing the loss 

over the task’s support set in K steps. Specifically, the parameter set θi, k is updated for each 

task i and step k as following:

for task i = 1 to N:
θi, 0 = θinitial_meta
for step k = 1 to K:

θi, k = θi, k − 1 − α * ∇θLTis θi, k − 1

where θi, k denotes the parameter set for task i at step k; ∇θ denotes the gradient with respect 

to the parameter set θi, k; LTis denotes the loss function of task i on the support set at the 

current step; and α is the inner loop learning rate.
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After these initial updates, the outer loop fine-tunes the network parameters by minimizing 

the loss across the query sets of all tasks. Figure 4 illustrates the update sequence of 

MAML. Each iteration of the outer loop updates the network parameters using the following 

equation:

θmeta = θmeta − β * ∇θ
T i

q ∼ p T
LTi

q θi, K

where θi, K denotes the parameter set for task i at step K generated by the inner loop; LTi
q

denotes the loss function of task i on the query set; and β is the outer loop learning rate.

The analytical relationship between gradient updates in the inner loop and the outer loop can 

be derived as following [23], [29]. In the inner loop of task i, we perform k gradient update 

steps on its support set as follows:

θi, 0 = θinitial_meta
θi, 1 = θi, 0 − α * ∇θLTis θi, 0
θi, 2 = θi, 1 − α * ∇θLTis θi, 1
…
θi, k = θi, k − 1 − α * ∇θLTis θi, k − 1

where θi, k denotes the parameter set for task i at step k; ∇θ denotes the gradient with respect 

to the parameter set θi, k; LTis denotes the loss function of task i on the support set at the 

current step; and α is the inner loop learning rate.

Then the outer loop relies on those updated parameters to work on the query sets as 

illustrated in Figure 4 and shown below:

θmeta = θmeta − β * gmeta

where

gmeta = ∑
T i

q p(T)
∇θi, kLTi

q θi, k

= ∑
T i

q p(T)
[∇θi, kLTi

q θi, k ] ⋅ [∇θi, k − 1θi, k]…[∇θi, 0θi, 1] ⋅ [∇θiθi, 0]

= ∑
T i

q p(T)
[∇θi, kLTi

q θi, k ] ⋅ [ ∏
j = 1

k
∇θi, j − 1θi, j] . I

= ∑
T i

q p(T)
[∇θi, kLTi

q θi, k ] ⋅ [ ∏
j = 1

k
∇θi, j − 1 θi, j − 1 − α∇θLTis θi, j − 1 ]

= ∑
T i

q p(T)
[∇θi, kLTi

q θi, k ] ⋅ [ ∏
j = 1

κ
I − α∇θi, j − 1 ∇θLTis θi, j − 1 ]

MAML is simplified to First Order MAML (FO-MAML) if we ignore the last term in the 

final equation. In other words, FO-MAML only keeps the last level of gradient in the inner 

loop and applies it to update parameters in the outer loop. In the Reptile algorithm [30], if 
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the inner loop only performs a single step K = 1 , then the outer loop works as minimizing 

the expected loss over all the query sets.

For this paper, we selected to use the MAML learning scheme to optimize our model 

because of its high-order optimization approach.

III. EXPERIMENTAL RESULTS

A. Dataset

The dataset used in this study consists of electron microscopy images of distal axons of 

hypoglossal neurons. Samples were prepared as described in [20]. Images were acquired 

at University of Missouri Electron Microscopy Core with a TEM microscope (JEM 1400; 

JEOL, Ltd, Tokyo, Japan) at 80 kV using a CCD camera (Ultrascan 1000; Gatan, Inc, 

Pleasanton, California). Control and CTB-SAP (CTB–saporin, cholera toxin B conjugated 

to saporin) injected rats were used in the study. Hypoglossal motor neuron death via CTB–

SAP injections mimic aspects of amyotrophic lateral sclerosis (ALS) related to dysphagia 

(swallowing difficulties) [7]. For training, we used three data subsets: our image samples at 

500X and 1200X magnification levels (197 images with dimension 2048 × 2048), and an 

additional publicly available TEM dataset of axons and myelin [7] at ~500X magnification 

level (157 images with dimension 3762×2286). Our other two data subsets at magnification 

levels 250X and 2500X (52 images with dimension 2048 × 2048) were used as unseen data 

for testing. The training data were split into N = 10 tasks for the meta learning training 

pipeline.

B. Results and evaluation

We have evaluated the axon and myelin segmentation performance of the proposed meta 

learning-based pipeline and compared to a similar deep neural network (with U-net 

architecture [21]) trained using a regular training approach where a single training loop 

and a single training task was used. We utilized dice score [31] to assess image segmentation 

performance. Given a predicted segmentation mask Maskpred and a ground truth segmentation 

mask MaskGT, dice score is computed as:

Dice Maskpred , MaskGT = 2 × Maskpred ∩ MaskGT
Maskpred + MaskGT

Table I shows segmentation performance on the training set in which the regular training 

slightly outperforms the meta learning pipeline with 90% versus 89% dice scores, 

respectively. However, when both systems were tested on unseen data with different 

characteristics (magnification levels 250X and 2500X), the proposed axon and myelin 

segmentation pipeline with meta learning resulted in significant performance improvements 

against regular training. Table II illustrates the test results where the meta learning-based 

pipeline outperforms regular training by 5% to 7%, in terms of dice scores, for two 

subsets with magnification levels of 250X and 2500X and for both categories of control 

and diseased samples. For both of the training schemes, better segmentation performances 
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were obtained on the control samples compared to the diseased samples due to the abnormal 

structures and textures on these cases.

Figure 5 illustrates sample segmentation results on the training data with 500X and 1200X 

magnification levels and on the test data with 250X and 2500X magnification levels. As 

expected and as can be seen from the raw images, different magnification levels reveal 

different size, shape, and texture characteristics. In Figure 5, yellow and purple overlays 

mark the detected axon and myelin regions, respectively. Blue arrows point to missed myelin 

regions either due to misclassification as background or as axon, and red arrows point to 

false myelin detections. While mostly satisfactory results were obtained for the training 

magnification levels, partially missed myelin layers and some axon regions misclassified as 

myelin are observed for test magnification levels in regular training results. These issues are 

largely reduced after using the proposed meta learning-based segmentation scheme.

These results demonstrate generalization capabilities of meta learning. These capabilities are 

critical for problems with scarce annotated data and for problems with largely varying data 

characteristics due to imaging parameters (e.g., zoom levels) or sample characteristics (e.g., 

different levels of neurodegeneration). The proposed pipeline using meta learning leads to 

a promising solution for segmentation of axons and myelin in electron microscopy images, 

particularly at high image resolutions (magnification levels 1200X and 2500X) where axon, 

myelin, and background textures are better observed.

IV. CONCLUSIONS

In this study, we proposed a meta learning-based deep learning system for robust 

segmentation of axons and myelin sheaths in electron microscopy images. The proposed 

meta learning-based system lead to 5% to 7% performance improvement compared to 

regular training. This image segmentation scheme will be our first step towards computation 

of medically relevant, image analytics-based outcome measures describing size, shape, and 

texture properties of axons and surrounding myelin layers. These outcome measures will be 

used to quantify neurodegenerative changes and to characterize disease-state and treatment 

response. Of particular interest to this study is degeneration and regeneration of hypoglossal 

motor neurons and resulting swallowing function impairment and improvement respectively.
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Fig. 1: 
Neuron anatomy illustrated by using BioRender app [19]
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Fig. 2: 
Electron microscopy images of axons and myelin sheaths surrounding them at different 

magnification levels: (A) 500X, (B) 1200X, and (C)2500X.
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Fig. 3: 
General training pipeline of meta learning for deep neural network.
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Fig. 4: 
Unrolling gradient updates between inner loop and outer loop in MAML [23], [29].

Nguyen et al. Page 12

IEEE Appl Imag Pattern Recognit Workshop. Author manuscript; available in PMC 2023 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5: 
Segmentation outputs for training and test stages: axons (yellow areas) and myelin (purple 

areas). Blue arrow: false negative, red arrow: false positive.
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TABLE I:

Training results

Zoom Level

Training Dice Scores (%)

Regular Training Meta Learning

Control Disease Control Disease

500X

90 891200X

TEM
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TABLE II:

Test results

Zoom Level

Test Dice Scores (%)

Regular Training Meta Learning

Control Disease Control Disease

250X 77 76 84 (+7) 82 (+6)

2500X 86 83 91 (+5) 90 (+7)
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