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Abstract

There is an increasing interest in learning a set of small outcome-relevant subgraphs in network-

predictor regression. The extracted signal subgraphs can greatly improve the interpretation of the 

association between the network predictor and the response. In brain connectomics, the brain 

network for an individual corresponds to a set of interconnections among brain regions and there is 

a strong interest in linking the brain connectome to human cognitive traits. Modern neuroimaging 

technology allows a very fine segmentation of the brain, producing very large structural brain 

networks. Therefore, accurate and efficient methods for identifying a set of small predictive 

subgraphs become crucial, leading to discovery of key interconnected brain regions related to 

the trait and important insights on the mechanism of variation in human cognitive traits. We 

propose a symmetric bilinear model with L1 penalty to search for small clique subgraphs that 

contain useful information about the response. A coordinate descent algorithm is developed to 

estimate the model where we derive analytical solutions for a sequence of conditional convex 

optimizations. Application of this method on human connectome and language comprehension 

data shows interesting discovery of relevant interconnections among several small sets of brain 

regions and better predictive performance than competitors.
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I. Introduction

In this article, we study methods for predicting an outcome variable yi from a network-

valued variable Wi, measured on n subjects, where Wi is a V × V symmetric matrix. In 

the typical scenario, the number of free elements of Wi, V (V − 1)/2, is much larger than 

n. In our motivating example, Wi is the weighted adjacency matrix of an individual’s brain 
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structural network, where the brain is segmented into V regions and each entry in Wi 

denotes the connectivity strength of neural fibers between a pair of regions. The outcome 

yi is a cognitive trait of an individual which is a continuous variable. The goal is to select 

neurologically interpretable subgraphs in the brain connectome, corresponding to a subset of 

neural connections, that are relevant to the outcome yi.

One typical approach to this large p small n problem would be a linear regression with some 

regularization, such as lasso [1], elastic-net regression [2] and SCAD [3]. These approaches 

require first flattening out each adjacency matrix into a long vector, which could induce 

ultra high dimensionality for huge networks [4]. In addition, for large signal subgraphs 

with small sample size n, lasso cannot recover the truth because it cannot select more 

than n variables (edges). The most serious problem for these methods is that the selected 

connections generally do not have any structure in brain connectivity, making the results 

hard to interpret.

Graphical learning methods with sparsity regularization such as graphical lasso [5] aim to 

learn the conditional independence structure among multiple variables, which are usually 

assumed to have a multivariate Gaussian distribution and the focus is on estimating a 

sparse inverse covariance matrix for the variables. It may be possible to jointly model the 

outcome yi and all the connection strengths in the network Wi as a multivariate Gaussian. 

But this would involve estimating an O(V2) × O(V2) inverse covariance matrix, which may 

not be appealing in practice. Also the interpretation would be a big issue as the selected 

connections relevant to yi may not have any structure as with lasso.

Existing feature extraction approaches [6]–[10] typically employ a two-stage procedure 

where some latent representations of the networks are first learnt and a prediction model 

is trained on the low-dimensional representations. However, such unsupervised approaches 

have the disadvantage that the low dimensional structure is extracted to minimize the 

reconstruction error in network approximation, which may not produce network features that 

are particularly predictive of the response.

Tensor regression models [11]–[14] provide a promising tool for estimating outcome-

relevant subgraphs in this situation. Initially proposed for neuroimaging analysis, tensor 

regression methods can effectively exploit the array-valued covariates to identify regions 

of interest in brains that are relevant to a clinical response [11]. But when the matrix 

predictor is symmetric, additional symmetry constraints are required on the coefficient 

vectors. Another related method is the low-rank sensing model [15], [16], which considers 

the problem of recovering a low-rank matrix from affine equations. However, minimizing 

the rank of the coefficient matrix does not serve the goal of learning small subgraphs 

directly.

We propose to use a symmetric bilinear model with L1 penalty to estimate a set of small 

signal subgraphs. The model puts symmetry constraints on the coefficient matrix of tensor 

regression due to the symmetry in predictors - the adjacency matrices of undirected networks 

are symmetric. In this case, the block relaxation algorithm [11] of tensor regression cannot 

be applied. As far as we know, there is no available algorithm for estimating L1-penalized 
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symmetric bilinear regression in the literature. We therefore develop an effective algorithm 

based on the idea of the efficient coordinate descent algorithm [17] of lasso, which involves 

solving a sequence of conditional convex optimizations.

The rest of the paper is organized as follows. We first review some related methods in the 

next section. Section III describes our proposed symmetric bilinear model with a special 

format of L1 regularization. Section IV derives a coordinate descent algorithm for model 

estimation. Section V presents simulation studies demonstrating good performance of our 

algorithm in recovering true signal clique subgraphs in high and low signal-to-noise ratio 

settings. We apply the method on brain connectome and cognitive traits data in Section VI 

to search for sub-structure in the brain that is relevant to a cognitive ability. Section VII 

concludes.

II. Related Methods

Some related methods are introduced in detail below; these can provide candidate solutions 

to our problem but also have their own limitations. We will compare to these methods in 

later simulation studies in Section V. The notations and symbols used in this paper are 

summarized in Table I.

A. Tensor Network Principal Components Analysis

Tensor network principal components analysis (TN-PCA) [10] is an unsupervised dimension 

reduction method, which approximates a semi-symmetric 3-way tensor W by a sum of 

rank-one tensors:

W ≈ ∑
k = 1

K
dkvk ∘ vk ∘ uk, (1)

where W is a concatenation of symmetric (demeaned) adjacency matrices W i i = 1
n , dk is 

a positive scaling parameter, ○ denotes the outer product, vk is a V × 1 vector of unit 

length that stores the PC score for each node in component k, and uk is a n × 1 vector 

of unit length that stores the PC score for each network in component k. Zhang et al. 
[10] place orthogonality constraints on the component vectors vk’s but leave the vectors 

uk’s unconstrained. TN-PCA (1) embeds the V × V undirected networks W i i = 1
n  into a 

low dimensional n × K matrix U = (u1, . . . ,uK), where each row i represents a 1 × K 
embedded vector for network i. When K < n, we can study the relationship between the 

network Wi and an outcome yi via a simple linear regression on the low dimensional 

embeddings U. The set of rank-one matrices vkvk
⊤

k = 1
K  can be viewed as basis networks and 

the ones corresponding to the significant components in the regression of y are selected 

as signal sub-networks. However, such an unsupervised approach has the disadvantage that 

the low-dimensional structure vk, uk k = 1
K  is extracted to minimize the reconstruction error in 

network approximation (1), which may not be relevant in prediction of y.

B. Tensor Regression Model

A generic rank-K tensor regression (TR) on the matrix-valued predictor has the form
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E yi ∣ W i = α + ∑
k = 1

K
β1

(k) ⊤ W iβ2
(k), (2)

where βd
(k) ∈ ℝV , d = 1, 2; k = 1, . . . , K. The set of rank-1 coefficient matrices {β1

(k)β2
(k) ⊤ }k = 1

K

in the bilinear form (2) naturally selects a collection of subgraphs that are predictive of the 

response. Regularization of the form ρ∑k = 1
K ∑d = 1

2 βd
(k)

1 can be applied to encourage sparsity 

in the results, where ρ is the tuning parameter. However, if the matrix predictor Wi is 

symmetric, this does not necessarily lead to a symmetric matrix estimate for

B = ∑
k = 1

K
β1

(k)β2
(k) ⊤

in model (2), making the interpretation difficult.

An intuitively simple method is to symmetrize the TR estimator B by (B + B⊤)/2. Then the 

symmetrized component matrices

β 1

(k)β 2

(k) ⊤ + β 2

(k)β 1

(k) ⊤ /2
k = 1

K
(3)

locate the signal subgraphs. We refer to this method as naive TR in Section V.

C. Low Rank Sensing Model

The low-rank sensing (LRS) model aims to recover a low-rank matrix from affine equations:

minimizerank(B)
subject to yi = trace W i

⊤B = W i, B ,
i = 1, …, n .

(4)

Recht et al. [15] prove that under a restricted isometry property, minimizing the nuclear 

norm of B (the sum of B’s singular values) over the affine subset is guaranteed to produce 

the minimum-rank solution. Jain et al. [16] later studied the performance of alternating 

minimization for matrix sensing and matrix completion problems. However, the assumption 

that the outcome is exactly an affine function of the matrix predictor is far from reality in 

neuroimaging studies. In addition, a low-rank solution for B could be a dense matrix which 

selects almost all the edges in the network. Even with L1 regularization, the efforts made to 

reduce the rank may impair the sparsity of the matrix.

III. Symmetric Bilinear Regression With L1 Regularization

The classical linear model relates a vector-valued covariate x ∈ ℝp to the conditional 

expectation of the response y via E(y | x) = α + β⊤x. For a matrix-valued covariate 

W ∈ ℝV × V , one can choose a coefficient matrix B of the same size to capture the effect of 

each element. Then the linear model has the following form
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E(y ∣ W ) = α + B, W , (5)

where ⟨B, W⟩ = trace(B⊤W) = vec(B)⊤vec(W). If W is symmetric, the coefficient matrix B 
should also be symmetric. In this case, B has the same number of parameters, V (V − 1)/2, 

as W, which grows quadratically with V and can quickly exceed the sample size n when V 
is large. For example, typical structural brain networks of size 68 × 68 require 68 × 67/2 = 

2278 regression parameters. Hence, the goal is to approximate B with fewer parameters. If B 
admits a rank-1 decomposition

B = λββ⊤

where β ∈ ℝV , the linear part in (5) has the symmetric bilinear form

E(y ∣ W ) = α + λβ⊤W β .

A more flexible symmetric bilinear model would be a rank-K approximation to the general 

coefficient matrix B. Specifically, suppose B admits a rank-K decomposition

B = ∑
ℎ = 1

K
λℎβℎβℎ

⊤, (6)

where βℎ ∈ ℝV , λℎ ∈ ℝ, h = 1, . . . , K. We do not constrain βℎ ℎ = 1
K  to be orthogonal or 

linearly independent, because we want the component matrices λℎβℎβℎ
⊤

ℎ = 1
K  to be sparse, 

while such constraints discourage sparsity and do not provide interpretable results in 

practice. Therefore the rank K in (6) refers to the number of component matrices λℎβℎβℎ
⊤

ℎ = 1
K

instead of rank(B). Note that λℎ ℎ = 1
K  is necessary in the decomposition (6) as we don’t want 

to constrain B to be positive semi-definite.

The decomposition (6) leads to a rank-K symmetric bilinear regression model

E(y ∣ W ) = α + ∑
ℎ = 1

K
λℎβℎβℎ

⊤, W

= α + ∑
ℎ = 1

K
λℎβℎ

⊤W βℎ .
(7)

The decomposition (6) may not be unique even up to permutation and scaling [18]–[20]. 

Hence, we introduce an L1 penalty on the entries of component matrices λℎβℎβℎ
⊤

ℎ = 1
K  to 

ensure both the identifiability of the model and the sparsity of the coefficient components 

λℎβℎβℎ
⊤

ℎ = 1
K . The loss function of model (7) under L1 regularization is given by
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1
2n ∑

i = 1

n
yi − α − ∑

ℎ = 1

K
λℎβℎ

⊤W iβℎ

2

+ γ ∑
ℎ = 1

K
λℎ ∑

u = 1

V
∑

v < u
βℎuβℎv

(8)

where γ is a penalty factor that can be optimized via test data or cross validation in practice. 

Here we choose to penalize the sum of absolute values of the lower-triangular entries in the 

matrices λℎβℎβℎ
⊤

ℎ = 1
K  instead of the L1 norms of the vectors βℎ ℎ = 1

K  for two reasons: (i) this 

form achieves an adaptive penalty on each βhu (the u-th entry of βh) given others; (ii) this 

form avoids scaling problems between λh and βh.

Regarding (i), by “adaptive penalty” we mean that the penalty factor for βhu in (8) given 

all the other parameters tends to be high with many nonzero entries in βh and low with few 

nonzero entries. Refer to Section IV-A for technical details on this property. Overall, this 

conditional adaptive L1 penalty will lead to sparser matrix estimates for λℎβℎβℎ
⊤

ℎ = 1
K  than 

simply penalizing the L1 norms of βℎ ℎ = 1
K .

Regarding (ii), note that our main interest is in the nonzero entries in the coefficient matrices 

λℎβℎβℎ
⊤

ℎ = 1
K  instead of λℎ ℎ = 1

K  and βℎ ℎ = 1
K  separately. Therefore we want to ensure that each 

component matrix λℎβℎβℎ
⊤ is identifiable when minimizing the loss function comprising two 

parts: the mean squared error (MSE) and the L1 regularization term as in (8). If we only 

penalized the L1 norms of βℎ ℎ = 1
K  as in the regularized tensor regressions [11], the loss 

function would be reduced by simply manipulating the scales of λh and βh simultaneously. 

For example, if we shrink βh to be 0.1βh and grow λh to be 100λh so that the matrix 

λℎβℎβℎ
⊤ remains unchanged, the MSE would stay the same but the L1 regularization term 

would decline, making the loss function decrease. Therefore the component matrix λℎβℎβℎ
⊤

is non-identifiable under such regularization form. However, if we use the L1 regularization 

form in (8), the loss function (8) will not be affected when changing the scales for both 

λh and βh while leaving the matrix λℎβℎβℎ
⊤ unchanged. This ensures the identifiability of the 

matrix λℎβℎβℎ
⊤ when minimizing (8). The L1 regularization form in (8) also saves us from 

putting unit length constraints on βℎ ℎ = 1
K , as often done in CP decomposition [21], while 

such constraints would make the optimization more difficult.

The symmetric bilinear model achieves the goal of reducing parameters while maintaining 

flexibility. Model (7) has only (1 + K + KV) parameters, which is much smaller than 

the number of parameters, (1 + V(V − 1)/2), in the unstructured linear model (5) when 

V is large and K ≪ V. According to [11], such a massive reduction in dimensionality 

provides a reasonable approximation to many low-rank signals. If the true signal edges in 

the undirected network form several clique subgraphs, the symmetric bilinear model (7) 

will be much more efficient in requiring many fewer parameters to capture the structure. 

If this is not the case, model (7) is still flexible at capturing any structure of signal edges 

in the network with K being large. For example, if we set K = V (V − 1)/2 and choose 
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βℎ ℎ = 1
K = eu + ev u < v where eu u = 1

V  is the standard basis for ℝV , then the symmetric bilinear 

model (7) becomes unstructured linear regression (5) and equivalent to usual lasso.

The interpretation of the symmetric bilinear model (7) is very appealing in the context of 

networks. The nonzero entries in each coefficient component matrix λℎβℎβℎ
⊤ locate a clique 

subgraph where the edge weight between any two nodes is relevant to the response, and the 

number of nodes equals the number of nonzero entries in βh.

IV. Estimation Algorithm

The parameters of the symmetric bilinear model (7) are estimated by minimizing the loss 

function (8)

min
α, λℎ , βℎ

1
2n ∑

i = 1

n
yi − α − ∑

ℎ = 1

K
λℎβℎ

⊤W iβℎ

2

+ γ ∑
ℎ = 1

K
λℎ ∑

u = 1

V
∑

v < u
βℎuβℎv .

(9)

Note that K is fixed in our model (9) and the selection of K in practice is discussed in 

Section IV-D.

We consider a coordinate descent step [22], [23] for solving (9). Note that the objective 

function in (9) is a fourth order with βh. Therefore the block relaxation algorithm [11], 

which alternatively updates each component vector, is not efficient for (9), because partially 

optimizing βh when fixing the other parameters is not a convex problem and there is no 

closed form solution. However, since the undirected networks of interest do not have self 

loops, the diagonal of each adjacency matrix Wi can be set to zero. In this case, the objective 

function in (9) is indeed a partial convex function of each entry βhu in βh and has an 

analytical form solution, which makes coordinate descent very appealing in solving (9). 

The challenge then lies in deriving the closed form update for each parameter due to the 

nonsmoothness of the objective function in (9) and the technical details are discussed below.

A. Updates for Entries in βℎ ℎ = 1
K

Suppose we want to optimize with respect to βhu, the u-th entry in βh, given all the other 

parameters. The problem becomes

min
βℎ u

Lβ, ℎ βℎu = fℎ λℎ, βℎ + γ λℎ ∑
v ≠ u

βℎv βℎu , (10)

where

fℎ λℎ, βℎ = 1
2n ∑

i = 1

n
ei

(ℎ) − λℎβℎ
⊤W iβℎ

2, (11)

and ei
(ℎ) is the partial residual of subject i excluding the fitting from component h,
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ei
(ℎ) = yi − α − ∑

k ≠ ℎ
λkβk

⊤W iβk .

An important remark on (10) is that the penalty factor for |βhu|, γ λℎ ∑v ≠ u βℎv , is related to 

the nonzero entries in βh excluding βhu. Hence βhu is more likely to be shrunk to zero if the 

current number of nonzero entries in βh is large. This adaptive penalty will lead to a set of 

sparse vectors βℎ ℎ = 1
K  and hence a set of small signal subgraphs.

Since the diagonal elements of each Wi are all equal to zero, fh(λh, βh) is actually a partial 

quadratic function of βhu given βℎv v ≠ u and hence a partial convex function of βhu with

∂fℎ

∂βℎu
= − 2λℎ

n ∑
i = 1

n
ei

(ℎ) − λℎβℎ
⊤W iβℎ W i[u ⋅ ]βℎ (12)

∂2fℎ

∂βℎu
2 = 4λℎ

2

n ∑
i = 1

n
W i[u ⋅ ]βℎ

2 ≥ 0 (13)

where W i[u ⋅ ] is the u-th row of Wi and W i[ ⋅ u] is the u-th column of Wi below. To find the 

optimal βhu, we write (12) as

∂fℎ

∂βℎu
= − 2λℎ

n ∑
i = 1

n
ei

(ℎ) − λℎβℎ
⊤W i

(u)βℎ W i[u ⋅ ]βℎ

+ 4λℎ
2

n βℎ
⊤Muβℎ βℎu,

(14)

where W i
(u) is Wi with u-th row and u-th column set to zero, and Mu = ∑i = 1

n W i[ ⋅ u]W i[u ⋅ ]. Let 

aℎu = 2λℎ/n ⋅ ∑i = 1
n ei

(ℎ) − λℎβℎ
⊤W i

(u)βℎ W i[u ⋅ ]βℎ and dℎu = 4λℎ
2/n ⋅ βℎ

⊤Muβℎ. Note that Wi[uu] = 0, so 

ahu and dhu do not depend on βhu. Therefore the first derivative ∂fh/∂βhu is a linear function 

of βhu.

The derivative of the second term in the objective function of (10) with respect to βhu only 

exists if βhu ≠ 0. Hence

∂Lβ, ℎ

∂βℎu
=

−aℎu + dℎuβℎu + γ λℎ ∑v ≠ u
βℎv , if βℎu > 0

−aℎu + dℎuβℎu − γ λℎ ∑v ≠ u
βℎv , if βℎu < 0

(15)

Simple calculus [24] shows that the solution to (10) has the soft-thresholding form

β ℎu = 1
dℎu

sign aℎu aℎu − γ λℎ ∑
v ≠ u

βℎv

+

. (16)
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Thus (16) gives the analytical form for the coordinate-wise update for {βhu : h = 1, . . . , 

K; u = 1, . . . ,V}. The computational complexity of updating each entry βhu is O(nV2) and 

hence that of updating βℎ ℎ = 1
K  is O(nKV3). This step requires storing a V × V intermediate 

matrix Mu for each u = 1, . . . ,V and a V × K matrix for βℎ ℎ = 1
K , and therefore the memory 

complexity is O(V3 + VK).

B. Updates for λℎ ℎ = 1
K

Partial optimization with respect to each λh while fixing other parameters, solves the 

following convex optimization

min
λℎ

Lλ, ℎ λℎ = fℎ λℎ, βℎ + γ ∑
u = 1

V
∑

v < u
βℎuβℎv λℎ . (17)

The derivative of Lλ,h only exists if λh = 0 and has a similar form to (15) as

∂Lλ, ℎ

∂λℎ

=
−cℎ + bℎλℎ + γ∑u = 1

V ∑v < u
βℎuβℎv , if λℎ > 0

−cℎ + bℎλℎ − γ∑u = 1

V ∑v < u
βℎuβℎv , if λℎ < 0

(18)

where cℎ = ∑i = 1
n βℎ

⊤ W i βℎ ei
(ℎ)/n and bℎ = ∑i = 1

n βℎ
⊤W iβℎ

2/n. The coordinate-wise update for each 

λh has the form

λℎ = 1
bℎ

sign cℎ cℎ − γ ∑
u = 1

V
∑

v < u
βℎuβℎv

+

,

ℎ = 1, …, K .
(19)

The computational complexity for updating λℎ ℎ = 1
K  is O(nKV2). This step requires storing 

the intermediate results βℎ
⊤W iβℎ:ℎ = 1, …, K; i = 1, …, n , which uses O(nK) memory.

C. Update for α

Given other parameters, the optimal α is

α = 1
n ∑

i = 1

n
yi − ∑

ℎ = 1

K
λℎβℎ

⊤W iβℎ . (20)

The computational and memory complexity of this step is O(nK) and O(1) respectively.

D. Other Details

The above procedure is cycled through all the parameters until convergence, where the 

diagonal of each adjacency matrix Wi is set to zero. This coordinate descent algorithm 

ensures the objective function in (9) converges as each update always decreases the function 

value. In general, the algorithm should be run from multiple initializations to locate a good 

local solution. One important remark is that although the entries in βℎ ℎ = 1
K  and λℎ ℎ = 1

K  have 
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a closed form solution of 0 under sufficiently large penalty factor γ, we cannot initialize 

them at zero as the results will get stuck at zero. Update form (16) and (19) imply that 

given others being zero, the optimal βhu or λh will also be zero. In fact, we recommend to 

initialize all the parameters to be nonzero in case some components unexpectedly degenerate 

at the beginning. In practice, we initialize each βhu ~ U(−1, 1) and initialize α and λℎ ℎ = 1
K  by 

a least-square regression of yi on βℎ
⊤W iβℎ ℎ = 1

K .

Another remark relates to the invariance of loss function (8) under rescaling between λh 

and βh. The estimated component matrices λℎβℎβℎ
⊤

ℎ = 1
K  from our algorithm do not depend 

on the magnitude of initial values for λℎ ℎ = 1
K  and βℎ ℎ = 1

K  as long as the initial matrices of 

λℎβℎβℎ
⊤

ℎ = 1
K  remain unchanged.

Our proposed model (7) assumes a known rank K. In practice, we choose an upper bound 

for the rank, and then allow the L1 penalty to discard unnecessary components, leading 

to a data-driven estimate of the rank. Although we penalize the elements of component 

matrices in (9) instead of the number of components K directly, the entire components 

λℎβℎβℎ
⊤  are guaranteed to be shrunk to zero with large enough L1 penalty factor γ. In 

practice, this data-driven process can effectively remove redundant components as shown 

in Section V and Section VI. This rank selection approach has the distinct advantage of 

avoiding introducing an additional tuning parameter. That is, if we followed the usual model 

selection criteria to choose an optimal rank, such as BIC, AIC or cross validation [11], this 

would incur heavy computational burden since we have to tune the L1 penalty factor under 

each rank. We assess the performance of our procedure and verify its lack of sensitivity to 

the chosen upper bound in Section V-C. A more direct way to obtain a low rank K could be 

achieved by additionally penalizing the nuclear norm of B in (9). But our focus here is not 

on minimizing rank(B) and the efforts made to reduce rank(B) may impair the sparsity of the 

component vectors βℎ ℎ = 1
K .

Considerable speedup is obtained by organizing the iterations around the nonzero 

parameters – active set, as recommended in [17]. After a few complete cycles through all the 

parameters, we iterate on only the active set till convergence. The general procedure of the 

coordinate descent algorithm is summarized in Algorithm 1.

V. Simulation Study

In this section, we first conduct a number of simulation experiments to study the empirical 

computational and memory complexity of Algorithm 1. We then compare the inference 

results to several competitors.

Algorithm 1:

Coordinate Descent for L1 -Penalized Symmetric Bilinear Model (9).

1: Input: Adjacency matrices Wi of size V × V, outcome yi, i = 1, . . ., n; rank K, penalty factor γ, tolerance 
ϵ ∈ ℝ+
.
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2: Output: Estimates of α, 
λℎ ℎ = 1

K

, 
βℎ ℎ = 1

K

.

3: Initialize 
βℎ ℎ = 1

K

at nonzero random vectors; initialize α and 
λℎ ℎ = 1

K

by a least-square regression of yi on 

βℎ
⊤W iβℎ ℎ = 1

K

.

4: repeat

5:  forh = 1 : Kdo

6:   foru = 1 : Vdo

7:    Update βhu by (16)

8:   end for

9:  end for

10:  forh = 1 : Kdo

11:   Update λh by (19)

12:  end for

13:  Update α by (20)

14: until relative change of objective function (9) < ϵ

A. Computational and Memory Complexity

Algorithm 1 is implemented in Matlab (R2017a) and all the numerical experiments are 

conducted in a machine with one Intel Core i5 2.7 GHz processor and 8 GB of RAM. We 

simulated different number n of observation pairs {(Wi, yi) : Wi[uv] = Wi[uv] ~ N(0, 1), 

yi N(0, 1) i = 1
n  for different number of nodes V (each Wi is a V × V symmetric matrix with 

zero diagonal entries), and then assess how the execution time and peak memory (maximum 

amount of memory in use) increase with the problem size. In practice, the computational 

time of Algorithm 1 also depends on the penalty factor γ. When a small γ, e.g. γ = 0.01, is 

applied so that most of the estimated parameters are nonzero, the runtime per iteration is a 

linear order with n and K, and a cubic order with V as shown in Figure 1 and the left plot of 

Figure 2. This is in accordance with the theoretical analysis of the computational complexity 

per iteration of Algorithm 1 in Section IV, which is O(nKV3) in the worst case scenario. But 

the computational time declines considerably when a large penalty γ, e.g. γ = 0.1, 0.2 or 1, 

is applied, which increases sparsity in the parameters. The reason is that some computation 

cost can be saved in the sparsity scenario even though we run complete cycles through all 

the parameters per iteration. For example, if some λh becomes 0 at a certain step, changing 

the entries of βh will not affect the loss function (8) and hence we could set βh = 0 later on 

(the component degenerates).

The right plot in Figure 2 shows that the peak memory during the execution of Algorithm 1 

is a cubic order with V no matter what penalty factor is used. This is in accordance with the 

theoretical memory complexity of Algorithm 1, O(V3 + VK + nK), in Section IV. We do not 
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show the peak memory of Algorithm 1 versus the number of observations n or the rank K 
here because the peak memory is dominated by the cubic term of V and does not vary much 

with n or K in these cases.

Algorithm 1 was coded in the Matlab (R2017a) programming environment using no C or 

FORTRAN code. It is likely that the computational time of Algorithm 1 would improve 

relative to lasso or tensor regression if such code were used, as each iteration of Algorithm 

1 involves for-loops over the elements of component vectors βℎ ℎ = 1
K  which are particularly 

slow in Matlab.

B. Inference on Signal Subgraphs

In this experiment, we compare the performance of recovering true signal subgraphs among 

lasso, TN-PCA (model (1)), naive TR (model (2)–(3)), LRS (model (4)) and our proposed 

symmetric bilinear regression with L1 penalty (SBL).

We simulate a synthetic dataset consisting of 100 pairs of observations {(Wi, yi) : i = 1, . . . 

,100} as follows. Each pair consists of a 20 × 20 adjacency matrix Wi and a scalar yi ∈ ℝ. 

Specifically, each network Wi is generated from a set of basis subgraphs with an individual 

loading vector as

W i = ∑
ℎ = 1

10
λiℎqℎqℎ

⊤ + Δi, (21)

where qh ∈ {0, 1}20 is a random binary vector with ‖qh‖0 = h + 1, h = 1, . . . ,10.

The loadings {λih} in (21) are generated independently from N(0, 1). Δi is a symmetric 

20 × 20 noise matrix with each entry Δi[uv] ~ N(0, 0.12), u > v. This generating process 

produces dense networks with complex structure. Figure 3 visualizes the 10 basis subgraphs 

superimposed together.

The response yi is generated by

yi = q1
⊤W iq1 + q2

⊤W iq2 + q3
⊤W iq3 + εi, (22)

where εi ~ N(0, σ2). We consider two noise levels: σ = 10% and 100% of the standard 

deviation of the conditional mean E(yi | Wi). The generating process (22) indicates that 

the true signal subgraphs relevant to yi correspond to the first three basis subgraphs 

qℎqℎ
⊤:ℎ = 1, 2, 3  as displayed in Figure 4, so that the true signal subgraphs have nontrivial 

variations across observations, as is often the case in practice.

1) High Signal-to-Noise Ratio: In this case, we set the noise level σ = 10% of the 

standard deviation of the conditional mean E(yi | Wi) in the generating process (22).

The input parameters of Algorithm 1 for SBL are set as follows. K is set at 5 and the 

tolerance ϵ = 10−5 in this simulation study. It is easy to find a roughly smallest value γmax 
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for which βℎ ℎ = 1
K  and λℎ ℎ = 1

K  become zero. We set γmin = 0.01γmax and choose a sequence 

of 50 equally spaced γ values on the logarithmic scale.

The dataset is split into a training set and a test set with each consisting of 50 observations, 

for tuning the L1 penalty factor. Figure 5 and 6 display the mean squared error (MSE) 

on test data across different values of the L1 penalty factor for lasso, naive TR and SBL 

respectively. As can be seen, the out-of-sample MSE does not vary much with small values 

of the penalty factor for each method. Therefore we set the optimal L1 penalty factor at the 

largest possible value that produces small MSE (e.g. less than 3% of the maximum MSE 

when all the parameters are zero in this case) for all models as indicated in Figure 5 and 6.

The estimated coefficients from lasso are displayed in the lower-triangular matrix in the 

right plot of Figure 5 with the true coefficients in the upper-triangular. As can be seen, lasso 

misses some true signal edges and it is not straightforward to identify meaningful structure 

among the selected edges.

For the linear regression based on TN-PCA, we set the rank K = 20 in (1), which explains 

approximately 100% of the variation in the networks. The MSE on test data from TN-PCA 

is 19.46, higher than the MSE at the optimal L1 penalty factor, 15.32 for naive TR, 9.67 for 

lasso and 9.17 for SBL. The linear regression on the network PC scores shows that all the 

20 components are significant at the 5% significance level, which is noninformative of the 

subgraphs relevant to y since all the basis networks vkvk
⊤

k = 1
20  are dense.

For the low-rank sensing (LRS) model, we solve the optimization (4) by minimizing the 

nuclear norm [15] with the CVX toolbox in matlab. The solution for the coefficient matrix 

B does not have low rank but actually full rank in this case. This is probably due to the 

randomness in the generating process for y, which is closer to the reality in neuroimaging 

studies, while model (4) does not contain any randomness. In addition, the estimated B is a 

dense matrix with all the entries nonzero, and hence selects all the edges in the network. The 

MSE on test data from LRS is 13.46.

The estimated coefficient components for λℎβℎβℎ
⊤

ℎ = 1
5  from SBL as well as the selected 

subgraphs are displayed in Figure 7, where 4 out of 5 components are nonempty. Figure 

7 shows that our model recovers all the true signal subgraphs – a single edge, a triangle 

and a 4-node clique, though the component λ4β4β4
⊤ repeatedly selects an edge in the true 

triangle signal. Figure 8 displays the evolution of the estimated nonzero coefficients {λh βhu 

βhv} and 20 randomly selected zero coefficients in Figure 7 over iterations, which shows 

that the sequences of component coefficients converge as the objective function converges. 

In practice, we can always check such profiles of evolution for component coefficients 

and select a proper tolerance ϵ in Algorithm 1 to guarantee the convergence of solution 

sequences.

We use 10 initializations to run Algorithm 1 in this case, as the best local solution found 

does not change when increasing to 20 initializations. The total runtime is 32.2 seconds. But 

since the numerical experiments were conducted in a machine with one Intel Core i5 2.7 
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GHz processor and 8 GB of RAM, there are substantial margins to reduce the computational 

time if parallel computing were employed in a multi-core machine.

The naive TR is applied in this case under the same rank, the same convergence criterion and 

initializations as with SBL. The estimated coefficient components {(β1
(k)β2

(k) ⊤ + β2
(k)})β1

(k) ⊤ /2k = 1

5

as well as the selected subgraphs are displayed in Figure 9, where 2 out of 5 components are 

nonempty. Figure 9 shows that the naive TR model partially recovers the 4-node clique and 

the triangle signal, though misses the single-edge signal.

The procedure described above is repeated 100 times, where each time we generate a 

synthetic dataset based on (21) and (22), and record the out-of-sample MSE (at the optimal 

L1 penalty factor for lasso, naive TR and SBL), the true positive rate (TPR) representing 

the proportion of true signal edges that are correctly identified, and the false positive rate 

(FPR) representing the proportion of non-signal edges that are falsely identified, for lasso, 

TN-PCA, LRS, naive TR and SBL. Table II displays the mean and standard deviation (sd) 

of the MSE, TPR and FPR for the five methods in the high signal-to-noise ratio scenario. 

Although LRS has the lowest average MSE in Table II, its TPR and FPR are both 1, 

indicating that LRS selects all the edges in the network in each simulation. SBL has a bit 

higher average FPR than that of lasso and the highest TPR on average excluding LRS.

2) Low Signal-to-Noise Ratio: In this case, the noise level σ = 100% of the standard 

deviation of the conditional mean E(yi | Wi) in the generating process (22).

Figure 10 and 11 display the MSE on test data versus the L1 penalty factor for lasso, naive 

TR and SBL respectively. We set the optimal L1 penalty factor for each model at the value 

that produces the minimum out-of-sample MSE as indicated in Figure 10 and 11.

The estimated coefficients from lasso are displayed in the lower-triangular matrix in the left 

plot of Figure 10, which shows that lasso misses many true signal edges and selects a false 

edge with very large coefficient.

The MSE on test data from LRS is 1271.5 in this case and that from TN-PCA is 1249.1, 

much higher than the minimum MSE 482.8 for naive TR, 481.1 for SBL and 427.5 for lasso. 

The solution for coefficient matrix B from LRS is a dense matrix with full rank. The linear 

regression on the network PC scores from TN-PCA shows that none of the 20 components 

are significant in this case.

SBL selects two nonzero coefficient components λℎβℎβℎ
⊤  out of 5 in this case, which are 

displayed in Figure 12 along with the selected subgraphs. Figure 12 shows that our model 

perfectly recovers one true signal subgraph – the 4-node clique, though partially recovers 

the triangle signal by identifying one edge and misses the single-edge signal. The evolution 

profiles of the estimated nonzero coefficients and 20 randomly selected zero coefficients in 

Figure 12 are displayed in Figure 13, which indicates the convergence of the coefficients. 

The total runtime under 10 initializations is 18 seconds in this case.
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The naive TR is applied under the same convergence criterion and initializations as in SBL, 

where 1 out of 5 components is nonempty as displayed in Figure 14, which shows that the 

naive TR method partially recovers the 4-node clique while selecting 2 false edges.

The procedure described above is again repeated 100 times and Table III displays the 

mean and sd of the out-of-sample MSE, TPR and FPR for the five methods in the low 

signal-to-noise ratio scenario. Table III shows that SBL has the lowest out-of-sample MSE 

on average. Although naive TR obtains a bit higher TPR on average than SBL in this case, it 

has much higher average FPR than that of lasso and SBL.

C. Sensitivity to K

In the experiments above, the rank K is set at 5 in SBL, which is an upper bound for the 

true rank of the generating process (22), as recommended in Section IV-D. To assess the 

sensitivity of SBL’s performance to the choice of K in practice, we rerun SBL with K = 6 

and K = 7 for the experiments in both high and low signal-to-noise ratio (SNR) scenarios. 

The mean and sd of the out-of-sample MSE, TPR and FPR are displayed in Table IV. 

Compared to Table II and III in either case, the average MSEs, TPRs and FPRs are very 

similar among different choices for K in SBL, implying that Algorithm 1 is robust to the 

chosen upper bound for the rank.

VI. Application

We applied our method to the Human Connectome Project (HCP) dataset [25], exploring 

the association between the brain connectome and two cognitive abilities, auditory language 

comprehension ability and oral reading ability. The dataset contains sMRI and dMRI data 

for 1065 subjects and for each subject, a weighted brain network of fiber counts among 68 

regions was constructed by a state-of-the-art dMRI processing pipeline [26].

A. Picture Vocabulary Data

The HCP dataset contains age-adjusted scale scores of the subjects in a picture vocabulary 

(PV) test where respondents are presented with an audio recording of a word and four 

photographic images on the computer screen and are asked to select the picture that most 

closely matches the meaning of the word.

We first compare the predictive performance for the PV scores among lasso, TN-PCA and 

SBL. The dataset is partitioned into a training set of 565 subjects and a test set of 500 

subjects. We set K = 10 for SBL. Five initializations are enough for Algorithm 1 to produce 

robust estimates for this dataset. The MSEs of PV scores on test data from SBL under 

different values of the L1 penalty factor γ are shown in Figure 15. The optimal γ is set 

at the value that produces the smallest MSE, which is smaller than the minimum MSE of 

lasso, indicating better predictive performance. We set the rank K = 68 in TN-PCA, which 

explains approximately 93% of the variation in the brain networks. The out-of-sample MSE 

of TN-PCA is 222.1, which is higher than the minimum MSE of SBL as indicated in Figure 

15. The linear regression of the PV scores on the low-dimensional embeddings of the brain 

networks shows that none of the 68 components are significant at the 5% significance level.
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The estimated coefficients from lasso and the structural connections in the brain 

corresponding to the nonzero coefficients are displayed in Figure 16. As can be seen, these 

identified connections lack meaningful structure and are difficult to justify neurologically.

For L1-penalized symmetric bilinear regression, only 6 out of 10 coefficient component 

matrices λℎβℎβℎ
⊤

ℎ = 1
K  have nonzero entries, implying K = 10 is large enough to capture all 

the signal subgraphs for this dataset. The estimated nonzero component matrices and their 

corresponding structural connections in the brain are displayed in Figure 17, which shows 

that SBL locates multiple simple subgraphs in the brain that may form some anatomical 

circuits in linguistic processing of sound to meaning. Three subgraphs in Figure 17 only 

contain a single connection verifying the flexibility of the model. We also observe that 

some brain regions repeatedly appear in the subgraphs in Figure 17, which may indicate 

important roles of these regions in auditory comprehension. For example, 27L, 27R (left and 

right superior frontal gyrus), 7L (left inferior parietal gyrus) and 29L (left superior temporal 

gyrus) are among activated regions when shifting from listening to meaningless pseudo 

sentences to listening to meaningful sentences [27], [28]. Figure 17 also shows that most 

estimated coefficients of the strengths of these signal connections are positive, implying that 

stronger neural connections among these regions are expected to lead to higher auditory 

comprehension ability. These identified anatomical subnetworks in the brain are consistent 

with the notion that auditory language processing is a complex process, which is the product 

of the coordinated activities of several brain regions.

B. Reading Recognition Data

The HCP dataset also contains the age-adjusted scale scores of the subjects in an oral 

reading recognition (RR) test where participants were scored on reading and pronouncing 

letters and words. We apply our method to find sub-networks in the brain connectome 

relevant to oral reading ability. Following the same procedure of partitioning data as in 

Section VI-A, we compare the predictive performance for the RR scores among lasso, 

TN-PCA and SBL. The minimum out-of-sample MSE of SBL is 201.8, which is smaller 

than that of lasso, 205.9. Although TN-PCA obtains the smallest MSE, 194.7, in this case, 

the resulting 16 significant components select all the connections in the brain network.

In this case, SBL selects 7 non-empty components λℎβℎβℎ
⊤  out of 10 with penalty factor γ 

set at the optimal value. The subgraphs of brain connectome corresponding to these nonzero 

components are displayed in Figure 18. We notice that a triangle subgraph repeatedly 

appears in these subgraphs, consisting of three regions: 27L (left superior frontal), 23L 
(left precentral) and 22R (right posterior cingulate). This triangle subgraph may form a 

core anatomical circuit in the phonological reading pathway. These regions agree with the 

findings in neuroscience that the superior frontal gyrus is associated with word reading [29], 

left precentral gyrus is involved in phonological output [30] and the posterior cingulate 

cortex is associated with language comprehension [31].
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VII. Conclusion

In summary, the symmetric bilinear model is a useful tool in analyzing the relationship 

between an outcome and a network-predictor, which produces much more interpretable 

results than unstructured regression does, while maintaining competitive predictive 

performance. We develop an effective coordinate descent algorithm for L1-penalized 

symmetric bilinear regression which outputs a set of small outcome-relevant subgraphs. 

Our method contributes to an insightful understanding of the substructure of networks that 

is relevant to the response and has wide applications in various fields such as neuroscience, 

internet mapping and social networks. Although we have focused on a continuous response, 

the methods are straightforward to adapt to classification problems and count responses by a 

simple modification of the goodness-of-fit component of the loss function.
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Fig. 1. 
Average computation time (in seconds) per iteration of Algorithm 1 for 30 runs versus the 

number of graphs n (left) and rank K (right).
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Fig. 2. 
Average computation time (in seconds) per iteration (left) and average peak memory (in mb) 

in use (right) during the execution of Algorithm 1 for 30 runs versus the number of nodes V. 

The equation of the fitted cubic curve is shown on either plot.
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Fig. 3. 
Overlay of 10 basis subgraphs corresponding to qℎqℎ

⊤
ℎ = 1
10 .

Wang et al. Page 22

IEEE Trans Signal Process. Author manuscript; available in PMC 2023 May 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
True signal subgraphs in simulation: qℎqℎ

⊤:ℎ = 1, 2, 3 (upper panel) and the corresponding 

clique subgraphs (lower panel).
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Fig. 5. 
Left: out-of-sample MSE from lasso under high signal-to-noise ratio. Right: estimated 

coefficients from lasso (lower-triangular) where the L1 penalty factor is set corresponding to 

the vertical line on the left plot; the true coefficients for each edge of the network are shown 

in the upper triangle.
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Fig. 6. 
Out-of-sample MSE from naive TR (left) and SBL (right) under high signal-to-noise ratio. 

The vertical line in either plot indicates the selected value of the L1 penalty factor in 

coefficient estimation.
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Fig. 7. 
Estimated nonzero coefficient components λℎβℎβℎ

⊤  from SBL (upper) and their selected 

subgraphs (lower) under high signal-to-noise ratio.
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Fig. 8. 
Profiles of estimated coefficients from SBL under high signal-to-noise ratio, showing how 

coefficient values {λh βhu βhv} evolve over iterations for the estimated nonzero coefficients 

and 20 randomly selected zero coefficients in Figure 7.
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Fig. 9. 
Estimated nonzero coefficient components {(β1

(k)β2
(k) ⊤ + β2

(k))β1
(k) ⊤ /2} from naive TR and their 

selected subgraphs under high signal-to-noise ratio.
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Fig. 10. 
Left: out-of-sample MSE from lasso under low signal-to-noise ratio. Right: estimated 

coefficients from lasso (lower-triangular) where the L1 penalty factor is set corresponding to 

the vertical line on the left plot; the true coefficients for each edge of the network are shown 

in the upper triangle.
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Fig. 11. 
Out-of-sample MSE from naive TR (left) and SBL (right) under low signal-to-noise ratio. 

The vertical line in either plot indicates the selected value of the L1 penalty factor in 

coefficient estimation.
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Fig. 12. 
Estimated nonzero coefficient components λℎβℎβℎ

⊤  from SBL and their selected subgraphs 

under low signal-to-noise ratio.
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Fig. 13. 
Profiles of estimated coefficients from SBL under low signal-to-noise ratio, showing how 

coefficient values {λh βhu βhv} evolve over iterations for the estimated nonzero coefficients 

and 20 randomly selected zero coefficients in Figure 12.
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Fig. 14. 
Estimated nonzero coefficient component β1

(1)β2
(1) ⊤ + β2

(1)β1
(1) ⊤ /2 from naive TR and its 

corresponding subgraph under low signal-to-noise ratio.
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Fig. 15. 
Out-of-sample MSE of SBL on picture vocabulary data. The dashed vertical line indicates 

the selected value of γ in inference; the red horizontal line indicates the minimum MSE of 

lasso; the black horizontal line indicates the MSE of TN-PCA.
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Fig. 16. 
Estimated coefficients from lasso in matrix form (left) and the structural connections in 

the brain corresponding to nonzero coefficients (right). The thickness of each edge is 

proportional to the average fiber count between the pair of regions.
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Fig. 17. 
Estimated nonzero component matrices λℎβℎβℎ

⊤  for picture vocabulary data (upper) and 

their selected subgraphs in the brain (lower). The thickness of each edge is proportional to 

the average fiber count between the pair of brain regions.
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Fig. 18. 
The selected subgraphs in the brain relevant to oral reading ability. The thickness of each 

edge is proportional to the average fiber count between the pair of brain regions.
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Wang et al. Page 38

TABLE I

Notations and Symbols

Symbols Description

yi scalar response of observation i

Wi a V × V symmetric matrix predictor of observation i with zero diagonal entries

Wi[u·] the u-th row of Wi

Wi[·u] the u-th column of Wi

Wi[uv] the (u, v) entry of Wi

W i
(u) Wi with u-th row and u-th column set to zero

B a V × V symmetric coefficient matrix

α intercept of regression

λh scalar of component h in decomposition (6)

β h the V × 1 vector of component h in decomposition (6)

βhu the u-th entry of βh

βd
(k) the d-th V × 1 vector of component k in tensor regression (2)

K the rank of decomposition (6)

γ penalty factor

ei
(ℎ) the partial residual of subject i excluding the fitting from component h, 

ei
(ℎ) = yi − α − ∑k ≠ ℎ λkβk

⊤W iβk

Mu intermediate matrix, 
Mu = ∑i = 1

n W i[ ⋅ u]W i[u ⋅ ]

ahu intermediate scalar, 
aℎu = 2λℎ/n ⋅ ∑i = 1

n (ei
(ℎ) − λℎβℎ

⊤W i
(u)βℎ)W i[u ⋅ ]βℎ

dhu intermediate scalar, 
dℎu = 4λℎ

2/n ⋅ βℎ
⊤Muβℎ

ch intermediate scalar, 
cℎ = ∑i = 1

n βℎ
⊤W iβℎei

(ℎ)/n
bh intermediate scalar, 

bℎ = ∑i = 1
n βℎ

⊤W iβℎ
2/n
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Wang et al. Page 39

TABLE II

Mean and SD of the MSE, TPR and FPR Across 100 Simulations Under High Signal-to-Noise Ratio

MSE TPR FPR

lasso 10.98±4.40 0.837±0.138 0.002±0.005

TN-PCA 10.04±4.66 0.449±0.499 0.449±0.499

LRS 6.71±2.86 1.000±0.000 1.000±0.000

naive TR 15.94±6.93 0.696±0.122 0.024±0.027

SBL 10.08±4.51 0.848±0.169 0.005±0.007
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Wang et al. Page 40

TABLE III

Mean and SD of the MSE, TPR and FPR Across 100 Simulations Under Low Signal-to-Noise Ratio

MSE TPR FPR

lasso 448.3±195.3 0.445±0.141 0.025±0.037

TN-PCA 624.0±287.8 0.060±0.239 0.060±0.238

LRS 636.7±258.3 1.000±0.000 1.000±0.000

naive TR 394.5±157.1 0.572±0.181 0.176±0.238

SBL 393.7±159.2 0.539±0.210 0.029±0.038
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Wang et al. Page 41

TABLE IV

Mean and SD of the MSE, TPR and FPR for SBL With Different Choices of K in High and Low Signal-to-

Noise Ratio (SNR)

MSE TPR FPR

high K = 6 10.21±4.62 0.856±0.182 0.004±0.011

SNR K = 7 10.15±4.61 0.858±0.172 0.005±0.009

low K = 6 394.5±158.0 0.570±0.224 0.020±0.021

SNR K = 7 395.4±158.8 0.548±0.208 0.020±0.024
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