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Abstract

COVID-19 has challenged health systems to learn how to learn. This paper describes the context, 

methods and challenges for learning to improve COVID-19 care at one academic health center. 

Challenges to learning include: (1) choosing a right clinical target; (2) designing methods for 

accurate predictions by borrowing strength from prior patients’ experiences; (3) communicating 

the methodology to clinicians so they understand and trust it; (4) communicating the predictions 

to the patient at the moment of clinical decision; and (5) continuously evaluating and revising the 

methods so they adapt to changing patients and clinical demands.

To illustrate these challenges, this paper contrasts two statistical modeling approaches — 

prospective longitudinal models in common use and retrospective analogues complementary in 

the COVID-19 context — for predicting future biomarker trajectories and major clinical events. 

The methods are applied to and validated on a cohort of 1,678 patients who were hospitalized with 

COVID-19 during the early months of the pandemic. We emphasize graphical tools to promote 

physician learning and inform clinical decision making.
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1. INTRODUCTION

COVID-19 has challenged health systems around the world. Most infected persons have 

mild to moderate flulike symptoms, but a subset have life-threatening lung injury requiring 

hospitalization and critical care services. Since the first cases early in 2020, more than 5.5 

million people have died, constituting the most deadly pandemic since the 1918 Influenza 

[36].

The U.S. healthcare system is the most expensive in the world. The excess per capita 

expenditures relative to the second most expensive country total more than $1.1 trillion per 

year or 5% of U.S. GDP. Despite this excessive investment, U.S. health outcomes are not 

competitive with countries that spend much less. For example in 2020, an American’s life 

expectancy at age 65 ranked 26th out of 40 reporting OECD countries [37]. Americans, who 

comprise 4.2% of the world population, have suffered 835,000 COVID-19 deaths, 15% of 

the global total. Poorly-informed medical decisions, often caused by misaligned incentives, 

explain a substantial part of the inefficiency in the U.S. health system [5, 26].

One strategy to improve health outcomes and reduce wasteful spending, advocated by the 

National Academy of Medicine and others, is the learning health care system [23]. The 

strategy is to collect the massive amounts of information generated in medical practice, 

learn from past successes and failures as reflected in these data, and change clinical 

practice to improve patient outcomes [7]. During the COVID-19 pandemic, the combination 

of exponentially-increasing patient numbers, intense life-preserving medical interventions, 

and poor understanding of how to manage the disease has strained what was already an 

inefficient system.

In this paper, we present the statistical models and graphical tools we have developed 

to support clinical decision processes at the Johns Hopkins Health System in the context 

of the COVID-19 pandemic. Also discussed are some of the challenges we have faced 

in integrating these tools into clinicians’ workflow. Section 2 describes the data and 

analytic infrastructure available to statisticians and design principles behind our statistical 

approach in supporting clinical decisions. Section 3 introduces the models we developed for 

COVID-19 patient monitoring. In Section 4, we apply the methods to the data set consisting 

of the 1,678 patients hospitalized during the early months of the epidemic. We highlight 

graphical displays as well as evaluations of the dynamic prediction process starting with the 

baseline risks and adding regular updates as the biomarkers change. Section 5 discusses the 

challenges in implementing our tools and others like them in clinical care and how to assure 

the tools adapt to the changing patient population and clinical demands.

"You never want a serious crisis to go to waste," said Rahm Emanuel, White House Chief of 

Staff for President Obama [27]. COVID-19 is the healthcare crisis that demands that medical 

systems learn how to learn.
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2. PRECISION MEDICINE, COVID-19, STATISTICAL FRAMEWORK TO 

SUPPORT CLINICAL DECISIONS

At Johns Hopkins, a key component of its strategy to become a learning health care 

system is its precision medicine initiative called Hopkins inHealth, where “in” is for 

“intelligent.” To enable this initiative, Johns Hopkins a decade earlier installed a system-

wide electronic health record (EHR) that collects clinical data and text from all patient 

encounters. In addition to routine clinical data, Precision Medicine Centers of Excellence 
(PM-COEs) acquire research-grade measurements of their patients. The Centers collect a 

range of measurements, including genomic, imaging, physiologic, signs and symptoms, 

patient reported, and social-behavioral data.

As an example of this strategy, over the first three months of the pandemic, the COVID-19 

PMCOE built the Johns Hopkins CROWN Registry comprising all clinical data related 

to the testing and treatment of COVID-19 patients including demographic characteristics, 

medical histories, co-morbid conditions, vital signs, respiratory events, and laboratory values 

[14, 6]. During this period, the Johns Hopkins health system admitted 1,978 COVID-19 

patients. Of these, 1,687 arrived in the mild/moderate disease state, contributing sufficient 

clinical data for learning; 1,378 patients were ultimately discharged without ventilation, 199 

were ventilated of whom 60 subsequently died, and 110 died without ventilation.

Learning requires a secure platform for data wrangling and statistical analysis. The EHR 

data for COVID-19 patients are routinely downloaded into the JH-CROWN registry within 

a cloud-based system called the Precision Medicine Analytics Platform (PMAP). The data 

are integrated with other external and internal research data and shaped into a clinical 

cohort dataset organized by patient ID and time. Each PMCOE has a secure platform 

for analysis using R, Python, Jupyter Notebooks and other standard tools. The clinician 

scientists in each group are charged with identifying clinically-relevant subgroups and 

tailoring interventions to improve outcomes. Hypotheses generated from initial analyses 

are integrated into decision support tools and tested in clinical settings.

The reminder of this section describe a statistical framework to support a learning health 

care system.

2.1 Choosing a right clinical target

A key clinical objective is to triage patients from highest to lowest risk of requiring invasive 

interventions. Clinicians demand clinically interpretable, dynamic predictive models for the 

competing risks of intubation and death to focus their resources on patients at greatest risk. 

In simplest terms, clinicians seek tools that quantify their experiences with past patients as 

they strive to improve care for similar patients going forward.

Consider, from a clinician’s perspective, a COVID-19 patient with mild or moderate 

disease on the day of admission (day 0). The patient presents with personal and medical 

characteristics (X). The clinician measures baseline levels for a set of biomarkers used to 

monitor disease progression (Y0). Examples include pulse rate, oxygen saturation level, 

and body temperature. At this point, the clinician makes a preliminary assessment of her 
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patient’s risk for each of the three competing events: discharge (1), severe disease defined 

by the need for ventilation (2), or death (3), versus remaining event-free in the hospital for 

another day (0). We will write Wt to denote the patient’s status on day t, where Wt ∈ {0, 

1, 2, 3}. When planning a clinical approach on day t > 0, the clinician updates her baseline 

assessment by taking into account the observed trajectories for the biomarkers Y1:t. The 

clinical target for statistical analysis is the probability distribution of the future competing 

events and biomarkers given the individual patient’s history up until today. Letting T be the 

time of a person’s future event, this conditional distribution can be written

[T , W T, Y t + 1:T ∣ T > t, Y 0: t, X] .

The statistical specialty of joint models for longitudinal and survival or competing risks data 

focuses exactly on this joint distribution [9, 1]. Joint models are an example of multivariate 

(many biomarkers and events) hierarchical statistical models that include random effects to 

represent the heterogeneity among patients in their disease experience [15]. An excellent 

overview of the methods and computations for joint models is in [25]. A recent expository 

article on using joint models for predicting non-COVID-19 patient outcomes is by [2].

We focus on modeling the dynamic biomarkers that signal patient improvement or 

deterioration. More generally, albeit beyond the scope of this paper, we can account for 

the influence of past interventions on the biomarkers by modeling both biomarkers and 

interventions as causally interacting components of the dynamic Yt process. The reader 

interested in dynamic treatment regimes is referred to Zhang et al. [38] and references 

therein.

2.2 Borrowing strength from prior patients’ experiences

A well-designed hierarchical model of the distribution of the future events and biomarkers 

given the observed history of an at-risk patient is one way to summarize the major sources 

of variation in prior patient experiences in order to predict what the next otherwise-similar 

patient is likely to experience. John Tukey referred to this process as borrowing strength 
from the prior experience [29].

There are multiple complementary ways to decompose the distribution of interest into 

components that can be estimated from past patient data. Prospective and retrospective 

decompositions of dynamic statistical models are the focus of the remainder of this paper in 

order to illustrate the challenges to using statistical models to learn to improve COVID-19 

care. By using different decompositions, we can see how sensitive predictions are to the 

specific choice of method for borrowing-strength.

The more common prospective approach is to decompose the joint distribution of a next 

interval value (Wt+1, Yt+1) given the past into the product of: 1) the distribution of each 

possible state Wt+1 at time t + 1, given the person is at risk Wt = 0 and given the history 

of biomarkers Y0:t+1 and the baseline values X, and 2) the probability of the next biomarker 

value given the biomarker history and baseline measures. This decomposition, that we refer 

to as a prospective model, can be written
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[W t + 1, Y t + 1 ∣ T > t, Y 0: t, X] =
[W t + 1 ∣ T > t, Y 0: t + 1, X] [Y t + 1 ∣ T > t, Y 0: t, X], (1)

where we use the brackets to denote the (conditional) distributions of random variables.

Focusing on the first term on the right hand side, there are many “static” methods that 

predict clinical events using baseline measures but few that use the history of biomarkers 

over time. Examples of static prediction models that based upon baseline covariates using 

logistic regression and/or machine learning are in [32, 31, 4, 24, 10]. Patient features 

commonly used in these static models include demographic variables (age, sex, race), 

medical history variables (body mass index, comorbidities), baseline vital signs, and 

laboratory measurements. A survey of predictor variables used to predict disease severity 

is in Gallo Marin et al. [13]. These static models are useful to triage patients at baseline 

but not for patient monitoring day to day as is the goal here. Less common are COVID-19 

dynamic prediction models using not only baseline predictors but also measured biomarkers 

that change over time (Y1:t+1). The machine learning models developed by Chen et al. [8] 

and Wongvibulsin et al. [34] incorporate the dynamic nature of biomakers; for our purpose, 

however, key shortcomings of their methods are that both are prospective in design and 

neither attempts to forecast the biomarkers as in the second term on the right hand side of 

Equation 1.

The prospective approach has a few major shortcomings in the context of COVID-19. First, 

the risks of discharge, severe disease and death may be complex functions of the history of 

current and past biomarkers. Finding a parsimonious set of functions of biomarker values to 

include in the prediction model is a non-trivial task. Second, the clinician wants to know the 

risk in both the near and more distant future. Clinicians tell us that their focus is often on 

predicting the worst outcome in the future, not just on tomorrow’s or another day’s value. 

Third, day t = 0 refers to the time of admission not the time of disease onset. By day 0, each 

patient has traveled a different disease path introducing substantial baseline variability.

An alternative decomposition that partially addresses these limitations, while introducing 

others, is what we will refer to as a retrospective model that uses the day of event T to align 

patients’ disease trajectories rather than the day of hospitalization, as follows:

[T , W T, Y 1:T ∣ T > t, Y 0: t, X] =
[Y t + 1:T ∣ T , T > t, W T, Y 0: t, X][T , W T ∣ T > t, Y 0: t, X] .

We can then make predictions based upon the following further decomposition:

[T , W T, Y t + 1:T ∣ T > t, Y 0: t, X] ∝
[Y t + 1:T ∣ T , T > t, W T, Y 0: t, X]
[T , W T ∣ T > t, Y 0, X][Y 1: t ∣ W T, T , T > t, Y 0, X] .

(2)

When, after the appropriate transformation, the conditional distribution of Y1:T is reasonably 

approximated by a Gaussian distribution, it is clear how to compute the first term on the 

right hand side in (2). The second term is also easily obtained as shown in the Appendix A.
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In words, the right hand side shows that to predict future biomarkers and events, we must 

estimate three terms: 1) the probability distribution of the future biomarker process given 

the event type WT and day T and given the observed biomarker process to date Y1:t; 2) 

the probability of each event on each future day given only the baseline biomarkers and 

patient characteristics; and 3) the probability distribution of the observed biomarker history 

Y1:t given that the event is of type WT on event day T. In the Appendix A, we justify the 

decomposition using standard conditioning arguments.

As detailed in the sections that follow, we can provide the clinician with both graphical 

and numerical displays of her patient’s future risks and update them with each additional 

day of biomarker observation from either the prospective or retrospective models. In the 

retrospective model, we show how implementation is relatively easy because estimating the 

first term can be done with standard discrete-time competing risks methods. And the second 

term corresponds to a retrospective model of the biomarker data given the event types and 

times. Bowring et al. studied the biomarker distributions just before the onset of the event 

and their relationships to baseline covariates [6]. The prospective modeling approach is more 

common, but the retrospective approach has also been beneficial in other related problems 

which will be discussed in more details in the Appendix B.3.

3. MODELING APPROACHES

3.1 Overview

We observe repeated values of multiple biomarkers for each patient and seek to predict 

his/her future biomarker trajectories and event risks from models estimated for a population 

of patients. Hierarchical modeling is a natural choice for this task. We use a Bayesian 

approach to exploit both the computational flexibility of Markov Chain Monte Carlo 

algorithms and to allow for informative priors where solid prior knowledge exists.

In the COVID-19 application, we jointly model three continuous biomarkers: pulse rate; 

body temperature; and SpO2-FiO2 ratio, a measure of lung efficiency calculated by dividing 

oxygen saturation measurement from pulse oximetry by the fraction of inspired oxygen. 

We assume that the joint distribution of the continuous biomarkers can be reasonably 

approximated by a linear mixed effects model. Because it is unlikely that biomarker 

measurements have marginal distributions well approximated by the Gaussian, we replace 

the observed biomarker values by the corresponding quantiles of a Gaussian variate. Once 

models are estimated and predictions made, we transform them back to the original scales.

In the prospective model for biomarkers’ trajectories, the time origin is the day of admission. 

The multivariate mixed effects model for [Y1:t ∣ Y0, X] assumes the mean curve for each 

biomarker to be a smooth function of time, represented by a natural spline with fixed 

degrees of freedom. Baseline covariates X are included as fixed effects. The smooth function 

is allowed to vary among patients by including the spline bases as random effects. This 

model is used to estimate the mean curves and the covariance of the multivariate response 

vector for each patient. We then use this model to simulate future realizations for the 

biomarkers from the distribution [Yt+1:T ∣ Y1:t , X] that are needed in predicting future 

events.
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To complete the specification of the prospective model, we choose a discrete-time cause-

specific hazards model for the three competing outcomes [30]. This model can be fit 

as a multinomial logistic regression model in which the reference category is remaining 

hospitalized without an event. The logit of the probability of a particular event (e.g. death) 

depends on the baseline covariates and on simple functions of each of the biomarkers. In the 

COVID-19 application, the risk of each event depends on the most recent observation of the 

biomarkers and on their linear trend over the past 3 days. The multinomial model predicts 

daily risks of discharge, ventilation, and death as a function of the biomarker histories.

In the retrospective model, the time origin is the day of the event rather than the day 

of admission. A potential benefit of this choice is to reduce some of the heterogeneity 

among patients at the time of hospital admission; e.g. due to different health conditions, 

viral status, and access to care. As they approach a common outcome, they are likely more 

homogeneous. The key idea of the retrospective approach is to stratify the patients by their 

outcomes and build separate multivariate linear mixed effects models for each stratum. The 

biomarker trajectories are modeled backward in time, conditional on the type and future date 

of the outcome.

As in the prospective model, we use multinomial logistic regression for the distribution 

of the three competing clinical events: discharge, ventilation, and death. The predictors, 

however, consist only of the patients’ baseline characteristics (Y0,X), not the dynamic 

biomarker values (Y1:t). For each unique set of baseline predictors, this model gives the 

estimated probabilities of the competing events for each day since admission. We can think 

of this discrete distribution as the clinician’s best assessment of risks at admission but 

prior to monitoring the patient’s biomarker trajectories. This initial risk estimates combine 

with the retrospective multivariate mixed effects model to yield the updated predictive 

distribution of interest [T, WT, Yt+1:T ∣ T > t, Y0:t, X].

The notation and formal model specifications are provided in full detail in the Appendix B.1.

3.2 Model validation

With each additional day of hospitalization, more biomarker data are collected and the 

at-risk population changes, calling for updated predictions. We hence compare the predictive 

performance of the prospective and retrospective models on hospitalization days t = 0, 2, 

4 and 8. For each model and t, we predict both future biomarkers and event probabilities 

from the next day through to day 20. We compare the predicted future biomarker values and 

event risks with the observed values to quantify prediction error. To estimate out-of-sample 

prediction errors, we fit each model to a random 80% of the data and evaluate its prediction 

error for the remaining 20%. To stabilize the prediction error estimates, we repeat this 

evaluation for all five 20% subsets. The 20 – 80 split is arbitrary and others might be used.

Validation of the event risk predictions has two parts: calibration to assess prediction bias 

by asking whether a predicted rate is close to the observed rate for a new population; and 

discrimination to assess whether persons with higher predicted risks have events more often 

than those with lower risks. For calibration, we contrast the observed and model-based 

expected numbers of incident events on each future day until day 20. We split the future 
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days into three to five bins for which the expected number of events exceeds five and 

then calculate a cross-validated chi-square statistic as a measure of departure. To assess 

discrimination, we calculate time-varying area-under-the-curve (AUC) [16]. In particular, 

we consider the task of predicting the binary outcome of discharge vs. severe disease 

(ventilation or death). We take the observed data up to day t = 0, 2, 4, and 8 and calculate the 

cumulative probabilities of each competing event at each future day until day 20. We then 

use these cumulative probabilities to calculate the time-varying AUC.

4. APPLICATION AND RESULTS

4.1 Multivariate linear mixed model

We report on prospective and retrospective models using three key biomarkers: pulse rate, 

body temperature, and SpO2-FiO2 ratio. In the prospective model, the design matrix Xi 

comprises time (natural spline with 4 degrees of freedom) plus baseline variables including 

biomarker values at admission, comorbidities and demographics. In the retrospective model, 

the design matrix Xi comprises three separate time functions, one for each outcome event. 

Figure 1 contrasts the alignment of the biomarker data based on admission time in the 

prospective model and clinical event in the retrospective model. Biomarker trajectories 

of a random sample of 100 patients from each outcome group are shown in gray with 

colored dots indicating the event type and day. The mean curves with confidence regions 

are model-based estimates and point-wise 95% credible intervals. They represent the 

mean across the entire sample as if each person were observed at all times. In the 

prospective panel, the population average biomarker curve is shown in dark gold for a 

hypothetical reference patient having population-average baseline biomarker values and 

reference category characteristics. For this reference patient, SpO2-FiO2 ratio increased 

steadily after admission, body temperature decreased slightly from 37 and pulse stayed 

relatively constant throughout hospitalization. The variation in patient-specific SpO2-FiO2 

ratio trajectories is greater than in temperature and pulse trajectories.

In the retrospective panels, biomarker trajectories from admission until event day are shown 

separately for discharged, ventilated and deceased patients. Similar to trajectories observed 

by Bowring et al. [6], among those discharged, SpO2-FiO2 ratio increases rapidly starting 

approximately five days prior to discharge, pulse decreases during hospitalization with a 

notable drop three to four days immediately prior to discharge, and temperature begins to 

decrease approximately 10 days prior to discharge. Among those who received mechanical 

ventilation, SpO2-FiO2 ratio decreases five days prior, pulse increases slightly five days 

prior, and temperature remains elevated prior to ventilation. Among those who died without 

ventilation, SpO2-FiO2 ratio decreases consistently during admission and prior to death, 

pulse begins to increase approximately 10 days prior to death, and temperature remains 

elevated during admission and increases immediately prior to death. This retrospective 

approach can be expanded to jointly model more longitudinal biomarkers starting at 

admission and to add a second phase of follow-up after ventilation.

For all of the multivariate linear mixed effects models, as a part of routine model checking, 

we plotted the standardized residuals versus predicted values to identify any systematic 

deviations from a residual mean of zero (not shown). No systematic deviations were found. 
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Model-based and empirical correlations were compared to within and across biomarkers 

to validate the modeling assumptions about covariances (not shown). Small systematic 

departures relative to the size of the correlations were observed, but nothing of scientific 

interest to warrant changing the model. To check the Gaussian assumption for residuals, 

we produced quantile-quantile plots for the standardized, decorrelated residuals against the 

standard Gaussian distribution. The Gaussian assumptions were also reasonable.

4.2 Competing risks model

The competing risks models in both approaches uses the same set of baseline covariates as 

in the multivariate linear mixed model. In the the prospective model, we additionally include 

the biomarker measures on the previous day and their slopes over the previous two days. 

The estimated regression coefficients with 95% credible intervals are displayed in Figure 2. 

The combination of the two modeling approaches (prospective and retrospective) and the 

three outcomes (discharge, death, and ventilation) results in 6 coefficients for each predictor. 

The figure identifies the important predictors for each outcome and qualitatively compares 

the results of the two models. Because the prospective model conditions on functions of the 

past biomarkers and the retrospective model does not, the coefficients are not quantitatively 

equivalent.

Figure 2 shows that, in the prospective competing risks model, increased temperature at 

baseline is associated with higher log-odds of discharge and increased ALC is associated 

with decreased log-odds of ventilation. When compared to white patients less than age 75, 

those with Latinx ethnicity have higher log-odds of discharge, Black and white patients 

over 75 higher log-odds of death, and white patients over 75 lower log-odds of receiving 

ventilation. BMI above 30 is associated with higher log-odds of discharge. Higher Charlson 

comorbidity index (CCI) is associated with lower log-odds of discharge and higher log-odds 

of death. Higher previous SpO2-FiO2 ratio, lower previous temperature and lower previous 

pulse rate are associated with higher log-odds of discharge and lower log-odds of ventilation 

and death. An increasing slope in SpO2-FiO2 ratio is associated with a decreased log-odds of 

ventilation.

In the retrospective competing risks model, most baseline variables including pulse rate, 

SpO2-FiO2 ratio, CRP, D-dimer, and eGFR have minimal effect on the probability of 

discharge, death, or ventilation. Higher baseline temperature and lower ALC are associated 

with higher log odds of ventilation and death. Black patients with age less than 75 and 

Latinx/Other patients have a higher log-odds of discharge when compared to white patients 

less than 75. Black and white patients over the age of 75 are more likely to die when 

compared to white patients less than 75. Regarding comorbidities, a higher CCI and lower 

BMI are associated with lower log-odds of discharge and higher log-odds of death.

4.3 Model evaluation

Figure 3 evaluates the two approaches by comparing five-fold cross-validated calibration 

as detailed in Section 3.2. The rows correspond to the at-risk population on days 0, 2, 

4 and 8. Grey vertical lines separate observation and prediction periods. The colored 

markers represent the observed number of events (y-axis) of each event type (indicated 
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by color) on each future day (x-axis). Solid lines correspond to the predicted number 

from the retrospective approach and dashed lines from the prospective approach. When 

using two days of hospitalization data (Figure 3, second row), the retrospective approach 

underestimates the number of patients discharged after day 10. This underestimation 

translates to an elevated normalized χ2 as seen in Table 1. Overall, Figure 3 and the χ2 

column in Table 1 show comparable calibration between the two modeling approaches.

We compare the time-varying AUC curves of the two approaches for each remaining at-risk 

population on days t = 0, 2, 4, and 8. The daily AUCs from the two approaches are stable 

over time and remain comparable, so we only report the AUC value at day 20. The AUC 

columns in Table 1 show competitive discrimination between discharge and severe disease 

events.

4.4 Dynamic prediction for individual patient

Our goal is to provide clinicians with the real-time dynamic predictions for an individual 

patient of their future risks of the major events and expected biomarker trajectories. To 

illustrate the utility of the retrospective approach in achieving this goal, we randomly select 

a patient who was discharged on her 13th day of hospitalization. This female patient is 

greater than 75 years old, a former smoker with few co-morbidities and BMI ≥ 30.

The top row of Figure 4 shows predicted biomarker trajectories, one for each type of 

outcome and for each day of the event (up to day 20) after two days of hospitalization. The 

black line represents the observed SpO2-FiO2 ratio during the first two days. The marker at 

the end of each trajectory curve indicates the probability of that event occurring on that day 

given the first two days of observation. For example, if this patient were to be discharged 

(blue) on day 10, we would expect their SpO2-FiO2 ratio to rise until above 250, their 

temperature to decrease to 36.4 and pulse to stabilize around 72. However, we can see from 

the sizes of the event probability markers that this event is unlikely. Finally, the cumulative 

probabilities (i.e. the sum of the daily probabilities) of events are shown on the right. For this 

patient, given the first two days of data, the probabilities of discharge, death or ventilation 

are 63.9%, 24.2% and 12.0%, respectively.

The subsequent rows of Figure 4 show the corresponding predictions for this patient, 

updated using additional days of observation. For example, after 10 days of hospitalization, 

the distribution indicates a higher probability of being deceased in the next few days. From 

the predicted trajectories, if the patient were to be discharged on the next day (day 12), 

we would expect their SpO2-FiO2 ratio to stabilize over 200. This patient’s cumulative 

probabilities of discharge, death, and ventilation are 28.5%, 54.7% and 16.7%, respectively.

5. CHOICES AND CHALLENGES

5.1 One or more methods

This paper describes what were the second and third approaches to dynamic prediction 

of COVID-19 outcomes in the CROWN registry. It compares two methods derived from 

different decompositions and modeling assumptions about the same conditional distribution. 

It is therefore not too surprising that their prediction performances are similar. Our first 
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approach applied an extension of random forests for survival models with time-varying 

predictors RF-SLAM [33], and predicted the occurrence of ventilation or death in the 

next one or seven days [34]. The statistical models proposed here are comparable to the 

machine learning approach in terms of the overall accuracy and precision. For example, 

the one-day ahead prediction cross-validated AUCs from our prospective, retrospective, and 

their averages are 0.87, 0.86, and 0.87 respectively, comparable to 0.89 reported in [34].

The machine learning method is optimized to minimize the prediction error. The statistical 

models have the advantage that they produce all future predictions for both the events and 

for the biomarkers. They have more utilities for educating clinicians about what future 

outcomes to expect. There is a growing realization that, given the complex structure of data 

generated in health care settings, a statistical method that works well in one situation may 

not work well in another [21]. It is essential, therefore, to have alternative models whose 

predictions can be compared against one another. Moreover, having multiple models can 

potentially improve over individual models by combining them through model averaging 

procedures [3, 17].

5.2 Implementing clinical decision support software

In our experience, clinical colleagues understand the principle that John Tukey called 

“borrowing strength,” the idea that the experience with past patients can inform a clinician’s 

assessment of risk and her decision about a current patient. The statistical models described 

here and the machine learning alternative are complex calculations on data from a 

population of prior patients to quantify the risk for the patient at hand. A key challenge 

for data scientists is to convince their clinician colleagues validity of their predictions [28].

At our own institution, there are standardized policies and procedures for validating novel 

medical devices but not yet for novel decision support tools. Publication of the methodology 

is a necessary but insufficient first step. To obtain buy-in from clinicians, they need to 

be a part of the design, implementation and testing team. Half of the authors of this 

paper are clinicians or clinical trainees. The work is also part of a larger COVID-19 

clinical/data science project in which a third of the forty members are clinicians. During 

their development, the prospective and retrospective approaches and the machine learning 

alternative were discussed at weekly meetings of the larger team over many months. The 

tools were more readily accepted given the clinicians’ role in their development.

Another key component of validation is the ability of the clinician users to "look under the 

hood" so as to understand where the predictions come from in general terms [28]. Figure 

4 is an example of an effort to provide clinicians more than just prediction probabilities. It 

shows both the event probabilities and the expected biomarker trajectories for each of the 

clinical events: discharge, ventilation and death. Clinicians can compare these quantitative 

findings against their qualitative experiences having cared from many patients. For example, 

it makes sense to clinicians that the SpO2-FiO2 ratio needs to rise into the 250-350 range 

before a patient can be discharged. Clinicians also want to "kick the tires" of the method by 

asking "what if" questions. How does the prediction for this patient change if we restrict the 

training sample to patients 70 years of age? Which prior patients are most like this one and 
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what happened to each of them? A task we have yet to complete is building a Shiny interface 

that facilitates "what if" questions elicited from clinical colleagues.

Finally and most importantly, clinical decision support software is regulated within the 

U.S. by the FDA [19, 35], under its 2019 draft guidance [12]. To gain regular use in 

patients, software to implement the methods described here must undergo clinical evaluation 

and receive FDA approval. Most institutions currently leave the process of seeking FDA 

approval to individual research groups to conduct the requisite experiments and file for 

approval. Lack of an institution-wide regulatory process is a large disincentive to research 

groups. The more common course for researchers is to form a company under their 

university’s technology transfer policies, raise money for clinical testing, then the company 

seeks FDA approval. The company can then license the approved software back to the 

institution where it was developed. This is a slow and arduous process that is a strong 

impediment to modern data science impacting clinical care. At Johns Hopkins, our current 

strategy is to implement new policies and procedures that expedite seeking regulatory 

approval for decision support software.

5.3 Intelligence internal and/or external to the EHR

The inHealth PMAP system, external to the EHR, is a secure cloud-based system where all 

of our clinical data analysis must take place to meet federal privacy rules. PMAP routinely 

downloads then integrates the clinical data with other sources including images, -omics, 

social-behavioral, and other measures. This external system was created to wrangle the 

raw clinical data into clinical cohort datasets, conduct population-level analyses, produce 

predictions for individual patients, then return the results back to the EHR for use in clinical 

decision making. The advantage of moving the data out of the EHR is that non-clinical 

data scientists can collaborate with clinicians to build learning systems using hardware and 

software necessary for large, complex analyses. These analytic platforms can be scaled 

separately from the EHR systems. Data can be de-identified and studied with fewer patient-

privacy concerns.

The external approach has its drawbacks. The first is that new data are not immediately 

available to external algorithms to generate predictions for a current patient visit. Our 

current approach is to produce two algorithms: the first uses all of the population data 

available in PMAP to train the model; the second is a less computationally-expensive 

updating algorithm that can run within the EHR system to update the predictions based 

upon this patient’s current-visit data. Scaling this two stage approach is difficult because the 

updating programs must be custom designed for each data type and prediction algorithm.

The second issue is that, in order to document the clinical process, the predictions must 

be presented to clinicians and patients within the EHR-directed workflow. A similar 

issue occurs when clinicians use images in guiding patient care. External systems store 

and analyze the images. Clinicians view the the images that reside outside of the EHR. 

Clinicians then write an EHR-based note to document their findings and decisions. Image 

system vendors build the interfaces for this hand-shaking process. No analogous interface 

currently exists to document the process if clinicians were to exit the EHR, view prediction 
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from an external algorithm, and use this external information to guide their decisions. Such 

an interface needs to be developed for decision support tools.

5.4 Continuous model re-evaluation

Devices within medical systems are recalibrated on a regular schedule to assure the validity 

of their measurements. Repeated re-evaluation, what we refer to as "curation" is just as 

essential for decision support tools, especially in dynamic pandemics like COVID-19. 

The virus and the patient populations are continuously changing. A system trained on 

early patients may not be as useful in predicting outcomes for later patients. The standard 

methods of evaluation illustrated in this paper are necessary but not sufficient to handle the 

dynamics. Curation comprises repeated routine re-training and re-evaluation of the models 

on early, middle and late subsets of the growing population of patients. A graphical curation 

dashboard might include a sequence of figures like Figure 3 along with Table 1 showing 

calibration and discrimination in each time period. In addition to routine curation, model 

version updates will likely be needed to adapt to the changing epidemiology. Updates must 

be version controlled and documented for clinical oversight. When a decision support tool 

is used in clinical care, the predictions and clinical decisions to which they contributed must 

be linked to the specific version of the software and training data from which they were 

generated so that the predictions are entirely reproducible. Curation also requires an open 

feedback channel lest clinicians using a tool have concerns about predictions for a particular 

patient. Each major clinical support tool requires a curation team comprising independent 

clinical, data and regulatory experts who review the routine updates and respond to clinical 

feedback in a timely fashion.

6. DISCUSSION

This paper illustrates one academic health center’s efforts to learn how best to monitor 

COVID-19 patients’ disease states and predict major outcomes in near real time. 

The infrastructure necessary to build this learning health system comprises: automated 

acquisition of clinical data via an electronic health record; a secure analytic platform 

where raw transactional data can be transformed into research-grade clinical cohort data 

and integrated with external auxiliary data; statistical models for learning in real time; 

accessible presentations of the new knowledge to clinicians and patients within the EHR-

driven workflow; capacity to clinically test the value of the new knowledge in clinical trials; 

and a system for scaling and curating learned knowledge to assure it improves clinical 

outcomes and controls costs over the longer-term.

While discussing many of the above components, this paper focused on using longitudinal 

statistical models to learn about an individual patient’s biomarker trajectories and outcome 

risks from a population of otherwise similar patients who came before. We discussed two 

complementary approaches to decomposing the dynamic probability distribution of future 

biomarkers and events given patient histories. The traditional prospective approach models 

the marginal distribution of the biomarker processes and then the risk of events given the 

biomarkers. The more novel retrospective approach models the baseline risks of the events 

and then the conditional likelihood of the biomarkers given the eventual outcome. In our 
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analysis of the 1,678 patients, the discrimination and calibration of major events were 

qualitatively similar between the two approaches.

One goal of this paper is to illustrate a graphical representation of the joint biomarker-event 

distributions that is accessible to clinicians and is consistent with how they think. For a 

clinician concerned mainly with triaging patients using their relative risks over the next 24 

or 48 hours, the prospective model has the advantage of directly modeling the competing 

outcomes risk as an explicit function of the recent biomarker values. However, for clinicians 

concerned about longer-term outcomes and what the expected biomarker trajectories look 

like for each event type and future date, the retrospective model is a valuable complementary 

tool.

The findings in Figure 3 are generally consistent with current medical knowledge. It is 

well known that rising SpO2-FiO2 ratio and decreasing pulse portend earlier discharge and 

reduce the risk of intubation and death. One counter-intuitive finding was that obese persons 

(body mass index (BMI) > 30) were more likely to be discharged and less likely to die 

after conditioning on other variables. A similar finding has previously been reported from a 

separate analysis of the JH CROWN registry by [14]. Despite adjustment for age and race, 

this finding might be driven by the older more frail patients in our cohort, for whom higher 

BMI might be protective.

This paper focuses on the early learning about COVID-19 using the 1,678 patients 

hospitalized during the early months of the epidemic. The JH CROWN registry now 

includes more than 8,000 COVID-19 patients. An important systems-level question relevant 

to the ultimate impact of these and similar tools is how they are to be curated. In purchasing 

devices and pharmaceutical products, health systems count on their suppliers to monitor 

the longer-term efficacy and efficiency of their products as the population of patients and 

medical practice change over time. Currently, tools like the ones in this paper do not come 

with a dynamic curation process to sustain them over the longer-term. Should data science 

tools be sold like software, imagers, sequencers or drugs? If so, how should they be locally 

optimized across diverse populations and over time?

Finally, this paper places traditional statistical research within the context of the COVID-19 

epidemic, in which healthcare system requirements have made it challenging to achieve 

routine, intelligent use of emerging data to improve care. A clearly documented, useful 

method that predicts the likely trajectories and risks for a current patient is only an important 

first step. The ultimate goal is for the learned information to improve clinical decisions and 

patient outcomes. Improvement requires health system infrastructure that is just starting to 

be built. As it emerges, statisticians and other data scientists have the opportunity to play 

essential roles in improving health outcomes at more affordable costs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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APPENDIX A: DETAILS ON RETROSPECTIVE MODEL DYNAMIC 

PREDICTION

Appendix A provides details on the decomposition formula (2) introduced in Section 2.2 for 

making predictions from the retrospective model. We suppress the subscript i for individuals 

to simplify the notation. The goal is to compute the joint distribution of the time of event T, 

type of event WT and future biomarkers Yt+1:T given the individual remains at risk T > t, the 

biomarkers observed to that point Y1:t, baseline biomarkers Y0 and patient characteristics 

X, (i.e. [T, WT, Yt+1:T ∣ T > t, Y1:t, Y0, X]). Given the baseline biomarker measures Y0 

and patient characteristics X, the initial probability distribution for event type and day in the 

interval (t + 1: T) is given by

[T = τ, W T = m ∣ T > t, Y 0, X] ≔ ξτm

= πτm∏τ − 1
s = t + 1(1 − πs1 − … − πsM) ,

where the probabilities πsm of event type m on day s have been estimated from the 

retrospective competing risks model.

The likelihood L(τ, m; y) of observing the biomarkers Y1:t=y given the person is at risk at 

time t and given the event WT = m happens at time T = τ is

L(τ, m; y) = [Y 1: t = y ∣ T = τ > t, W T = m, Y 0, X] .

This is the conditional distribution of the biomarker up until time t given the outcome event 

between times t and T that can be estimated from the fitted retrospective multivariate linear 

mixed effects model.
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The updated probability [T, WT ∣ T > t, Y1:t, Y0, X] can now be obtained by applying 

conditional probability rule:

[T , W T ∣ T > t, Y 1: t, Y 0, X]
= [Y 1: t ∣ T , T > t, W T, Y 0, X][T , W T ∣ T > t, Y 0, X]

∑T , W T [Y 1: t ∣ T , T > t, W T, Y 0, X][T , W T ∣ T > t, Y 0, X]

= L(τ, m; y)ξτm
∑τ, m L(τ, m; y)ξτm

.

Finally, we obtain the joint distribution of the future biomarkers and events given the history 

of biomarkers and sequence of events up until time t such that

[T , W T, Y t + 1:T ∣ T > t, Y 1: t, Y 0, X]
= [Y t + 1:T ∣ T , W T, Y 1: t, Y 0, X][T , W t + 1:T ∣ Y 1: t, Y 0, X] .

APPENDIX B: MODEL DETAILS

B.1 Notation

Appendix B provides model details on the prospective and retrospective approaches. Figure 

5 introduces notations for the prospective and retrospective models using two hypothetical 

patients who were discharged on day 20 and ventilated on day 16, respectively. The red 

vertical lines indicate the time origins for each model; the dashed gray lines indicate 

each patient’s day of event. We use Y it
(k) to denote measure k for person i on day t after 

hospitalization, i = 1, …, N; t = 1, …, Ti, k = 1, …, K. We let Y i
(k) be the vector of (Y it

(k), t = 1, 

…, Ti). Define Y i = (Y i
(k), k = 1, …, K).

In the prospective and retrospective multivariate linear mixed effects models, we define 

the design matrices for person i and biomarker k to be Xi
(k) and Xi

(k)
 respectively. Let 

Xi = ⊕k = 1
K Xi

(k) and Xi = ⊕k = 1
K Xi

(k)
. To reduce notation, we include the baseline biomarker 

measures Yi0 as columns within these design matrices. Similar naming conventions are used 

in the competing risk multinomial models, where the prospective and retrospective design 

matrices are called Gi and Gi respectively. Finally, in the retrospective model (Figure 5, 

right), patients are aligned according to their event date as shown by the red vertical line so 

we introduce uit = t – Ti to represent the day until the event occurred for patient i.

B.2 Prospective model

As mentioned in Section 2.2, examples of COVID-19 prediction models using biomarker 

history over time are limited but do include Chen et al. [8] and Wongvibulsin et al. [34]. 

Both methods rely on machine learning algorithms. The former work combines machine 

learning methods to select time varying predictor variables with joint models of mortality 

and biomarkers to produce dynamic mortality predictions. Wongvibulsin et al. [34] use an 

extension of random forests for longitudinal, multivariate and survival data to predict the 

occurrence of severe disease in the next 24 hours or 7 days given the history of dynamic 

biomarkers to date. The joint model in the Chen article is similar to the prospective approach 

described below, however, it does not take account of the competing risks of discharge, 
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ventilation and death. The Wongvibulsin approach is entirely machine learning to predict 

severe disease. A separate algorithm is needed for each of two future interval lengths, one 

and 7 days. Neither of the methods forecasts the biomarkers.

B.2.1 Multivariate linear mixed effects model

We use a multivariate linear mixed effects model to estimate the average trajectory of the K 
biomarkers and the covariance matrix of observations across measures and time. We define 

Xi
(k) and Zi

(k) to be the (Ti × pX), (Ti × q) known matrices of full rank, where Zi
(k) is a subset of 

Xi
(k). β(k) and b(k) are (pX × 1) and (q × 1) vectors of parameters for fixed and random effects 

respectively.

To simplify the exposition, we assume the number of observations is the same for all K 
measures but this assumption is easily relaxed in practice. We define Xi

(k) and Zi
(k) to be the 

(Ti × pX), (Ti × q) known matrices of full rank, where Zi
(k) is a subset of Xi

(k). β(k) and b(k) 

are (px × 1) and (q × 1) vector of parameters for fixed and random effects respectively. The 

model is specified as follows:

Y i
(k) = Xi

(k)β(k) + Zi
(k)bi

(k) + ϵi
(k)

where the correlations among the biomakers are modeled via the random effect 

bi = (bi
(1)′, …, bi

(K)′)′ ∼ind GKq(0, D) and via correlated noises ϵi = (ϵi
(1)′, …, ϵ(K)′)′ ∼ind GKTi(0, Ri).

In the prospective model, the fixed effect covariates Xi include baseline patient 

characteristics, basis functions (e.g natural splines) representing a smooth function of days 

since admission for each biomarker, and possibly interactions. The random effect covariates 

Zi include the basis functions for time to allow the biomarker trajectories for an individual 

to deviate from the mean trajectories. The covariance matrix of the random effects and the 

residual covariance matrix are assumed to be unstructured. In some applications, they might 

also depend on baseline covariates but that possibility was not pursued here. At any time 

t, this prospective model defines the conditional Gaussian distribution of the unobserved 

future biomarker values Yi(t+1:Ti) given the observed values Yi(1:t) for patient i. Hence, we 

can simulate from this conditional distribution and obtain a predictive distribution for future 

biomarker values. This model can be implemented using multivariate linear mixed effects 

software such as MCMCglmm, RStan or the equivalent.

B.2.2 Competing risks model given baseline covariates and past biomarkers

We construct the discrete-time cause-specific hazards as a multinomial logistic model for 

the conditional probability that an at-risk person has event type m on day t. Let τitm be this 

discrete time hazard, m = 1,…, M where M = 3 in our application and m = 0 is the reference 

category of no event at time t. Let fit = f(Yi1, … , Yit–1) be an r-vector of known functions of 

past biomarkers. We then assume the competing risks model has the form

log πitm
πit0

= gitγm + fitαm, m = 1, …, M,
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where git is the tth row of Gi; Gi is (Ti × pG) full rank design matrix for each event type 

m including the baseline covariates and basis functions that define a smooth baseline hazard 

function; γm is a (pG × 1) event m-specific vector of parameters; and αm is a (r × 1) vector 

of regression coefficients representing the influence of the biomarkers on the risk of event m. 

In this application, we use r = 2 functions of each biomarkers, the most recent value and the 

linear slope over the past two times. That is, fit = (Yit–1, Yit–1 – Yit–2).

B.2.3 Prediction

Given that an individual remains at risk on day t and given the observed biomarker process 

until day t, the clinician needs risk estimates for a range of future days. But the competing 

risks model above depends on as-yet-unobserved biomarkers starting on day t + 1. To 

calculate estimates of the discrete hazards on future days, we must integrate over the 

distribution of the as-yet unobserved predictors given their past observed values. We use 

Monte Carlo integration by simulating S realizations of the future biomarkers from this 

conditional Gaussian distribution, calculating the corresponding fit′, t′ > t values for each 

simulation, calculating the predicted discrete hazards on future days from the competing risk 

model using the simulated fs, and then average these across the all S simulations. To assure 

that the Monte Carlo integration error is negligible, we compare the predictions for S and 

S/2 to assure the predictions are equivalent.

B.3 Retrospective model

The prospective modeling approach is more common, but the retrospective approach 

has also been beneficial in other related problems. Sliced inverse regression (SIR) is 

one example where the goal is to identify and fit a relatively small number of linear 

combinations of a large number of potential predictors [11]. SIR corresponds to modeling 

X given Y rather than Y given X. Jiang, Yu and Wang extended the SIR approach for 

application to longitudinal predictors as in our problem [18]. Their focus is on the theory 

of this approach in the context of continuous outcome variable, not competing risks. 

Another closely related decomposition is pattern mixture models used to handle possibly 

non-ignorable missingness in analyses of longitudinal data [20]. In that context, W is the 

indicator of whether a person dropped out of the study or not. The scientific focus is on 

the relationship of Y with X absent drop-outs. To account for possibly informative dropout 

process, Little [20] and Michiels, Molenberghs and Lipsitz [22] model the conditional 

distribution of Y given X and given the observed dropout time W.

B.3.1 Events stratified model

To retrospectively model biomarker trajectories, we stratify the the event outcome Wt = m 

and use a m–specific multivariate Gaussian mixed-effects model for [Y i
(k) ∣ Xi

(k)] for measure 

k that can be written as follows,

Y i
(k) = Xi

(k)β m
(k) + Zi

(k)b i
(k) + ϵ i

(k)

where m = 1, 2, 3. In the applications below, the predictor variables include a separate 

set of natural spline basis functions Bj (ui), j = 1 ,..df of the time until the event (u) and 
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baseline biomarker measures and baseline covariates. The retrospective model is completed 

by specifying the dependence of the random effects covariance matrix and residual variances 

on the event outcome m. The other assumptions follow the prospective model specification 

as summarized above.

B.3.2 Competing risks model given baseline measures and baseline covariates

In the retrospective model, the competing risks depends only on the baseline biomarker 

measures and covariates, not on subsequent biomarker values as in prospective model. 

Otherwise the two models take the same form.

B.3.3 Prediction

From the retrospective competing risks model and the multivariate linear mixed effects 

model, we obtain the distribution of the date and type of event given observed 

biomarker values for patient i and their baseline covariates, [T i, W iTi ∣ T > t, Y i(1: t), Xi], 
using a prediction updating algorithm. Thus, we can calculate the target distribution 

[T i, W iTiY i(t + 1:T ) ∣ T > t, Y i(1: t), Xi] for this patient by multiplying the probability distribution 

above with the conditional Gaussian likelihood of the future biomarker values given the past 

observations, baseline values and patient characteristics, [Y i(t + 1:Ti) ∣ T i, W iTi, Y i(1: t), Xi].

An advantage of the prospective model is that it explicitly expresses the risks of events 

in terms of known functions of the previously observed biomarkers. The form of this 

dependence is indirectly specified in the retrospective model. More recent biomarker 

values are not as emphasized in the retrospective prediction as they are in the prospective 

prediction. In practice, we found that conditioning on a few proximal observations improves 

calibration and discrimination in the COVID-19 application. To do this, we let a < t be 

the dimension of the desired subspace of Yit′, t′ ≤ t and let A be an aK × TiK matrix 

so that Y i
∗ = AY i is taken as the new data. For a given type m and date Ti of the future 

event, the conditional mean and variance of Y i
∗ can be calculated from the fitted retrospective 

multivariate linear mixed effects model. We combine this local likelihood with the initial 

probabilities to produce updated probabilities of the type and day of future events.
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Fig 1. 
Predicted population-average curves and observed individual patient-level biomarker 

trajectories from the prospective (left) and retrospective (right) multivariate mixed effects 

models for three biomarkers. Overall predicted population average curves from the 

prospective model are shown in dark gold with 95% credible intervals. Observed patient-

level trajectories shown in gray with each outcome indicated by a colored marker 

terminating the trajectory (blue=discharge, red=death, green = ventilation). Predicted 

population-average curves from the retrospective event-stratified model are shown in blue, 

red, and green for discharge, death, and ventilation with 95% credible intervals. Observed 

patient trajectories shown in gray with each outcome indicated by a colored marker aligned 

on day 0.
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Fig 2. 
Coefficients and 95% confidence intervals from multinomial regression under the 

prospective and retrospective model. Colors indicate clinical events of interest 

(blue=discharge, red=death, green = ventilation). Up arrows and down arrows indicate 

the estimates from retrospective and prospective models respectively. Covariates include 

baseline biomarker values, demographics (sex, age, race), and comorbidities (BMI, smoking 

status, CCI). The covariates for the prospective model additionally include biomarker values 

on the previous day and their slopes over the previous two days. The following abbreviations 

are used in figure labels: ALC, absolute lymphocyte count; BL, baseline; BMI, body 

mass index; CCI, Charlson comorbidity index; CRP, C-reactive protein; eGFR, estimated 

glomerular filtration rate; PS, previous slope; PV, previous value.
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Fig 3. 
Model calibration. Calibrations of the prospective and retrospective models are illustrated 

by plotting observed and expected number of events from each model. Each row shows 

calibration of the models based on dynamically available data ranging from the first 0 day 

(baseline), 2 days, 4 days and 8 days of hospitalizations for patients still at risk. Colored 

markers represent the observed number of events at each future time (blue=discharge, 

red=death, green = ventilation). Solid and dashed lines show the expected number of events 

from the retrospective and prospective models respectively. Grey vertical lines with arrows 

separate the observation and prediction periods.
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Fig 4. 
Prediction capabilities of the retrospective model based on data from the first 2, 4, 6, 8 and 

10 days of hospitalization for a given patient. Black lines represent the observed SpO2/FiO2 

for the patient during hospitalization. Blue, red, and green lines indicate the predicted SpO2/

FiO2 trajectories leading to discharge, death, or ventilation events respectively. The marker 

size at the end of each predicted trajectory indicates the probability of that event on that 

day given the past biomarker history. The probabilities of each event happening eventually 

(before day 20) are shown in the colored boxes on the right, with colors indicating event 

types.
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Fig 5. 
Illustration of follow-up time orientation in the prospective and retrospective models. The 

prospective model aligns a patient’s biomarker data on admission date (left-most axis) and 

follows them forward in time along the t-axis until clinical event. The retrospective model 

aligns a patient’s biomarker data on clinical event date (right-most axis) and follows them 

backward in time along the u-axis until admission date.
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Table 1

Normalized, χ2 to evaluate calibration and AUCs at day 20 to evaluate discrimination. We calculated the χ2 

statistic for each model and time interval of available data normalized by the χ2 degrees of freedom. The 
AUCs are calculated as described in Section 3.2, based on the models’ abilities to predict the binary outcome 
of discharge vs. severe disease (ventilation or death).

Normalized χ2 AUC

Day Prospective Retrospective Prospective Retrospective

0 14.38 1.82 0.83 0.85

2 8.72 33.08 0.83 0.84

4 10.34 6.99 0.85 0.87

8 7.80 4.02 0.87 0.86
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