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Abstract

Video captioning is a challenging task as it needs to accurately transform visual understanding 

into natural language description. To date, state-of-the-art methods inadequately model global-

local vision representation for sentence generation, leaving plenty of room for improvement. 

In this work, we approach the video captioning task from a new perspective and propose a 

GLR framework, namely a global-local representation granularity. Our GLR demonstrates three 

advantages over the prior efforts. First, we propose a simple solution, which exploits extensive 

vision representations from different video ranges to improve linguistic expression. Second, we 

devise a novel global-local encoder, which encodes different video representations including 

long-range, short-range and local-keyframe, to produce rich semantic vocabulary for obtaining 

a descriptive granularity of video contents across frames. Finally, we introduce the progressive 

training strategy which can effectively organize feature learning to incur optimal captioning 

behavior. Evaluated on the MSR-VTT and MSVD dataset, we outperform recent state-of-the-art 

methods including a well-tuned SA-LSTM baseline by a significant margin, with shorter training 

schedules. Because of its simplicity and efficacy, we hope that our GLR could serve as a strong 

baseline for many video understanding tasks besides video captioning. Code will be available.
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I INTRODUCTION

VIDEO captioning has great societal value due to a wide array of real-world applications, 

e.g., subtitle generation, blind person assistance, and autopilot narration [2]–[5]. However, 

isolated video frames may suffer from motion blur, occlusion, or truncation, which 

introduces great confusion in visual understanding for the captioning task. To address this 

above problem, many prior efforts [6]–[9] attempt to answer the principal problem: how 

to leverage the rich global-local features across video frames to close the gap from visual 

understanding to language expression?

Despite making significant progress, existing methods for video captioning inadequately 

capture the local and global representations. Rather than modeling the correlations of 

semantic entities across frames, a lot of methods simply apply the deep convolutional neural 

network on raw pixels to build higher-level connections [7], [10]. The primary focus of these 

methods is to operate on local object features, but this neglects object transformations or 

interactions [11]–[16]. The approach of modeling local object features is a limiting solution 

for video captioning, because the temporal connections across frames are not explored 

delicately and thus are sensitive to spurious associations [12], [13].

To study the problem of the global-local correlation, other related vision tasks leverage the 

graph representation using graph neural networks (GNNs). For instance, [17], [18] model 

object relations by using video spatio-temporal graphs and explicitly build links between 

high-level entities. Specifically, each node encodes a target entity (i.e., objects persons [18]–

[20], body joints [21], and actions [17]), while each edge represents correlations among the 

entities.

Inspired by the above success, recent video captioning studies extend the graph-based 

approach and use GNNs to model global-local reasoning [22], [23]. Among these works, 

[11], [18] merge local features with global features using concatenation; [17], [19], [24] 

add spatio-temporal features as a separate node in the graph. However, empirical results 

indicate that using graphs to represent global-local correlation is a sub-optimal solution, as 

it often encounters the over-smoothing problem in training which leads to weak performance 

in sentence generation.

Alternatively, many video captioning methods intuitively exploit multi-modal fusion (i.e., 

visual and audio features) to enrich the feature representations for prediction [25], [26]. 

However, these simple “lumping” approaches inefficiently exploit multi-modal features and 

encounter difficulty to perform joint optimization cross-modality, leaving large room for 

improvement.
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To this end, we attempt to solve the video captioning in a more flexible approach. 

Concretely, we make the following contributions in this work:

• We devise a simple framework called the global-local representation granularity 

(GLR), which uses extensive vision representations for captioning generation.

• We propose a novel global-local encoder, which exploits rich temporal 

representation for video captioning. We encode the long-range frames to describe 

spatio-temporal correspondence and short-range frames to capture object motion 

and tendency, while using a local keyframe to preserve finer object appearance 

and location details.

• We introduce a progressive training strategy that includes two phases. In the first 

seeding phase, we propose a novel discriminative cross-entropy that addresses 

the problem of human annotation discrepancy. In the second boosting phase, 

we propose a discrepant reward for reinforcement learning (RL), which stably 

estimates a bias of the expected reward for each individual video.

• We assess our method on the MSR-VTT [1] and MSVD [27] datasets. Extensive 

evaluation results indicate that our method is competitive with the state-of-the-

art systems while requiring shorter training schedules. Compared to [1], [11], 

[22], our method demonstrates improved captioning performance. We also use 

ablation studies to verify the power of our idea and the efficacy of our algorithm.

II. RELATED WORK

In this section, we review representative work in video captioning as well as the technique of 

global-local representation and training strategies for the video caption task.

A. Video Captioning

Early video captioning works mainly focus on using template-based models for sentence 

generation to [28]–[30]. Inspired by the success of other vision tasks, the first work in [31] 

successfully extends the encoder-decoder architecture to develop a solution for the video 

captioning task. Following the same architectural paradigm, [31], [32] explore the temporal 

patterns on video using attention mechanisms to depict object movements. [33] develops 

a hierarchical attention module to apply content attention on each feature to select time 

intervals related to the semantic cues of the target word, and applies cross-modal syntax 

attention to model the feature importance of the target word under the guidance of syntax 

cues. [34] devises a MARN method, which generalizes descriptions from a single video to 

other videos with high semantic similarity. [8], [10], [35] develop an idea of feature fusion 

to guide sentence generation for video contents. [36] and [37] develop visual captioning 

models with semantic concepts. [38] and [39] attempt to generate diverse sentences for each 

video. [40], [41] and [42] explore video representation via visual reasoning. [43], [44] aim 

to develop boundary-aware sequence-to-sequence decoder for captioning. [45], [46] try to 

investigate the influence of the attention based on temporal components and semantics. [47] 

attempts to exploit multi-level semantic guidance via visual relation of objects. However, the 

above solutions capture global-local vision representation for sentence generation because 
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they either neglect explicitly modeling the temporal content correspondences [12], [13] or 

the spatial object motion or tendency [11]. We instead explore the representations of both 

spatial interaction and temporal content features jointly using the proposed global-local 

encoder.

B. Global-Local Representation

To model the global-local vision representation, many existing methods [7], [23], [31], 

[34], [48], [49] resort to the sequence learning strategy. [49] uses a temporal attention 

method to depict the global-local connections. [7] leverages the decoding hidden states 

to increase the temporal feature representation. More recently, [11], [50], [51] exploit the 

object features to model the object movement across frames. For instance, [11] employs 

a bidirectional temporal graph to capture detailed movements for the salient objects in 

the video; [50] devises a stacked LSTM to encode both the frame-level and object-level 

temporal information. At the same time, [52] employs a stacked multimodal attention 

network to process additional visual and textual historical information as context features; 

[35] proposes four fusion filters to fuse different visual feature representations. However, the 

aforementioned methods primarily focus on salient objects from the global contents without 

explicitly modeling the global-local representation reasoning.

To address the above limitations, we propose a novel global-local representation granularity, 

which simultaneously exploits long-range temporal correspondence, short-range object 

motion, and local spatial appearances on the video frames. Using the accumulative global-

local representation, our method can achieve fine-grained descriptions for video captioning. 

Besides, the generated video representations from our encoders can be directly used (may 

need finetuning) to transfer to any other video analysis tasks, including video grounding [53] 

or video retrieval [54].

C. Training Strategies

One popular strategy for training video captioning models is “Teacher Forcing” [55], 

which has been widely used in training video captioning tasks [12], [56]–[58]. Despite 

its popularity, the “Teacher Forcing” supervision is empirically suboptimal [25], [59]. More 

recently, many research efforts attempt to explore different training methods to boost the 

captioning performance [7], [10], [60]–[65]. For instance, [62] uses a mixed loss function 

to optimize the video captioning algorithm, which leverages the weighted combination 

of cross-entropy and reinforcement learning. Similarly, [60] adopts the paradigm of 

reinforcement learning and devises a self-critical baseline to reward the model learning 

to train the video captioning network. Although obtaining improvements over the prior 

methods [1], [49], [62], the above methods generally require a complicated pipeline to 

train with a heavy computation overhead for optimization. More recently, some works 

attempt to design a loss function to capture the location of temporal patterns [66] or spatial 

objects [14], but all of them fail to reconcile the demands of generating standard sentences 

and generating human-like sentences. Building on the lessons learned from the concurrent 

approaches [60]–[62], we propose a progressive training strategy, which can easily operate 

training on our proposed GLR. Empirical results indicate that the progressive training 
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strategy can help us to achieve further performance than using the conventional optimization 

scheme.

III. GLOBAL-LOCAL REPRESENTATION GRANULARITY

A. Overview

The framework of our GLR is demonstrated in Figure 2. Following [7], [23], our GLR 

adopts an encoder-decoder architecture. More specifically, we include a global-local encoder 

and a captioning decoder. The global-local encoder takes the long-range frames, the short-

range frames, and the local keyframe as inputs and encodes them into different vocabulary 

features. All the obtained features are aggregated together to enrich global-local vision 

representations across video frames. Afterwards, the captioning decoder supervised by 

the progressive training strategy translates the vocabulary features into natural language 

sentences. We elaborate on our method in the following sections.

B. Global-Local Encoder

Our global-local encoder includes three essential parts: long-range encoder, short-range 

encoder, and keyframe encoder (Figure 2). Collectively, our novel encoder can help our 

method enrich global-local vision representations for video captioning tasks

1) Long-Range Encoder: Inspired by the random crop paradigm [67], we encode 

random global video frames to produce the global vocabulary based on a random keyframe 

ft (see Figure 3) in training. Since each iteration will randomly choose different frames (the 

total number is fixed) from the videos, our training iteration will fully saturate the whole 

video clips. We encode random global video frames and produce the global vocabulary 

of the video content (Figure 3). Particularly, our long-range encoder first performs 2D 

convolutions on the inputs (i.e., ft−n and ft+n
1) to identify the relevant contextual features. 

The output features from the first step is processed by a 3D convolutional network (CNN) to 

capture global temporal correspondence. In order to increase consensus, we choose the top 

K word choices (highest frequency) from the ground truth sentences to guide the vocabulary 

generation as a K classifications task. Therefore, outputs of the dense layers are defined as:

W = w1, w2, …, wk, …, wK , wk ∈ (0, 1), (1)

where W is the collection of the predicted long-range vocabulary (including verbs, nouns 

and adjectives that may be used in sentences to describe the temporal contents in video) and 

wk is the confidence of kth word appearing in the predicted captioning for this video. This 

vocabulary is extracted from all annotated GT sentences of all videos in the video captioning 

dataset such as MSR-VTT [1] and MSVD [27], excluding function words such as “is”, 

“be”, “do”, etc. Almost all previous methods lack attention to the adjectives (i.e., “little” 

and “white”) of the object or scene in the whole video, while this long-range adjective is an 

essential part of video description. Thus we include them in our long-range vocabulary.

1where n is a random range larger than 25 frames and t indicates the current keyframe.
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2) Short-Range Encoder: Our short-range encoder is to capture object motion and 

tendency. We craft a 3D-Resnet18 [68] and two 2D CNNs into our architecture in parallel 

(Figure 4). By simultaneously taking two close neighbours (a.k.a. ft−10 and ft+10) of the 

keyframe, 2D CNN and 3D-Resnet18 [68] yield the semantic and movement representations 

respectively. Afterward, these representations are stacked and fed into dense layers for 

action classifications. Given the number of action set in the dataset is J, our output of the 

short-range encoder is:

A = a1, a2, …, aj, …, aJ , aj ∈ (0, 1), (2)

where A is the collection of the predicted short-range action vocabulary and a j is the 

confidence of the jth verb appearing in the predicted captioning for this video.

3) Local-Keyframe Encoder: The lexical knowledge for the local semantics is learned 

by a residual network [69], which extracts salient object features from the keyframe ft. Given 

the number of image classes in the dataset is M, the output of our local encoder is:

C = c1, c2, …, cm, …, cM , cm ∈ (0, 1), (3)

where C is the collection of the object class vocabulary for the local frames and cm is the 

confidence of the mth class appearing in the predicted captioning for this video frame.

Once having all the vocabulary features from different ranges, we perform a fusion 

encoding. We first use a feature pool composed of linear layers φ to project each vocabulary 

feature into a same-size embedding and then aggregate them together to produce the fused 

feature F :

F = Concat(φ(W ), φ(A), φ(C)) (4)

C. Captioning Decoder—Our captioning decoder translates the fused feature into a l-
word2 sequence S = (s1, s2, …, sy|y ∈ {1, …, l}) to form the predicted sentence. Specifically, 

we use language LSTM to generate the hidden state ht and a cell state ct at ith step based on 

the fused feature F :

ℎi, ci = LSTM ℎi − 1, Φ si − 1, s i − 1, F , ci − 1 , (5)

where [·, ·] denotes concatenation. hi−1, si−1, s i − 1, F, and ci−1 are the previous hidden state, 

the predicted word, the ground truth, the fused feature from encoding, and the cell state 

respectively. Ф(·) is the annealing scheme which uses every previous token to predict the 

next word. We adopt a schedule sampling technique to randomly choose the token si−1 or 

s i − 1 by using a random variable ξ ∈ {0, 1}:

2l (l = 30) denotes the maximum length of a sentence.
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Φ si − 1, s i − 1, F =
F, (i = 1);
si − 1, (i > 1, ξ = 0);
s i − 1, (i > 1, ξ = 1),

(6)

when i = 0, the initial input of the LSTM is the fused feature F; when i > 1, we increase 

the probability of ξ = 1 gradually in every epoch until ξ is absolutely equal to 1. Then, we 

counter the process by decreasing the probability of ξ = 1.

As a widely used variant of the recurrent neural network (RNN), LSTM plays a crucial role 

in our captioning module to translate the encoder output into a sentence. It can output word 

by word according to input, and use long-term and short-term memory to learn grammar. 

A softmax function is used to perform sampling distribution for the next word. A trick 

called beam search [70] is used to find the sentences with the highest probability. Instead of 

choosing one word with the highest probability at tth step, beam search records the top B 
words from the generated B × D (if t ≠ 0) or D (if t = 0) words, where D is the vocabulary 

size. Therefore, it is more likely to find the global optimal solution than a greedy search (a 

special case of B = 1).

Accordingly, the probability of a predicted word can be defined as:

pθ si ∣ ℎi = softmax W o ⋅ ℎi , (7)

where hi is the hidden state from Eq. (5) and Wo is the weight matrix [70] which maps the 

hidden state hi to vocabulary-sized embedding, in order to find a context-matching word in 

the sentence. Thus, during decoding it defines a distribution over the output sequence S = 

(s1, s2, …, sy) given the input sequence F as pθ (S|F ) is:

pθ s1, s2, …, sy ∣ F =
i = 1

y
pθ si ∣ ℎi (8)

where pθ (si |hi ) is defined in Eq. (7). So the encoding phase is to minimize this distribution 

according to the current parameter θ and the input feature F.

D. Training Objective for Global-Local Encoder

1) Training Objective for Long-Range Encoder: Supposing there are Nw videos 

in the video captioning dataset, the top K words (highest frequency) are chosen from the 

ground truth sentences. We consider the ground truth prediction for the ith video is defined 

as W i = wi0, wi1, …, wik, …, wi(K − 1) ∈ 0, 1 K, where wik = 1 means the kth word exists in the 

ground-truth descriptions of this video, while wik = 0 represents it does not. The long-range 

encoder computes the probability distribution of prediction W = {w1, w2, …, wk, …, wK}, 

wk ∈ (0, 1). The long-range encoder network parameters are optimized by a multi-label 

cross-entropy loss function Llong:
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Llong = 1
Nw

1
K − 1 i = 0

Nw

k = 0

K − 1
wiklogwik + 1 − wik log 1 − wik . (9)

2) Training Objective for Short-Range Encoder: Let Na denote the number of 

videos in the video action recognition dataset which has J actions in total. We consider 

the ground truth prediction for ith video is defined as Ai = a i0, a i1, …, a ij, …, a i(J − 1) ∈ 0, 1 J, 

where a ij = 1 means jth action can be used to describe this video, and a ij = 0 represents it 

does not. The short-range encoder computes the probability distribution of prediction A 
= {a1, a2, …, aj, …, aJ }, a j ∈ (0, 1). The short-range encoder network parameters are 

optimized by a multi-class cross-entropy loss function Lshort :

Lsℎort = 1
Na

1
J − 1 ∑

i = 0

Na

∑
j = 0

J − 1
a ijlogaij + 1 − a ij log 1 − aij . (10)

3) Training Objective for Local-Keyframe Encoder: Let Nc denote the number of 

videos in the image classification dataset which has M classes in total. We consider the 

ground truth prediction for ith image is defined as Ci = c i0, c i1, …, c im, …, c i(M − 1) ∈ 0, 1 M, 

where c im = 1 means mth class can be used to describe this image, and c im = 0 represents it 

does not. The local-keyframe encoder computes the probability distribution of prediction C 
= {c1, c2, …, cm, …, cM}, cm ∈ (0, 1). The local-keyframe encoder network parameters are 

optimized by a multi-class cross-entropy loss function Llocal :

Llocal = 1
Nc

1
M − 1 ∑

i = 0

Nc

∑
m = 0

M − 1
c imlogcim + 1 − c im log 1 − cim . (11)

E. Training Objective for Decoder

In the first several time steps, the LSTM layer receives a sequence of features and there is 

no loss during this stage. After all the features for the video clip are exhausted, the LSTM 

layer is fed the beginning-of-sentence (< BOS >) tag, which prompts it to start decoding 

its current hidden representation into a sequence of words. Zeros are used as a < PAD > 

tag when there is no input for the LSTM at this time step. While training in the decoding 

stage, the model maximizes for the log-likelihood of the predicted output sentence given the 

hidden representation and the previous words it has seen. From Eq. (8) for a model with 

parameters θ and output sequence S = (s1, s2, …, sy), this is formulated as:

θ* = argmax
θ i = 1

y
logpθ si ∣ ℎi (12)

This log-likelihood is optimized over the entire training split using stochastic gradient 

descent. The loss is computed only during the training stage.
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F. Progressive Training

We propose a progressive training strategy to fulfill different learning objectives (See 

Algorithm 1). Our progressive training includes a seeding phase followed by a boosting 

phase (Figure 2). In the seeding phase, our learning is optimized by cross-entropy, which 

produces an entrance model to facilitate smooth training in the second phase. In the boosting 

phase, our training leverages reinforcement learning (RL) to achieve further performance 

gain.

1) Seeding Phase: The conventional models [1], [7], [11], [22], [71] are commonly 

trained with the cross-entropy (XE) loss, which measures the average similarity of the 

generated sentence and all the ground truth sentences. Since different annotators may 

interpret video content differently, the ground truth from the training dataset may include 

annotation bias. We argue that direct comparison between the captioning predictions to the 

ground truths may not yield the optimal training outcomes. Thus, we employ the metric 

scores m(S) of all ground truths as a discriminative weight in computing cross-entropy to 

make our training biased towards those well-written ground truth sentences. Intuitively, 

manually annotated ground truths have severe bias, that is, some ground truth sentences 

are well-writen, while others are ambiguous or inappropriate. Metric scores encourage the 

training to focus on the well-written sentences. The m(S) can use different options, such 

as BLEU_4 [72], METEOR [73], ROUGE_L [74], and CIDEr [75].3 The analysis of each 

option will be reported in the experiments.

3Denotes as B@4, M, R, and C respectively in experiments.
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Algorithm 1 Progressive Training (PT)
Input: Extracted feature list F1, F2, …, FNw for all
Nw videos, captioning decoder parameters θ, and all
annotation list S1, S2, …, SNw for all videos where

S = S(1), S(2), …, S(G) is G human‐labeled captions for

each video.
Output: Learned decoder parameters θ*
1: Initialize θ
2: # Seeding Pℎase
3: repeat
4: for F in  F1, F2, …, FNw  do
5: Update θ* argmin

θ
LDXE(θ) using Eq . 13

6: endfor
7: until reach the max epochs of seeding phase.
8: # Boosting Pℎase
9: repeat

10: for F in  F1, F2, …, FNw  do
11: Update θ* argmin

θ
LDR(θ) using Eq . 19

12: endfor
13: until the solution converges.
14: return Learned parameters θ*

Providing each video is annotated by G sentences S = S(1), S(2), …, S(G) , the discriminative 

cross-entropy (DXE) loss function is:

LDXE(θ) = − 1
G i = 1

G
m S(i) logp S(i) ∣ F; θ . (13)

Our DXE loss increases the probability of generating captions with a high metric score by 

assigning higher weights to ground-truth sentences. The gradient of DXE is calculated by 

the weighted difference between the prediction and all the target descriptions. Consequently, 

the DXE loss encourages feature learning which increases the probability of generating 

captions with a high metric score. The result of m() is considered a constant in our 

loss function, every GT sentence has a different computed value. Different from the 

weighted loss entropy (which manually assigns weights to classes to address the problem 

of unbalanced data), the weight m(S) of our DXE is automatically calculated through 

metrics, evaluating the quality among all annotations. Our DXE assigns higher weights 

to high-quality annotations, helps the model generate sentences closer to them. For example, 

if CIDEr is selected as the metric m S(i) , it assists the model to refer more to the sentence 

with high human consensus; then the model may be taught to generate more human-like 

captions. Empirical results resonate with our assumption.
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2) Boosting Phase: After the seeding phase, we employ reinforcement learning [76] 

with a discrepant reward (DR) to further boost the performance of our GLR model. Rather 

than estimating a self-critical baseline [60] to fill the gap between training and testing, our 

DR harmonizes the model with respect to the distinctions of each video.

Because the video captioning model can be regarded as an agent which interacts with an 

environment of visual observation and natural language, optimizing it can be formulated as 

a reinforcement learning task. Considering the actor (LSTM cell) with parameters θ samples 

words and the trajectory is the generated sentence S, our discrepant reward (DR) loss is 

defined as the negative expected reward:

LRL(θ) = − Rθ = −
S

r(S)p(S ∣ F; θ), (14)

where the reward r (S) is the evaluation metric score of the sampled sentence and F is the 

feature generated by our global-local encoder. In order to optimize the actor, we use gradient 

descent to update the network parameters θ by computing the differential of the loss:

∇θLRL θ = −
S

∇θr S p S ∣ F; θ . (15)

Since the reward r (S) is not a function that depends on θ, it is not differentiable with regard 

to θ, so the gradient in (15) can be rewritten as:

∇θLRL(θ) = −
S

r(S)∇θp(S ∣ F; θ)

= −
S

p(S ∣ F; θ)r(S)∇θp(S ∣ F; θ)
p(S ∣ F; θ)

= −
S

p(S ∣ F; θ)r(S)∇θlogp(S ∣ F; θ)

= − ES p r(S)∇θlogp(S ∣ F; θ) .

(16)

where ES p denotes the expected value of the distribution, the reward r (S) is the evaluation 

metric score of the sampled sentence, and F is the fused feature extracted from our global-

local encoder. One problem with this training strategy is that the reward function r (S) is 

always positive because the metric score ranges between 0 and 1. Therefore, we can only 

encourage feature representations in learning but cannot perform suppression.

To address this issue, our DR is equal to the original reward r (S) subtracts a bias b, which is 

baseline. With the bias term, our learning can be more robust to variation in prediction. Then 

the policy gradient is given by:

∇θLDR(θ) = − ES p (r(S) − b)∇θlogp(S ∣ F; θ) , (17)

where b ≈ E [r (S)]. Our baseline b can be any arbitrary function, as long as it does not 

depend on the S so does not change the expected value of gradient:
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S
b∇θp(S ∣ F; θ) = b∇θ

S
p(S ∣ F; θ)

= b∇θ1 = 0.
(18)

The self-critical method SCST [60] utilizes the reward of the greedy output at the test time 

as the baseline b, harmonizing the model with respect to its test-time inference procedure. 

But it incurs the time cost to run inference again in every training iteration. Using one 

greedy sample to estimate the expected reward is too noisy, resulting in larger gradient 

variance. In our implementation, the baseline b has two variants: 1) b1 obtained by the G 
ground-truth captions; and 2) b2 the top Q sentences sampled by the model with the highest 

score during the forward step. Compared to the self-critical baseline, our discrepant baseline 

with sufficiently large G or Q establishes a relatively stable bias for each different input 

video, helps our method have a more robust and efficient estimation of expected reward. 

When updating, this gradient ∇θ can be approximated by Monte-Carlo sampling through a 

single training example. So the final gradient of our discrepant reward is defined as:

∇θLDR(θ) = − ES p r(S) − r Sbj ∇θlogp(S ∣ F; θ) ,

≈ − r(S) − r Sbj ∇θlogp(S ∣ F; θ),
(19)

where Sbj can be used by the either baseline (b1 or b2). In our experiments, we carry out an 

ablation study to discover the impact of b1 and b2 on the captioning performance.

IV. EXPERIMENTS

A. Dataset and Evaluation Metrics

1) MSR-VTT: The performance of our GLR approach is evaluated on the challenging 

MSR-VTT dataset [1], which consists of 1000 videos. Each video is associated with 20 

ground-truth captions given by different workers. We follow the data split in the original 

publication, allocating 6513 videos for training, 497 videos for validation, and 2990 videos 

for testing.

2) MSVD: We also evaluate our GLR on the MSVD dataset [27], which consists of 1,970 

Youtube video clips with 85K English descriptions. Following the previous works [31], [32], 

[77], we split the dataset into a 1,200 training set, 100 validation set, and 670 testing set by 

the contiguous index number.

3) Evaluation Metrics: We evaluate our method on four commonly used metrics 

BLEU_4 [72], METEOR [73], ROUGE_L [74], and CIDEr [75], which are denoted as 

B@4, M, R, and C respectively. B@4 measures the precision of 4-grams between the 

ground-truth and generated sentences. M uses a uni-gramsbased weighted F-score and a 

penalty function to penalize incorrect word order. R computes a harmonic mean of precision 

and recall between compared sentences on the longest common subsequence (LCS). C 
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is a voting-based approach, which measures the consensus among sentences, is robust to 

incorrect annotations.

B. Implementation Details

1) Long-Range Encoder: Our long-range encoder is pre-trained on our proposed 

video-to-word dataset generated from MSR-VTT [1] dataset or MSVD [27] dataset. For 

our 2D CNN, We adopt ResNeXt [69] and use the 2048-dimension average pooling features 

from the conv5_3 output as the 2D representation of videos. Then, 3D CNN uses ECO 

[78] followed by a global pool, which outputs 1536-dim features. Afterward, we use 3 

layers of dense connection to predict K vocabulary feature classification, where we set K 
= 300, namely, 300 candidate words chosen from the ground truth of the MSR-VTT [1] or 

MSVD [27]. And we allocate 7010 videos for training (6513 original training +497 original 

validation) and 2990 videos for testing for MSR-VTT [1], while 1300 videos for training 

(1200 original training +100 original validation) and 670 videos for testing for [27]. The 

dimension of the dense layer is set to 512. We set the learning rate to 0.0002, batch size to 

64, and use Adam to optimize the network parameters. The dropout rate is set to 0.5 during 

training. The demo results are shown in Figure 5. We select 20 keyframes evenly in the time 

sequence for each video. Our long-range encoder outputs the probability distribution of all 

candidate words, including fine-grained nouns like “audience” (a subcategory of “people” in 

special context) and adjectives such as “fast”, “black” and “large”.

2) Short-Range Encoder: The short-range encoder is pre-trained on Kinetics-400 

dataset [79]. The 2D CNN in the short-range encoder adopts the first part of the BN-

Inception architecture (until inception-3c layer) [80]. The outputs from the 2D CNN have 

feature size of 28 × 28 with 96 dimensions. Following that, our 3D-Resnet18 [68] uses 3 

conv layers (with 3 × 3×3 kernel and dimensions of 128, 256 and 512 respectively), which 

output a one-hot vector for the J action class labels, where J = 400, namely, the confidence 

distribution of 400 actions. The initial learning rate for the short-range encoder is set to 

0.001 and is decreased by a factor of 10 when validation error saturates for 4 epochs. We 

train the network with a momentum of 0.9, a weight decay of 0.0005, and mini-batches of 

size 32. We initialize the weights of the 2D-Net weights with the BN-Inception architecture 

[80] pre-trained on Kinetics, as provided by [81]. In the same way, we use the pre-trained 

model of 3D-Resnet-18 [68], as provided by [82] for initializing the weights of our 3D-Net. 

Afterwards, we train our whole short-range encoder on the Kinetics-400 dataset [79] for 

10 epochs. We select 20 keyframes evenly in the time sequence for each video. The demo 

results are shown in Figure 5, our short-range encoder outputs the probability distribution of 

all actions appearing in the short-term split of the video, such as “applauding”.

3) Local-Keyframe Encoder: We employ ResNeXt-101 [69] with 64 paths in each 

block, which generates the probabilities of M objects (M = 1000) for each input video frame. 

Following standard practice [22], the local-keyframe encoder is pre-trained on ImageNet 

[83] and we train the ResNeXt-101 [69] on ImageNet. On the ImageNet dataset, the input 

image is 224 × 224 randomly cropped from a resized image using the scale and aspect ratio 

augmentation of [84]. We use SGD with a mini-batch size of 256. The weight decay is 

0.0001 and the momentum is 0.9. We start from a learning rate of 0.1, and divide it by 10 for 
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three times. We adopt the weight initialization of [85]. We select 30 keyframes evenly in the 

time sequence for each video. The demo results are shown in Figure 5, our local-keyframe 

encoder outputs the probability distribution of all objects categories, such as “seat belt”, 

“microphone” and “platform”, which provides more finer objects for our captioning decoder.

4) Feature Fusion: The inputs for feature fusion are 300-dim from the long-range 

encoder, 400-dim from the short-range encoder, and 1000-dim from the local-keyframe 

encoder respectively. The dense layers in the feature pool convert each of them into a 

512-dim embedding. We use the ReLU activation of each dense layer in the feature pool and 

adopt a dropout of 0.5 to prevent overfitting. Finally, the output of the feature fusion (by 

concatenation of 512 × 3) has a dimension of 1536.

5) Decoder Setting: During the decoding stage, the initial step takes the fused features 

as inputs (as in Eq. (6)) to predict the first word. Afterward, the previously predicted 

word is embedded into a 512-dimensional vector then fed into the LSTM cell with a 

512-dimensional hidden state to produce the next token.

6) Seeding Phase Setting: We use the learning rate of 0.0003 in this phase with 

the Adam optimizer. When MSR-VTT is used, we operate training on all 20 ground-truth 

captions of each video at the same time. Accordingly, we compute the weighted metrics with 

ground-truth sentences (G = 20) for DXE. When MSVD is used, we operate training on 

all 17 ground-truth captions of each video at the same time. Accordingly, we compute the 

weighted metrics with ground-truth sentences (G = 17) for DXE. Beam search [70] is used 

to find the sentences with the highest probability, where the beam size B in search is set to 

be 5 with the max sequence length lmax = 30 for sentence inference.

7) Boosting Phase Setting: We use the learning rate of 0.0001 in this phase. Our 

model is also trained on all 20 ground-truth captions for MSR-VTT or 17 ground-truth 

captions for MSVD of each video at the same time. For baseline b1, we compute the average 

reward of those 20 or 17 ground-truth sentences; for baseline b2, we compute the average 

reward of Q = 100 sentences sampled from our trained model. Beam search [70] is also used 

in this phase. Recent work on video captioning [7], [32], [60], [61] has shown that CIDEr 

as a reward outperforms other evaluation metrics (e.g., CIDEr, BLEU, or METEOR) to gain 

the largest improvement for video captioning. Following [7], [32], [61], we also use CIDEr 

score to compute the reward in training.

C) Training Logs

We train the captioning decoder on an NVIDIA GeForce GTX 1080 Ti, while the parameters 

of the global-local encoder are kept frozen, the average iteration time in training for XE, 

DXE and RL+DR is 0.212, 0.226 and 1.75 respectively when batch size is 32. We check 

performance on the validation set for every epoch and report all the scores in Table I and 

the CIDEr scores in Figure 6. Table I shows all the scores are increasing whenever in 

the seeding phase or boosting phase, and our full model achieves improvements over the 

primitive model which only uses seeding phase by 0.1% on M, 1.7% on R, and 7.2% on C. 

Figure 6 shows that the CIDEr score increases fast in the seedind phase but is stable and 
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lower than the boosting phase after 30 epochs, while using RL+DR can continue to train 

the model in the second phase. When switching from XE training to RL training, all the RL 

models have difficulty converging in the first few iterations, but quickly recover and reach 

higher performance levels.

D) Ablation Study

We conduct extensive ablation studies to discover the optimal settings related to our global-

local encoding as well as the seeding and boosting phase in the training of our system.

1) Determine Global-Local Range: The effects of choosing different frame intervals 

for long-range and short-range encoder are illustrated in Table II. These results show that 

using n > 25 for the long-range encoder and choosing the ft−10, ft+10 for the short-range 

encoder achieves the best performance.

2) Global-Local Features: We measure the performance of our model using different 

global-local features (as shown in Table III). We first evaluate the performance of different 

methods which use individual features for captioning prediction. Results indicate that using 

the long-range has the highest performance on all metrics in comparison with the other 

two methods. We also examine the impact of progressively combining different features 

together. Our full model using all three features outperforms the models which only use 

local features or short-term features by significant margins. For instance, our full model 

achieves improvements over the primitive model which only uses local features, by 15.2% 

on B@4, 6.4% on M, 9.4% on R, 19.7% on C in the seeding phase, and by 12.4% on B@4, 

5.1% on M, 7.6% on R, 16.8% on C in the boosting phase.

As Figure 7 shows, adding short and long-range feature in the boosting phase can get more 

fine-grained captions than only using local-keyframe features, for example, “race track” 

is more fine-grained than “track” and “slicing” is more fine-grained than “cutting”. In 

particular, after adding the long range encoder, the model is more robust to capturing the 

overall perception of video.

3) Different Weighted Metrics in Seeding Phase: The seeding phase training is 

important as it produces the entrance model for the following boosting phase. Hence, we 

evaluate the impact of using different weighting metric (a.k.a. B@4, M, R, and C) in 

training. Results are shown in Table IV. Models trained by different DXE loss all outperform 

the counterpart trained by XE. Meanwhile, using CIDEr as the metric weight in DXE 

training obtains the best results on all metrics. We use all global-local features (long-range, 

short-range, local features) here. As Figure 8 shows, in the seeding phase, using our DXE 

loss can get more correct words than the XE loss. For example, using the DXE loss can 

comprehend the “models” in the video rather than just output a “woman”, and the “toy” is 

found by using DXE while it is mistaken for a “video game” by the XE method.

4) Progressive Training Analysis: We investigate if the progressive training could 

effectively improve our method in predicting captioning. As Table V shows, the results 

from the boosting phase increase steadily from the seeding phase. The boosting phase 

starting from the seeding phase and using DXE gets higher scores than its counterpart 
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using XE. This demonstrates that using DXE as the supervision in the seeding phase can 

yield more optimal model parameters and further improve the performance of the boosting 

phase than using XE in training. The CIDEr score increasing curve of boosting phase 

from seeding phase (shown in Figure 6) also proves the performance improvements in our 

progressive training. Our boosting phase can improve all of the method no matter which 

single feature, or combined features, is used. As Figure 8 shows, after boosting phase 

training, our model can output more detailed and fine-tuned information (such as “fashion 

show” and “SpongeBob”) when RL+DR is used.

5) Using b1 Vs. b2 in the Boosting Phase: The results of our GLR using different 

discrepant (b1 and b2) rewards compared with self-critical baseline (bscst ) in [60] are shown 

in Table VI. Using the reward (b2) based on top Q sentences sampled by the model can 

help supervise models to achieve a better performance than using the reward (b1) based on 

the ground-truth sentences. Both b1 and b2 supervised models outperform their counterpart 

without using the discrepant reward. They also outperform their counterpart using the 

self-critical baseline.

6) RNN Vs. GRU Vs. LSTM as Captioning Decoder: The results in Table VII show 

that LSTM performs better than RNN and GRU. This is not surprising, since LSTM has 

more parameters to explore long-term and short-term memory and has stronger generative 

ability to produce sentences.

E. Comparison With State-of-the-Arts

1) Quantitative Results: We compare our GLR against some of the recent leading 

methods on the MSR-VTT dataset. The results are shown in Table VIII. One notable 

improvement of our method is that we can achieve an on-par performance with other 

state-of-the-art methods with a much shorter training schedule. Our fully trained model also 

surpasses all the compared methods on all metrics.

When using the same level of supervision, our margins (model trained by XE) over the 

next best method (ORG-TRL [22]) are 1.9% on B@4, 1.9% on M, 0.5% on R, and 0.3% 

on C respectively. We can achieve further performance gain by using DXE on M, R, and 

C metrics. Note that our results of XE and DXE, reported from the 30th epoch (just used 

as seeding phase), outperform the state-of-the-art systems with shorter training schedules. 

If supervised by reinforcement learning (RL), our method also outperforms its counterparts 

by a significant margin. Our margins (model trained by RL+DR over the next best method 

(POSRL [7]) are 5.6% on B@4, 2.5% on M, 3.6% on R, and 7.2% on C respectively. All of 

those previous RL method are trained with self-critical baseline bscst.

We also compare our GLR against some of the recent leading methods on the MSVD 

dataset. The results are shown in Table IX. When trained by DXE, our margins over the next 

best method (ORG-TRL [22]) are 3.4% on B@4, 2.2% on M, 1.0% on R, and 0.7% on C 

respectively. Using reinforcement learning, our margins (model trained by RL+DR) over the 

next best method (POSRL [7]) are 6.6% on B@4, 4.0% on M, 1.5% on R, and 10.0% on C 

respectively.
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We argue that our improvements are stemmed from the employment of global-local features 

for strong visual representation for video captioning. In addition, the results indicate that the 

progressive training, which includes the seeding phase and the boosting phase, is effective to 

supervise the feature learning for our captioning task. The results from the boosting phase 

also resonate with our assumption for this proposed training strategy: leveraging CIDEr 

score to compute the reward with our proposed baseline can further boost the captioning 

performance.

2) Qualitative Results: Figure 9 demonstrates some qualitative examples on MSR-VTT 

[1]. Our method leverages the global-local features to achieve a fine-grained description 

of video contents across frames. Compared to other methods, our method demonstrates 

improved captioning behavior. For example, our GLR can recognize “group of children” 

and “soldier”, instead of using “man” or “person” to make up sentences. Figure 10 also 

demonstrates some qualitative examples on MSVD [27]. Those results show that our GLR 

captures more accurate details (e.g., “kissing”, “kneading dough” and “peeling shrimp”) 

for videos when generate captions, while the previous state-of-the-art method POSRL [7] 

generates wrong descriptions. More qualitative examples from our method can be found in 

the attached video.

F. Comparison With Multi-Modal Methods

Comparison with state-of-the-art multi-modal methods is shown in Table X. For example, 

MA-LSTM [88] uses GoogLeNet [84] to extract visual feature, C3D [92] to extract motion 

feature and MFCC [93] to extract audio feature. VideoLab [89] and v2t_navigator [90] 

uses the category feature from the dataset content. But our method outperforms all of those 

methods without using audio and category multi-modal feature.

V. GENERAL IMPROVEMENTS

To evaluate the generalization of our method, we craft our global-local encoding into some 

of the flexible methods in Table XI and leverage our DXE and DR to optimize their 

feature learning for video captioning prediction. Table XI demonstrates the improvements 

of each of the selected methods to their original implementations. For instance, the 

average performance gains by using DXE range from 0.9% to 2.6%; the margins for 

methods using RL+DR over the original implementations range from 1.1% to 1.8%. This 

empirical evidence verifies the power of our systemic design and efficacy. We also plug 

our progressive training strategy into SBAT [44], a Transformer-based video captioning 

model, and the results show that our training strategy also works well for Transformer-based 

encoder-decoders.

VI. CONCLUSION

In this paper, we approach the video captioning task from a new perspective and propose a 

GLR framework, namely a global-local representation granularity. We successfully leverage 

the global-local vision representation to achieve fine-grained captioning expression on 

video frames. In supervised the proposed GLR, we propose a progressive training strategy, 

which demonstrates a powerful capacity to boost the captioning performance. Extensive 
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experimental results indicate the effectiveness of our method in comparison with the recent 

leading methods. For its simplicity and efficacy, we hope that our GLR could serve as a 

strong baseline for the video captioning task.
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Fig. 1. 
Comparison with the state-of-the-art method SA-LSTM [1]. The three different examples 

demonstrate that our method can achieve fine-grained expression in the sentence to 

accurately describe the video frames.
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Fig. 2. 
The architectural framework of GLR. Our global-local representation encoder includes 1. 

the long-range encoder captures temporal correspondence among distant frames (t-n to 

t+n frames) and makes the cross-frame representations robust to appearance variations and 

shape deformations; 2. the short-range encoder focuses on motion and tendency, which 

depicts local consistency of object movement within a short moment (t±10 frames); 3. the 

local-keyframe encoder focuses on each object, which can preserve better object spatial 

information and finer details in terms of object appearances. In training, our method is 

trained by a progressive strategy which includes a seeding phase and then a boosting phase. 

The seeding phase supervises our method to obtain an entrance model which can be easily 

trained in the second boosting phase.

Yan et al. Page 24

IEEE Trans Circuits Syst Video Technol. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
The architecture of the long-range encoder. This encoder predicts the probability of whether 

a notional word will appear in the caption of the whole video.
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Fig. 4. 
The architecture of the short-range encoder. This encoder predicts the probability of short-

term actions in the video.
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Fig. 5. 
Probability distributions of outputs from our long-range, short-range and local encoder. We 

only show top-14 results of our long-range encoder output, top-3 results of our short-range 

encoder output and top-6 results of our local-keyframe encoder output respectively. Those 

results show our global-local encoder can perceive the information of different aspects at 

various levels of video.
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Fig. 6. 
Smoothed CIDEr score curve on MSR-VTT validation split during progressive training. We 

set the max epoch number of the seeding phase to be 30 in progressive training. But in order 

to prove the effectiveness of the boosting phase, we have run the seeding phase more than 30 

epochs (e.g., 44 epochs) to show that the CIDEr score is lower than the boosting phase after 

30 epochs. The boosting phase begins from the best model (e.g., with highest CIDEr) before 

the 30th epoch. In this figure the best models are acquired at the 28th epoch.
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Fig. 7. 
Qualitative results of adding features short and long-range feature. Incremental training is 

used.
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Fig. 8. 
Qualitative results of progressive training compared with using only XE training.
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Fig. 9. 
Qualitative results on MSR-VTT [1]. We present comparisons with state-of-the-art methods 

SA-LSTM [1], RecNet [86] and HRL [61]. Based on the results, our method can generate 

more accurate captioning sentences to describe the context of the given video.
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Fig. 10. 
Results on MSVD [27]. We present comparisons with state-of-the-art method POSRL [7].
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TABLE I

PERFORMANCE OF OUR GLR ON MSR-VTT VALIDATION SPLIT DURING PROGRESSIVE TRAINING. THE BOOSTING PHASE 

BEGINS FROM THE BEST MODEL (e.g., WITH HIGHEST CIDER) BEFORE THE 30th EPOCH. IN THIS TABLE THE BEST 

MODELS ARE ACQUIRED AT THE 28th EPOCH, SO THE BOOSTING PHASE STARTS FROM THE 29th EPOCH. THE ↑ AND ↓ 
ARROWS INDICATE THE INCREASE OR DECREASE FROM THE 28th EPOCH

Epoch B@4 M R C

Seeding

1 31.0 23.3 55.5 21.9

5 42.1 28.1 61.1 45.8

10 44.8 29.3 62.5 51.9

20 46.7 30.7 63.8 53.2

28 46.9 31.1 64.0 57.4

30 47.0 31.0 64.4 56.3

Boosting

29 45.0↓1.9 29.9↓1.2 63.6↓0.4 52.8↓4.6

39 44.5↓1.4 30.3↓0.8 64.1↑0.1 60.0↑2.6

59 45.3↓1.6 30.8↓0.3 64.5↑0.5 61.9↑4.5

79 46.1↓1.8 31.0↓0.1 64.8↑0.8 63.6↑6.2

99 46.9↓0.0 31.2↑0.1 65.7↑1.7 64.6↑7.2
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TABLE II

THE FINAL CIDER SCORES OF USING DIFFERENT FRAME INTERVALS IN LONG-RANGE AND SHORT-RANGE ENCODER

Long╲Short 4 8 10 12 16

n > 20 56.4 58.0 58.9 56.8 55.9

n > 25 57.2 59.1 60.6 58.7 57.5

n > 30 56.8 58.6 60.3 57.4 56.1
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TABLE III

COMPARISON OF USING DIFFERENT FEATURES (LOCAL, SHORT, AND LONG-RANGE FEATURES) IN THE SEEDING AND 

BOOSTING PHASE. DXE LOSS IS USED. ↑ INDICATES THE INCREASE FROM THE PRIMITIVE METHOD WHICH ONLY USES 

THE LOCAL FEATURE. THE SETTINGS OF LONG-RANGE, SHORT-RANGE AND LOCAL-KEYFRAME ENCODERS ARE THE SAME 

WITH SECTION IV-B

Feature
B@4 M R C

Local Short Long

Seeding Phase

Single feature

✓ × × 31.7 24.0 54.5 35.3

× ✓ × 32.3 23.9 54.1 34.8

× × ✓ 43.8 28.7 61.2 51.7

Combined features

✓ ✓ × 36.7↑5.0 26.0↑2.0 57.9↑3.4 42.3↑7.0

✓ × ✓ 45.1↑13.4 29.3↑5.3 62.0↑7.5 53.0↑17.7

× ✓ ✓ 45.6↑13.9 29.3↑5.3 62.9↑8.4 53.9↑18.6

✓ ✓ ✓ 46.9↑15.2 30.4↑6.4 63.9↑9.4 55.0↑19.7

Boosting Phase

Single feature

✓ × × 34.5↑2.8 26.1↑2.1 58.1↑3.6 43.8↑8.5

× ✓ × 34.4↑2.1 25.8↑1.9 57.9↑3.8 41.0↑6.2

× × ✓ 45.8↑2.0 30.4↑1.3 64.4↑3.2 57.9↑6.2

Combined features

✓ ✓ × 38.2 27.1 60.1 50.5

✓ × ✓ 46.1 30.6 64.8 59.5

× ✓ ✓ 46.2 30.6 64.7 59.6

✓ ✓ ✓ 46.9 31.2 65.7 60.6
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TABLE IV

COMPARISON OF USING DIFFERENT WEIGHTING METRIC m S(i)  FOR DXE IN THE SEEDING PHASE. ↑ AND ↓ INDICATES 

THE INCREASE OR DECREASE RESPECTIVELY FROM THE METHODS TRAINED BY XE

m S(i)
B@4 M R C

XE - 45.5 30.1 62.6 51.2

DXE

B@4 45.5↑0 29.7↓0.4 63.0↑0.4 51.4↑0.2

M 44.5↓1.0 29.8↓0.3 62.9↑0.3 52.4↑1.2

R 45.2↓0.3 29.0↓1.1 63.5↑0.9 52.5↑1.3

C 46.9↑1.4 30.4↑0.3 63.9↑1.3 55.5↑3.8
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TABLE V

COMPARISON OF USING XE OR DXE-TRAINED ENTRANCE MODEL IN THE BOOSTING PHASE. ↑ INDICATES THE INCREASE 

FROM THE SEEDING PHASE. IN BOOSTING PHASE, BASELINE b2 IS USED IN OUR REWARD

Start From R C

Seeding Phase - 62.6 51.2

Boosting Phase
XE 63.3↑0.7 55.3↑4.1

DXE 65.7↑3.1 60.6↑9.4
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TABLE VI

THE PERFORMANCE OF USING DIFFERENT BASELINES b1 OR b2 AS DISCREPANT REWARD (AS IN EQ. (17)). ↑ INDICATES 

THE INCREASE FROM “−” (WITHOUT BASELINE). WE USE DXE IN THE SEEDING PHASE

b B@4 M R C

- 13.5 16.1 46.1 12.7

b scst 44.6↑31.1 30.2↑14.1 64.3↑18.2 56.4↑43.7

b1 46.4↑32.9 30.5↑14.4 65.0↑18.9 58.1↑45.4

b2 46.9↑33.4 31.2↑15.1 65.7↑19.6 60.6↑47.9
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TABLE VII

COMPARISON OF USING RNN, GRU AND LSTM AS CAPTIONING DECODER. ALL THE SETTINGS INCLUDING THE 

EMBEDDING SIZE AND THE HIDDEN STATE OF THEM ARE THE SAME

Methods B@4 M R C

RNN 41.5 28.3 61.7 52.1

GRU 43.6↑2.1 29.3↑1.0 63.5↑1.8 55.4↑3.3

LSTM 46.9↑5.4 31.2↑2.9 65.7↑4.0 60.6↑8.5
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TABLE IX

COMPARISONS WITH STATE-OF-THE-ART METHODS ON MSVD BENCHMARK. THE BEST AND THE SECOND-BEST METHODS 

ARE HIGHLIGHTED

Method B@4 M R C

XE

RecNet [86] 52.3 34.1 69.8 80.3

POSXE[7] 52.5 34.1 71.3 88.7

MERN [71] 48.6 35.1 71.9 92.2

OA-BTG [11] 56.9 36.2 - 90.6

ORG-TRL [22] 54.3 36.4 73.9 95.2

STGraph[23] 52.2 36.9 73.9 93.0

DXE Ours (GLR) 57.7 38.6 74.9 95.9

RL

PickNet [32] 46.1 33.1 69.2 76.0

POSRL[7] 53.9 34.9 72.1 91.0

VRE [77] 51.7 34.3 71.9 86.7

RL+DR Ours (GLR + PT) 60.5 38.9 76.4 101.0
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TABLE XI

IMPROVEMENTS OF STATE-OF-THE-ART METHODS USING OUR TRAINING STRATEGY. ↑ INDICATES THE INCREASE FROM 

THEIR CORRESPONDING ORIGINAL XE OR RL RESULTS

Method B@4 M R C

XE

SAATXE 40.5 28.2 60.9 49.1

ORG-TRL 43.6 29.7 62.1 50.9

STGraph 40.5 28.3 60.9 47.1

SBAT 42.9 28.9 61.5 51.6

DXE

SAATXE 41.5↑1.0 29.4↑1.2 61.8↑0.9 50.6↑1.5

ORG-TRL 44.9↑1.3 30.9↑1.2 63.6↑1.8 53.5↑2.6

STGraph 41.7↑1.2 29.7↑1.4 62.1↑1.2 48.8↑1.7

SBAT 44.6↑1.7 30.5↑1.6 63.2↑1.7 53.6↑2.0

RL

HRL 41.3 28.7 61.7 48.0

PickNet 38.9 27.2 59.5 42.1

POSRL 41.3 28.7 62.1 53.4

SBAT 41.5 28.4 61.8 53.9

RL+DR

HRL 42.8↑1.5 30.4↑1.7 63.4↑1.7 49.5↑1.5

PickNet 40.6↑1.7 29.0↑1.8 61.0↑1.5 43.2↑1.1

POSRL 42.5↑1.2 30.4↑1.7 63.9↑1.8 54.9↑1.5

SBAT 42.7↑1.2 30.5↑2.1 63.4↑1.6 54.8↑0.9
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