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Abstract

Video captioning is a challenging task as it needs to accurately transform visual understanding
into natural language description. To date, state-of-the-art methods inadequately model global-
local vision representation for sentence generation, leaving plenty of room for improvement.

In this work, we approach the video captioning task from a new perspective and propose a

GLR framework, namely a global-local representation granularity. Our GLR demonstrates three
advantages over the prior efforts. First, we propose a simple solution, which exploits extensive
vision representations from different video ranges to improve linguistic expression. Second, we
devise a novel global-local encoder, which encodes different video representations including
long-range, short-range and local-keyframe, to produce rich semantic vocabulary for obtaining
a descriptive granularity of video contents across frames. Finally, we introduce the progressive
training strategy which can effectively organize feature learning to incur optimal captioning
behavior. Evaluated on the MSR-VTT and MSVD dataset, we outperform recent state-of-the-art
methods including a well-tuned SA-LSTM baseline by a significant margin, with shorter training
schedules. Because of its simplicity and efficacy, we hope that our GLR could serve as a strong
baseline for many video understanding tasks besides video captioning. Code will be available.

“corresponding author: D. Liu are with Rochester Institute of Technology, USA (dongfang.liu@rit.edu).
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| INnTRODUCTION

VIDEO captioning has great societal value due to a wide array of real-world applications,
e.g., subtitle generation, blind person assistance, and autopilot narration [2]-[5]. However,
isolated video frames may suffer from motion blur, occlusion, or truncation, which
introduces great confusion in visual understanding for the captioning task. To address this
above problem, many prior efforts [6]-[9] attempt to answer the principal problem: how
to leverage the rich global-local features across video frames to close the gap from visual
understanding to language expression?

Despite making significant progress, existing methods for video captioning inadequately
capture the local and global representations. Rather than modeling the correlations of
semantic entities across frames, a lot of methods simply apply the deep convolutional neural
network on raw pixels to build higher-level connections [7], [10]. The primary focus of these
methods is to operate on local object features, but this neglects object transformations or
interactions [11]-[16]. The approach of modeling local object features is a limiting solution
for video captioning, because the temporal connections across frames are not explored
delicately and thus are sensitive to spurious associations [12], [13].

To study the problem of the global-local correlation, other related vision tasks leverage the
graph representation using graph neural networks (GNNSs). For instance, [17], [18] model
object relations by using video spatio-temporal graphs and explicitly build links between
high-level entities. Specifically, each node encodes a target entity (/.e., objects persons [18]-
[20], body joints [21], and actions [17]), while each edge represents correlations among the
entities.

Inspired by the above success, recent video captioning studies extend the graph-based
approach and use GNNs to model global-local reasoning [22], [23]. Among these works,
[11], [18] merge local features with global features using concatenation; [17], [19], [24]

add spatio-temporal features as a separate node in the graph. However, empirical results
indicate that using graphs to represent global-local correlation is a sub-optimal solution, as
it often encounters the over-smoothing problem in training which leads to weak performance
in sentence generation.

Alternatively, many video captioning methods intuitively exploit multi-modal fusion (i.e.,
visual and audio features) to enrich the feature representations for prediction [25], [26].
However, these simple “lumping” approaches inefficiently exploit multi-modal features and
encounter difficulty to perform joint optimization cross-modality, leaving large room for
improvement.
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To this end, we attempt to solve the video captioning in a more flexible approach.
Concretely, we make the following contributions in this work:

. We devise a simple framework called the global-local representation granularity
(GLR), which uses extensive vision representations for captioning generation.

. We propose a novel global-local encoder, which exploits rich temporal
representation for video captioning. We encode the long-range frames to describe
spatio-temporal correspondence and short-range frames to capture object motion
and tendency, while using a local keyframe to preserve finer object appearance
and location details.

. We introduce a progressive training strategy that includes two phases. In the first
seeding phase, we propose a novel discriminative cross-entropy that addresses
the problem of human annotation discrepancy. In the second boosting phase,
we propose a discrepant reward for reinforcement learning (RL), which stably
estimates a bias of the expected reward for each individual video.

. We assess our method on the MSR-VTT [1] and MSVD [27] datasets. Extensive
evaluation results indicate that our method is competitive with the state-of-the-
art systems while requiring shorter training schedules. Compared to [1], [11],
[22], our method demonstrates improved captioning performance. We also use
ablation studies to verify the power of our idea and the efficacy of our algorithm.

Il. ReLatep Work

In this section, we review representative work in video captioning as well as the technique of
global-local representation and training strategies for the video caption task.

A. Video Captioning

Early video captioning works mainly focus on using template-based models for sentence
generation to [28]-[30]. Inspired by the success of other vision tasks, the first work in [31]
successfully extends the encoder-decoder architecture to develop a solution for the video
captioning task. Following the same architectural paradigm, [31], [32] explore the temporal
patterns on video using attention mechanisms to depict object movements. [33] develops

a hierarchical attention module to apply content attention on each feature to select time
intervals related to the semantic cues of the target word, and applies cross-modal syntax
attention to model the feature importance of the target word under the guidance of syntax
cues. [34] devises a MARN method, which generalizes descriptions from a single video to
other videos with high semantic similarity. [8], [10], [35] develop an idea of feature fusion
to guide sentence generation for video contents. [36] and [37] develop visual captioning
models with semantic concepts. [38] and [39] attempt to generate diverse sentences for each
video. [40], [41] and [42] explore video representation via visual reasoning. [43], [44] aim
to develop boundary-aware sequence-to-sequence decoder for captioning. [45], [46] try to
investigate the influence of the attention based on temporal components and semantics. [47]
attempts to exploit multi-level semantic guidance via visual relation of objects. However, the
above solutions capture global-local vision representation for sentence generation because
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they either neglect explicitly modeling the temporal content correspondences [12], [13] or
the spatial object motion or tendency [11]. We instead explore the representations of both
spatial interaction and temporal content features jointly using the proposed global-local
encoder.

B. Global-Local Representation

To model the global-local vision representation, many existing methods [7], [23], [31],

[34], [48], [49] resort to the sequence learning strategy. [49] uses a temporal attention
method to depict the global-local connections. [7] leverages the decoding hidden states

to increase the temporal feature representation. More recently, [11], [50], [51] exploit the
object features to model the object movement across frames. For instance, [11] employs

a bidirectional temporal graph to capture detailed movements for the salient objects in

the video; [50] devises a stacked LSTM to encode both the frame-level and object-level
temporal information. At the same time, [52] employs a stacked multimodal attention
network to process additional visual and textual historical information as context features;
[35] proposes four fusion filters to fuse different visual feature representations. However, the
aforementioned methods primarily focus on salient objects from the global contents without
explicitly modeling the global-local representation reasoning.

To address the above limitations, we propose a novel global-local representation granularity,
which simultaneously exploits long-range temporal correspondence, short-range object
motion, and local spatial appearances on the video frames. Using the accumulative global-
local representation, our method can achieve fine-grained descriptions for video captioning.
Besides, the generated video representations from our encoders can be directly used (may
need finetuning) to transfer to any other video analysis tasks, including video grounding [53]
or video retrieval [54].

C. Training Strategies

One popular strategy for training video captioning models is “Teacher Forcing” [55],
which has been widely used in training video captioning tasks [12], [56]-[58]. Despite

its popularity, the “Teacher Forcing” supervision is empirically suboptimal [25], [59]. More
recently, many research efforts attempt to explore different training methods to boost the
captioning performance [7], [10], [60]-[65]. For instance, [62] uses a mixed loss function
to optimize the video captioning algorithm, which leverages the weighted combination

of cross-entropy and reinforcement learning. Similarly, [60] adopts the paradigm of
reinforcement learning and devises a self-critical baseline to reward the model learning

to train the video captioning network. Although obtaining improvements over the prior
methods [1], [49], [62], the above methods generally require a complicated pipeline to
train with a heavy computation overhead for optimization. More recently, some works
attempt to design a loss function to capture the location of temporal patterns [66] or spatial
objects [14], but all of them fail to reconcile the demands of generating standard sentences
and generating human-like sentences. Building on the lessons learned from the concurrent
approaches [60]-[62], we propose a progressive training strategy, which can easily operate
training on our proposed GLR. Empirical results indicate that the progressive training
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strategy can help us to achieve further performance than using the conventional optimization
scheme.

[1l. GroeaL-LocaL RepresenTaTiON GRANULARITY

A. Overview

The framework of our GLR is demonstrated in Figure 2. Following [7], [23], our GLR
adopts an encoder-decoder architecture. More specifically, we include a global-local encoder
and a captioning decoder. The global-local encoder takes the long-range frames, the short-
range frames, and the local keyframe as inputs and encodes them into different vocabulary
features. All the obtained features are aggregated together to enrich global-local vision
representations across video frames. Afterwards, the captioning decoder supervised by

the progressive training strategy translates the vocabulary features into natural language
sentences. We elaborate on our method in the following sections.

B. Global-Local Encoder

Our global-local encoder includes three essential parts: long-range encoder, short-range
encoder, and keyframe encoder (Figure 2). Collectively, our novel encoder can help our
method enrich global-local vision representations for video captioning tasks

1) Long-Range Encoder: Inspired by the random crop paradigm [67], we encode
random global video frames to produce the global vocabulary based on a random keyframe
f; (see Figure 3) in training. Since each iteration will randomly choose different frames (the
total number is fixed) from the videos, our training iteration will fully saturate the whole
video clips. We encode random global video frames and produce the global vocabulary

of the video content (Figure 3). Particularly, our long-range encoder first performs 2D
convolutions on the inputs (/e., f-,and f[+,,1) to identify the relevant contextual features.
The output features from the first step is processed by a 3D convolutional network (CNN) to
capture global temporal correspondence. In order to increase consensus, we choose the top
Kword choices (highest frequency) from the ground truth sentences to guide the vocabulary
generation as a K classifications task. Therefore, outputs of the dense layers are defined as:

W ={w,w,....,w,...,w}, w.e,1), (6

where Wis the collection of the predicted long-range vocabulary (including verbs, nouns
and adjectives that may be used in sentences to describe the temporal contents in video) and
wy is the confidence of &g, word appearing in the predicted captioning for this video. This
vocabulary is extracted from all annotated GT sentences of all videos in the video captioning
dataset such as MSR-VTT [1] and MSVD [27], excluding function words such as “is”,

“be”, “do”, etc. Almost all previous methods lack attention to the adjectives (/e., “little”

and “white”) of the object or scene in the whole video, while this long-range adjective is an
essential part of video description. Thus we include them in our long-range vocabulary.

Lwhere n is a random range larger than 25 frames and t indicates the current keyframe.
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2) Short-Range Encoder: Our short-range encoder is to capture object motion and
tendency. We craft a 3D-Resnet18 [68] and two 2D CNNSs into our architecture in parallel
(Figure 4). By simultaneously taking two close neighbours (a.k.a. 719 and 71¢) of the
keyframe, 2D CNN and 3D-Resnet18 [68] yield the semantic and movement representations
respectively. Afterward, these representations are stacked and fed into dense layers for
action classifications. Given the number of action set in the dataset is J, our output of the
short-range encoder is:

A={a,a,....a,...,a;}, a,€(0,1), %)

where Ais the collection of the predicted short-range action vocabulary and a ;is the
confidence of the jy, verb appearing in the predicted captioning for this video.

3) Local-Keyframe Encoder: The lexical knowledge for the local semantics is learned
by a residual network [69], which extracts salient object features from the keyframe £ Given
the number of image classes in the dataset is M, the output of our local encoder is:

C={c,Cy.resCu--estu}y € €(0,1), @)

where Cis the collection of the object class vocabulary for the local frames and ¢, is the
confidence of the myy, class appearing in the predicted captioning for this video frame.

Once having all the vocabulary features from different ranges, we perform a fusion
encoding. We first use a feature pool composed of linear layers ¢ to project each vocabulary
feature into a same-size embedding and then aggregate them together to produce the fused
feature F:

F = Concat(p(W), p(A), p(C)) ()]

C. Captioning Decoder—Our captioning decoder translates the fused feature into a +
word? sequence S=(sy, S, -, S E{L, ..., /}) to form the predicted sentence. Specifically,
we use language LSTM to generate the hidden state /;and a cell state c;at 7z, step based on
the fused feature F:

hi, ¢ = H—S—H—M([hf—u(b(si—h 3‘\[—1’ F)]vci—l), (5)

where [, -] denotes concatenation. A1, S~1, 5.1, /, and ¢i-1 are the previous hidden state,
the predicted word, the ground truth, the fused feature from encoding, and the cell state
respectively. @(') is the annealing scheme which uses every previous token to predict the
next word. We adopt a schedule sampling technique to randomly choose the token s-1 or
5,_, by using a random variable € € {0, 1}:

2/(/: 30) denotes the maximum length of a sentence.
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F, (=1
®(si—ls§i—lsF)= Si—ls(i> 19 5:0); (6)
3\1—1, (l> 1’§=1)9

when 7= 0, the initial input of the LSTM is the fused feature ~ when 7> 1, we increase
the probability of € = 1 gradually in every epoch until € is absolutely equal to 1. Then, we
counter the process by decreasing the probability of € = 1.

As a widely used variant of the recurrent neural network (RNN), LSTM plays a crucial role
in our captioning module to translate the encoder output into a sentence. It can output word
by word according to input, and use long-term and short-term memory to learn grammar.

A softmax function is used to perform sampling distribution for the next word. A trick
called beam search [70] is used to find the sentences with the highest probability. Instead of
choosing one word with the highest probability at #, step, beam search records the top B
words from the generated B x D (if £#0) or D (if = 0) words, where Dis the vocabulary
size. Therefore, it is more likely to find the global optimal solution than a greedy search (a
special case of B=1).

Accordingly, the probability of a predicted word can be defined as:
p(s; | b)) = softmax(W, - h,), @)

where /;is the hidden state from Eq. (5) and W, is the weight matrix [70] which maps the
hidden state /;to vocabulary-sized embedding, in order to find a context-matching word in
the sentence. Thus, during decoding it defines a distribution over the output sequence S=
(51, 8, .-+, S)) given the input sequence £~ as pg (SF) is:

Yy
s o5, | F) = [ L oo 1 ) ®)
i=1

where pg (s;|4;) is defined in Eq. (7). So the encoding phase is to minimize this distribution
according to the current parameter 6and the input feature £.

D. Training Objective for Global-Local Encoder

1) Training Objective for Long-Range Encoder: Supposing there are N, videos
in the video captioning dataset, the top K'words (highest frequency) are chosen from the
ground truth sentences. We consider the ground truth prediction for the 74, video is defined
as W, = {@i, Wyss ..., Wigs +..» Wi -1y} € {0, 1}K, where w, = 1 means the &z, word exists in the
ground-truth descriptions of this video, while i, = 0 represents it does not. The long-range
encoder computes the probability distribution of prediction W= {w, ws, ..., Wy, ..., Wk},
Wy € (0, 1). The long-range encoder network parameters are optimized by a multi-label
cross-entropy loss function L /py:
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N, K-1
1 1
L,,= Vwml — k§= 0,[w1k10gw1k + ( Ak)log(l [k)] . 9)

2) Training Objective for Short-Range Encoder: Let A;denote the number of
videos in the video action recognition dataset which has Jactions in total. We consider

the ground truth prediction for 7z video is defined as A, = {a, @y, ..., 4, ... 4y} € {O. 1}J,
where a,; = 1 means Jz action can be used to describe this video, and a;, = 0 represents it
does not. The short-range encoder computes the probability distribution of prediction A
={a, &, ..., . d;}, a;€ (0, 1). The short-range encoder network parameters are
optimized by a multl class cross-entropy loss function Lgpop:

L.rharr =

||M2

Z [ajloga; + (1 — a;;)log(1l — a;)]. (10)

3) Training Objective for Local-Keyframe Encoder: Let A/, denote the number of
videos in the image classification dataset which has M classes in total. We consider the

ground truth prediction for /y, image is defined as C, = {0, € ..., Coms -2 Caa 1)} € {0, l}M
where ¢,, = 1 means /my, class can be used to describe this image, and ¢, = 0 represents it
does not. The local-keyframe encoder computes the probability distribution of prediction C
={c, &, ..., Cmy ---» Cpp}, € € (0, 1). The local-keyframe encoder network parameters are
optimized by a multi-class cross-entropy loss function L yq4:

1

Llocul = N
¢

| N, M-1
— DY [Culoge, + (1= E,)log(1 - c,)] . 1)
i=0m=0

E. Training Objective for Decoder

In the first several time steps, the LSTM layer receives a sequence of features and there is
no loss during this stage. After all the features for the video clip are exhausted, the LSTM
layer is fed the beginning-of-sentence (< BOS >) tag, which prompts it to start decoding

its current hidden representation into a sequence of words. Zeros are used as a < PAD >

tag when there is no input for the LSTM at this time step. While training in the decoding
stage, the model maximizes for the log-likelihood of the predicted output sentence given the
hidden representation and the previous words it has seen. From Eqg. (8) for a model with
parameters &and output sequence S= (1, S, ---, 5)), this is formulated as:

0* = argmaleogpa(s | h) (12)

i=1

This log-likelihood is optimized over the entire training split using stochastic gradient
descent. The loss is computed only during the training stage.
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F.  Progressive Training

We propose a progressive training strategy to fulfill different learning objectives (See
Algorithm 1). Our progressive training includes a seeding phase followed by a boosting
phase (Figure 2). In the seeding phase, our learning is optimized by cross-entropy, which
produces an entrance model to facilitate smooth training in the second phase. In the boosting
phase, our training leverages reinforcement learning (RL) to achieve further performance
gain.

1) Seeding Phase: The conventional models [1], [7], [11], [22], [71] are commonly
trained with the cross-entropy (XE) loss, which measures the average similarity of the
generated sentence and all the ground truth sentences. Since different annotators may
interpret video content differently, the ground truth from the training dataset may include
annotation bias. We argue that direct comparison between the captioning predictions to the
ground truths may not yield the optimal training outcomes. Thus, we employ the metric
scores m(S) of all ground truths as a discriminative weight in computing cross-entropy to
make our training biased towards those well-written ground truth sentences. Intuitively,
manually annotated ground truths have severe bias, that is, some ground truth sentences
are well-writen, while others are ambiguous or inappropriate. Metric scores encourage the
training to focus on the well-written sentences. The m(S) can use different options, such
as BLEU_4 [72], METEOR [73], ROUGE_L [74], and CIDEr [75].3 The analysis of each
option will be reported in the experiments.

3Denotes as B@4, M, R, and C respectively in experiments.
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Algorithm 1 Progressive Training (PT)

Input: Extracted feature list{ F, F», ..., Fy, }forall
N, videos, captioning decoder parameters 6, and all
annotation list {§1, §2, e g,\,ﬂ,} for all videos where

S-= {A(l) . §(G)}

is G human-labeled captions for

each video.
Output: Learned decoder parameters 6*
1: Initialize 6
2: # Seeding Phase

3: repeat

4: for Fin {F,F,,...,Fy,} do

5: Update 6* < argminLpyg(0) using Eq. 13
[

6: endfor

7: until reach the max epochs of seeding phase.
8: # Boosting Phase

9: repeat

10: for Fin {F,, F,,...,Fy,} do

11: Update 6* < argminLpg(6) using Eq. 19
0

12:  endfor

13: until the solution converges.
14: return Learned parameters 6*

, the discriminative

Providing each video is annotated by G sentences S = [§(1), 59 3’(6)}

cross-entropy (DXE) loss function is:

Lyx(0) = —ZG: ( )logp(f(i) | F; 9). (13)

Q

Our DXE loss increases the probability of generating captions with a high metric score by
assigning higher weights to ground-truth sentences. The gradient of DXE is calculated by
the weighted difference between the prediction and all the target descriptions. Consequently,
the DXE loss encourages feature learning which increases the probability of generating
captions with a high metric score. The result of 7) is considered a constant in our

loss function, every GT sentence has a different computed value. Different from the
weighted loss entropy (which manually assigns weights to classes to address the problem

of unbalanced data), the weight m(S) of our DXE is automatically calculated through
metrics, evaluating the quality among all annotations. Our DXE assigns higher weights

to high-quality annotations, helps the model generate sentences closer to them. For example,

if CIDET is selected as the metric m( (’)) it assists the model to refer more to the sentence

with high human consensus; then the model may be taught to generate more human-like
captions. Empirical results resonate with our assumption.
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2) Boosting Phase: After the seeding phase, we employ reinforcement learning [76]
with a discrepant reward (DR) to further boost the performance of our GLR model. Rather
than estimating a self-critical baseline [60] to fill the gap between training and testing, our
DR harmonizes the model with respect to the distinctions of each video.

Because the video captioning model can be regarded as an agent which interacts with an
environment of visual observation and natural language, optimizing it can be formulated as
a reinforcement learning task. Considering the actor (LSTM cell) with parameters 8 samples
words and the trajectory is the generated sentence S, our discrepant reward (DR) 0ss is
defined as the negative expected reward:

Lu(0)= = Ry= = D r(SHp(S | F;0), (14)
S

where the reward r(S) is the evaluation metric score of the sampled sentence and Fis the
feature generated by our global-local encoder. In order to optimize the actor, we use gradient
descent to update the network parameters @ by computing the differential of the loss:

VoLu(0) = = ). Vor(S)p(S | F30). (15)

Since the reward r(S) is not a function that depends on 6, it is not differentiable with regard
to 6, so the gradient in (15) can be rewritten as:

VoLu(0) = — D K(S)V.p(S | F;0)
S

_ ) V,p(S| F;0)
20 | PO o g

(16)

— D p(S | F;0)r(S) V,logp(S | F;0)
S

— Es,[r(S)V,logp(S | F;6)].

where E;_, denotes the expected value of the distribution, the reward r(S) is the evaluation
metric score of the sampled sentence, and Fis the fused feature extracted from our global-
local encoder. One problem with this training strategy is that the reward function r(S) is
always positive because the metric score ranges between 0 and 1. Therefore, we can only
encourage feature representations in learning but cannot perform suppression.

To address this issue, our DR is equal to the original reward r(S) subtracts a bias b, which is
baseline. With the bias term, our learning can be more robust to variation in prediction. Then
the policy gradient is given by:

VoLopi(0) = — Es. [(r(S) — b) V,logp(S | F;0)], an

where b~ E[r(S)]. Our baseline b can be any arbitrary function, as long as it does not
depend on the Sso does not change the expected value of gradient:
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D bV.p(S | F;0)=bY, D, p(S | F;6)
S S
(18)
=bV,1 =0.

The self-critical method SCST [60] utilizes the reward of the greedy output at the test time
as the baseline 6, harmonizing the model with respect to its test-time inference procedure.
But it incurs the time cost to run inference again in every training iteration. Using one
greedy sample to estimate the expected reward is too noisy, resulting in larger gradient
variance. In our implementation, the baseline 4 has two variants: 1) &, obtained by the G
ground-truth captions; and 2) & the top Q sentences sampled by the model with the highest
score during the forward step. Compared to the self-critical baseline, our discrepant baseline
with sufficiently large G or Q establishes a relatively stable bias for each different input
video, helps our method have a more robust and efficient estimation of expected reward.
When updating, this gradient V g can be approximated by Monte-Carlo sampling through a
single training example. So the final gradient of our discrepant reward is defined as:

VoLo0) = — Es.|(r(S) = r(5”)) V,logp(S | F;0)],
~ —(r(S)—r(Sb/))Vglogp(S | F;0), 1)

where % can be used by the either baseline (6, or &). In our experiments, we carry out an
ablation study to discover the impact of £, and & on the captioning performance.

V. ExreriMENTS

A. Dataset and Evaluation Metrics

1) MSR-VTT: The performance of our GLR approach is evaluated on the challenging
MSR-VTT dataset [1], which consists of 1000 videos. Each video is associated with 20
ground-truth captions given by different workers. We follow the data split in the original
publication, allocating 6513 videos for training, 497 videos for validation, and 2990 videos
for testing.

2) MSVD: We also evaluate our GLR on the MSVD dataset [27], which consists of 1,970
Youtube video clips with 85K English descriptions. Following the previous works [31], [32],
[77], we split the dataset into a 1,200 training set, 100 validation set, and 670 testing set by
the contiguous index number.

3) Evaluation Metrics: We evaluate our method on four commonly used metrics
BLEU_4[72], METEOR [73], ROUGE_L [74], and CIDEr [75], which are denoted as
B@4, M, R, and C respectively. B@4 measures the precision of 4-grams between the
ground-truth and generated sentences. M uses a uni-gramsbased weighted F-score and a
penalty function to penalize incorrect word order. R computes a harmonic mean of precision
and recall between compared sentences on the longest common subsequence (LCS). C
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is a voting-based approach, which measures the consensus among sentences, is robust to
incorrect annotations.

Implementation Details

1) Long-Range Encoder: Our long-range encoder is pre-trained on our proposed
video-to-word dataset generated from MSR-VTT [1] dataset or MSVD [27] dataset. For

our 2D CNN, We adopt ResNeXt [69] and use the 2048-dimension average pooling features
from the conv5_3 output as the 2D representation of videos. Then, 3D CNN uses ECO

[78] followed by a global pool, which outputs 1536-dim features. Afterward, we use 3
layers of dense connection to predict Kvocabulary feature classification, where we set K

= 300, namely, 300 candidate words chosen from the ground truth of the MSR-VTT [1] or
MSVD [27]. And we allocate 7010 videos for training (6513 original training +497 original
validation) and 2990 videos for testing for MSR-VTT [1], while 1300 videos for training
(1200 original training +100 original validation) and 670 videos for testing for [27]. The
dimension of the dense layer is set to 512. We set the learning rate to 0.0002, batch size to
64, and use Adam to optimize the network parameters. The dropout rate is set to 0.5 during
training. The demo results are shown in Figure 5. We select 20 keyframes evenly in the time
sequence for each video. Our long-range encoder outputs the probability distribution of all
candidate words, including fine-grained nouns like “audience” (a subcategory of “people” in
special context) and adjectives such as “fast”, “black” and “large”.

2) Short-Range Encoder: The short-range encoder is pre-trained on Kinetics-400
dataset [79]. The 2D CNN in the short-range encoder adopts the first part of the BN-
Inception architecture (until inception-3c layer) [80]. The outputs from the 2D CNN have
feature size of 28 x 28 with 96 dimensions. Following that, our 3D-Resnet18 [68] uses 3
conv layers (with 3 x 3x3 kernel and dimensions of 128, 256 and 512 respectively), which
output a one-hot vector for the Jaction class labels, where J= 400, namely, the confidence
distribution of 400 actions. The initial learning rate for the short-range encoder is set to
0.001 and is decreased by a factor of 10 when validation error saturates for 4 epochs. We
train the network with a momentum of 0.9, a weight decay of 0.0005, and mini-batches of
size 32. We initialize the weights of the 2D-Net weights with the BN-Inception architecture
[80] pre-trained on Kinetics, as provided by [81]. In the same way, we use the pre-trained
model of 3D-Resnet-18 [68], as provided by [82] for initializing the weights of our 3D-Net.
Afterwards, we train our whole short-range encoder on the Kinetics-400 dataset [79] for

10 epochs. We select 20 keyframes evenly in the time sequence for each video. The demo
results are shown in Figure 5, our short-range encoder outputs the probability distribution of
all actions appearing in the short-term split of the video, such as “applauding”.

3) Local-Keyframe Encoder: We employ ResNeXt-101 [69] with 64 paths in each
block, which generates the probabilities of M objects (M= 1000) for each input video frame.
Following standard practice [22], the local-keyframe encoder is pre-trained on ImageNet
[83] and we train the ResNeXt-101 [69] on ImageNet. On the ImageNet dataset, the input
image is 224 x 224 randomly cropped from a resized image using the scale and aspect ratio
augmentation of [84]. We use SGD with a mini-batch size of 256. The weight decay is
0.0001 and the momentum is 0.9. We start from a learning rate of 0.1, and divide it by 10 for
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three times. We adopt the weight initialization of [85]. We select 30 keyframes evenly in the
time sequence for each video. The demo results are shown in Figure 5, our local-keyframe
encoder outputs the probability distribution of all objects categories, such as “seat belt”,
“microphone” and “platform”, which provides more finer objects for our captioning decoder.

4) Feature Fusion: The inputs for feature fusion are 300-dim from the long-range
encoder, 400-dim from the short-range encoder, and 1000-dim from the local-keyframe
encoder respectively. The dense layers in the feature pool convert each of them into a
512-dim embedding. We use the ReLU activation of each dense layer in the feature pool and
adopt a dropout of 0.5 to prevent overfitting. Finally, the output of the feature fusion (by
concatenation of 512 x 3) has a dimension of 1536.

5) Decoder Setting: During the decoding stage, the initial step takes the fused features
as inputs (as in Eq. (6)) to predict the first word. Afterward, the previously predicted

word is embedded into a 512-dimensional vector then fed into the LSTM cell with a
512-dimensional hidden state to produce the next token.

6) Seeding Phase Setting: We use the learning rate of 0.0003 in this phase with

the Adam optimizer. When MSR-VTT is used, we operate training on all 20 ground-truth
captions of each video at the same time. Accordingly, we compute the weighted metrics with
ground-truth sentences (G = 20) for DXE. When MSVD is used, we operate training on

all 17 ground-truth captions of each video at the same time. Accordingly, we compute the
weighted metrics with ground-truth sentences (G = 17) for DXE. Beam search [70] is used
to find the sentences with the highest probability, where the beam size Bin search is set to
be 5 with the max sequence length /4, = 30 for sentence inference.

7) Boosting Phase Setting: We use the learning rate of 0.0001 in this phase. Our
model is also trained on all 20 ground-truth captions for MSR-VTT or 17 ground-truth
captions for MSVD of each video at the same time. For baseline 4;, we compute the average
reward of those 20 or 17 ground-truth sentences; for baseline &, we compute the average
reward of Q=100 sentences sampled from our trained model. Beam search [70] is also used
in this phase. Recent work on video captioning [7], [32], [60], [61] has shown that CIDEr

as a reward outperforms other evaluation metrics (e.g., CIDEr, BLEU, or METEOR) to gain
the largest improvement for video captioning. Following [7], [32], [61], we also use CIDEr
score to compute the reward in training.

C) Training Logs
We train the captioning decoder on an NVIDIA GeForce GTX 1080 Ti, while the parameters
of the global-local encoder are kept frozen, the average iteration time in training for XE,
DXE and RL+DR is 0.212, 0.226 and 1.75 respectively when batch size is 32. We check
performance on the validation set for every epoch and report all the scores in Table | and
the CIDET scores in Figure 6. Table I shows all the scores are increasing whenever in
the seeding phase or boosting phase, and our full model achieves improvements over the
primitive model which only uses seeding phase by 0.1% on M, 1.7% on R, and 7.2% on C.
Figure 6 shows that the CIDEr score increases fast in the seedind phase but is stable and
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lower than the boosting phase after 30 epochs, while using RL+DR can continue to train
the model in the second phase. When switching from XE training to RL training, all the RL
models have difficulty converging in the first few iterations, but quickly recover and reach
higher performance levels.

D) Ablation Study

We conduct extensive ablation studies to discover the optimal settings related to our global-
local encoding as well as the seeding and boosting phase in the training of our system.

1) Determine Global-Local Range: The effects of choosing different frame intervals
for long-range and short-range encoder are illustrated in Table Il. These results show that
using n> 25 for the long-range encoder and choosing the f1q, f+19 for the short-range
encoder achieves the best performance.

2) Global-Local Features: We measure the performance of our model using different
global-local features (as shown in Table I11). We first evaluate the performance of different
methods which use individual features for captioning prediction. Results indicate that using
the long-range has the highest performance on all metrics in comparison with the other
two methods. We also examine the impact of progressively combining different features
together. Our full model using all three features outperforms the models which only use
local features or short-term features by significant margins. For instance, our full model
achieves improvements over the primitive model which only uses local features, by 15.2%
on B@4, 6.4% on M, 9.4% on R, 19.7% on C in the seeding phase, and by 12.4% on B@4,
5.1% on M, 7.6% on R, 16.8% on C in the boosting phase.

As Figure 7 shows, adding short and long-range feature in the boosting phase can get more
fine-grained captions than only using local-keyframe features, for example, “race track”

is more fine-grained than “track” and “slicing” is more fine-grained than “cutting”. In
particular, after adding the long range encoder, the model is more robust to capturing the
overall perception of video.

3) Different Weighted Metrics in Seeding Phase: The seeding phase training is
important as it produces the entrance model for the following boosting phase. Hence, we
evaluate the impact of using different weighting metric (a.k.a. B@4, M, R, and C) in
training. Results are shown in Table IV. Models trained by different DXE loss all outperform
the counterpart trained by XE. Meanwhile, using CIDEr as the metric weight in DXE
training obtains the best results on all metrics. We use all global-local features (long-range,
short-range, local features) here. As Figure 8 shows, in the seeding phase, using our DXE
loss can get more correct words than the XE loss. For example, using the DXE loss can
comprehend the “models” in the video rather than just output a “woman”, and the “toy” is
found by using DXE while it is mistaken for a “video game” by the XE method.

4) Progressive Training Analysis: We investigate if the progressive training could
effectively improve our method in predicting captioning. As Table V shows, the results
from the boosting phase increase steadily from the seeding phase. The boosting phase
starting from the seeding phase and using DXE gets higher scores than its counterpart
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using XE. This demonstrates that using DXE as the supervision in the seeding phase can
yield more optimal model parameters and further improve the performance of the boosting
phase than using XE in training. The CIDEr score increasing curve of boosting phase
from seeding phase (shown in Figure 6) also proves the performance improvements in our
progressive training. Our boosting phase can improve all of the method no matter which
single feature, or combined features, is used. As Figure 8 shows, after boosting phase
training, our model can output more detailed and fine-tuned information (such as “fashion
show” and “SpongeBob”) when RL+DR is used.

5) Using by Vs. by in the Boosting Phase: The results of our GLR using different
discrepant (&, and &) rewards compared with self-critical baseline (84,5 ) in [60] are shown
in Table VI. Using the reward (&) based on top @ sentences sampled by the model can

help supervise models to achieve a better performance than using the reward (6;) based on
the ground-truth sentences. Both &, and &, supervised models outperform their counterpart
without using the discrepant reward. They also outperform their counterpart using the
self-critical baseline.

6) RNN Vs. GRU Vs. LSTM as Captioning Decoder: The results in Table VII show
that LSTM performs better than RNN and GRU. This is not surprising, since LSTM has
more parameters to explore long-term and short-term memory and has stronger generative
ability to produce sentences.

E. Comparison With State-of-the-Arts

1) Quantitative Results: We compare our GLR against some of the recent leading
methods on the MSR-VTT dataset. The results are shown in Table VIII. One notable
improvement of our method is that we can achieve an on-par performance with other
state-of-the-art methods with a much shorter training schedule. Our fully trained model also
surpasses all the compared methods on all metrics.

When using the same level of supervision, our margins (model trained by XE) over the
next best method (ORG-TRL [22]) are 1.9% on B@4, 1.9% on M, 0.5% on R, and 0.3%
on C respectively. We can achieve further performance gain by using DXE on M, R, and

C metrics. Note that our results of XE and DXE, reported from the 30th epoch (just used
as seeding phase), outperform the state-of-the-art systems with shorter training schedules.
If supervised by reinforcement learning (RL), our method also outperforms its counterparts
by a significant margin. Our margins (model trained by RL+DR over the next best method
(POSg; [7]) are 5.6% on B@4, 2.5% on M, 3.6% on R, and 7.2% on C respectively. All of
those previous RL method are trained with self-critical baseline by

We also compare our GLR against some of the recent leading methods on the MSVD
dataset. The results are shown in Table IX. When trained by DXE, our margins over the next
best method (ORG-TRL [22]) are 3.4% on B@4, 2.2% on M, 1.0% on R, and 0.7% on C
respectively. Using reinforcement learning, our margins (model trained by RL+DR) over the
next best method (POS g, [7]) are 6.6% on B@4, 4.0% on M, 1.5% on R, and 10.0% on C
respectively.
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We argue that our improvements are stemmed from the employment of global-local features
for strong visual representation for video captioning. In addition, the results indicate that the
progressive training, which includes the seeding phase and the boosting phase, is effective to
supervise the feature learning for our captioning task. The results from the boosting phase
also resonate with our assumption for this proposed training strategy: leveraging CIDEr
score to compute the reward with our proposed baseline can further boost the captioning
performance.

2) Qualitative Results: Figure 9 demonstrates some qualitative examples on MSR-VTT
[1]. Our method leverages the global-local features to achieve a fine-grained description

of video contents across frames. Compared to other methods, our method demonstrates
improved captioning behavior. For example, our GLR can recognize “group of children”
and “soldier”, instead of using “man” or “person” to make up sentences. Figure 10 also
demonstrates some qualitative examples on MSVD [27]. Those results show that our GLR
captures more accurate details (e.g., “kissing”, “kneading dough” and “peeling shrimp”)

for videos when generate captions, while the previous state-of-the-art method POS g, [7]
generates wrong descriptions. More qualitative examples from our method can be found in
the attached video.

F. Comparison With Multi-Modal Methods

Comparison with state-of-the-art multi-modal methods is shown in Table X. For example,
MA-LSTM [88] uses GooglLeNet [84] to extract visual feature, C3D [92] to extract mation
feature and MFCC [93] to extract audio feature. VideoLab [89] and v2t_navigator [90]
uses the category feature from the dataset content. But our method outperforms all of those
methods without using audio and category multi-modal feature.

V. GeneraL IMPROVEMENTS

VI.

To evaluate the generalization of our method, we craft our global-local encoding into some
of the flexible methods in Table X1 and leverage our DXE and DR to optimize their

feature learning for video captioning prediction. Table XI demonstrates the improvements
of each of the selected methods to their original implementations. For instance, the

average performance gains by using DXE range from 0.9% to 2.6%; the margins for
methods using RL+DR over the original implementations range from 1.1% to 1.8%. This
empirical evidence verifies the power of our systemic design and efficacy. We also plug

our progressive training strategy into SBAT [44], a Transformer-based video captioning
model, and the results show that our training strategy also works well for Transformer-based
encoder-decoders.

ConcLusion

In this paper, we approach the video captioning task from a new perspective and propose a
GLR framework, namely a global-local representation granularity. We successfully leverage
the global-local vision representation to achieve fine-grained captioning expression on
video frames. In supervised the proposed GLR, we propose a progressive training strategy,
which demonstrates a powerful capacity to boost the captioning performance. Extensive
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experimental results indicate the effectiveness of our method in comparison with the recent
leading methods. For its simplicity and efficacy, we hope that our GLR could serve as a
strong baseline for the video captioning task.
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SA-LSTM: A person is folding a piece of paper.
Ours (GLR): A woman is painting her nails.

SA-LSTM: A person is playing a video game.
Ours (GLR):  Cartoon characters are fighting.

SA-LSTM: A man is talking about food. M e
Ours (GLR): A group of people are eating food. do not care

Fig. 1.
Comparison with the state-of-the-art method SA-LSTM [1]. The three different examples

demonstrate that our method can achieve fine-grained expression in the sentence to
accurately describe the video frames.
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Fig. 2.

Tr?e architectural framework of GLR. Our global-local representation encoder includes 1.
the long-range encoder captures temporal correspondence among distant frames (t-n to
t+n frames) and makes the cross-frame representations robust to appearance variations and
shape deformations; 2. the short-range encoder focuses on motion and tendency, which
depicts local consistency of object movement within a short moment (t£10 frames); 3. the
local-keyframe encoder focuses on each object, which can preserve better object spatial
information and finer details in terms of object appearances. In training, our method is
trained by a progressive strategy which includes a seeding phase and then a boosting phase.
The seeding phase supervises our method to obtain an entrance model which can be easily
trained in the second boosting phase.
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Fig. 3.
The architecture of the long-range encoder. This encoder predicts the probability of whether

a notional word will appear in the caption of the whole video.
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Page 26

Catching or throwing softball
I 77

Catching or throwing baseball
98%

Hitting baseball

I

Passing American football
Hl 3%

Playing kickball
I 7

playing volleyball
_ 2% Actions

D 2D CNN @ 3D ResNet18 @ Dense Layer

The architecture of the short-range encoder. This encoder predicts the probability of short-
term actions in the video.
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Page 27
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Fig. 5.

Pr%bability distributions of outputs from our long-range, short-range and local encoder. We
only show top-14 results of our long-range encoder output, top-3 results of our short-range
encoder output and top-6 results of our local-keyframe encoder output respectively. Those
results show our global-local encoder can perceive the information of different aspects at

various levels of video.
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65

CIDEr
'Jol

Page 28

- Boosting Phase

— XK

— DXE

—— RL+DR (From XE)
—— RL+DR (From DXE)

0 20 2830 40 44 60 80 100

Epoch

Fig. 6.
Smoothed CIDEr score curve on MSR-VTT validation split during progressive training. We

set the max epoch number of the seeding phase to be 30 in progressive training. But in order
to prove the effectiveness of the boosting phase, we have run the seeding phase more than 30
epochs (e.g., 44 epochs) to show that the CIDETr score is lower than the boosting phase after

30 epochs. The boosting phase begins from the best model (e.g., with highest CIDEr) before
the 304, epoch. In this figure the best models are acquired at the 28, epoch.
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Local: /A man is playing o football game.
Local + Short: A man is running on o track.
Local + Short + Long: A group of people are running on « race track.

Local: /. woman is cooking food. B accurate
Local + Short: A woman is cutting « potato. W inaccurate
Local + Short + Long: 4 man is slicing o potato. B do not care

Fig. 7.

Qualitative results of adding features short and long-range feature. Incremental training is

used.
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Page 30

GLR (XE): There is a woman is walking down the runway.
GLR (DXE): Models are walking down the runway.
GLR (RL+DR): Models are walking down a runway in a fashion show.

GLR (XE): A man is talking about a video game. W accurate

GLR (DXE): A man is talking about a toy. B inaccurate

GLR (RL+DR): A man is talking about a SpongeBob. do not care
Fig. 8.

Qualitative results of progressive training compared with using only XE training.
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SA-LSTM:  “A man is talking to a woman.” RecNet: “A man is talking about something.”
HRL: “A man and a woman are talking.” Ours (GLR+PT): “A group of children are sitting in a classroom.”

SA-LSTM:  “A person is playing o video game.” RecNet: “A man is talking to another man.”

HRL: “A person is playing a video game.” Ours (GLR+PT): “Soldiers are fighting in a war.”

SA-LSTM:  “A man is talking about something.” RecNet: “A man is playing a video game.”
HRL: “A man is talking about a movie.” “A man in black shirt is talking about a video segment.”

SA-LSTM:  “A group of animals are walking.” RecNet: “Animals are playing with each other.” waccurate winaccurate
HRL: “A group of animals are playing.” Ours (GLR+PT): “A group of alpacas are walking.” u do not care
Fig. 9.

Qualitative results on MSR-VTT [1]. We present comparisons with state-of-the-art methods
SA-LSTM [1], RecNet [86] and HRL [61]. Based on the results, our method can generate
more accurate captioning sentences to describe the context of the given video.
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POSy;: A woman is eating.
Ours (GLR): A man and a woman is kissing.

POSg; - Two men are dancing.
Ours (GLR): A group of people are dancing on stage.

POSy; : A woman is pouring eggs into a bowl.
Ours (GLR): A woman is kneading dough.

POSg; : A woman is putting some meat in a bowl.
Ours (GLR): A woman is peeling a shrimp. Waccurate Winaccurate
do not care
Fig. 10.

Results on MSVD [27]. We present comparisons with state-of-the-art method POS g, [7].
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TABLE |

Page 33

PerrorMANCE oF OUR GLR oN MSR-VTT VALIDATION SPLIT DURING PROGRESSIVE TRAINING. THE BoosTING PHASE
Becins FrRom THE BEsT MobEL (e.g., WiTH HigHesT CIDER) Berore THE 30, EPocH. IN THis TABLE THE BEST

MobELS ARE ACQUIRED AT THE 28, EPOCH, SO THE BOOSTING PHASE STARTS FROM THE 29 EPocH. THE T AND ¥

ARROWS INDICATE THE INCREASE OR DECREASE FROM THE 28 EPOCH

Epoch B@4 M R C
1 31.0 233 55.5 21.9
5 421 28.1 61.1 45.8
10 44.8 29.3 62.5 51.9
Seeding
20 46.7 30.7 63.8 53.2
28 46.9 311 64.0 57.4
30 47.0 31.0 64.4 56.3
20 450, 29.94;, 636lgs 52846
39 445l;, 303lgg 64.1%; 60.0%,
Boosting 59 453115 30.8lg3 64.5%5 61975
79 46145 3104y, 64.8%g 63.6%,
99 469l, 31.2%; 65717 64.6%,
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TABLE Il

THE FINAL CIDER Scores oF UsiNG DIFFERENT FRAME INTERVALS IN LONG-RANGE AND SHORT-RANGE ENCODER

Long\SOt 4 8 10 12 16

n>20 56.4 580 589 568 559
n>25 572 59.1 606 587 575
n>30 56.8 586 603 574 56.1
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TABLE Il

CompARISON oF UsING DIFFERENT FEATURES (LOCAL, SHORT, AND LONG-RANGE FEATURES) IN THE SEEDING AND
BoosTING PHASE. DXE Loss Is Usep. 1 INDICATES THE INCREASE FrROM THE PRIMITIVE METHOD WHICH ONLY UsEs
THE LocAL FEATURE. THE SETTINGS OF LoNG-RANGE, SHORT-RANGE AND LocAL-KEYFRAME ENCODERS ARE THE SAME
WitH SecTion IV-B

Feature

B@4 M R C
Local Short Long

Single feature

v x X 31.7 24.0 54.5 35.3
X v x 32.3 23.9 54.1 34.8
X x v 43.8 28.7 61.2 51.7

Seeding Phase Combined features

v v x 3670 26000 5790, 423,
v X v 451%34 29.3%3; 62075 53.01y77
x v v 4567139 29.3%53 6297, 53.9%56
v v v 46915, 304%, 639%, 55.0%;
Single feature
v x x 34515 2611, 581055 43.8%gs
x v x 3441, 2581, 579155 410%,
X X v 45815 30413 64.4%3, 57.9%,
Boosting Phase Combined features
v v X 38.2 27.1 60.1 50.5
v X v 46.1 30.6 64.8 59.5
X v v 46.2 30.6 64.7 59.6
v v v 46.9 31.2 65.7 60.6
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TABLE IV

A
ComprARISON oF UsING DIFFERENT WEIGHTING METRIC m(S( )) For DXE IN THE SEEDING PHASE. T AND | INDICATES

THE INCREASE OR DECREASE RESPECTIVELY FROM THE METHODS TRAINED BY XE

m(ﬁ(i)) B@4 M R C

XE - 455 30.1 62.6 51.2

B@4  455% 29.7lgs 63.0%4 5L.4%,
M 445l 298lgs 629%s 5241,

DXE
R 452005 29.0l;; 635%g 5250,

c 4691, 304%5 63.9%; 5557,
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TABLE V

CompPARISON OF UsING XE or DXE-TRAINED ENTRANCE MODEL IN THE BOOSTING PHASE. T INDICATES THE INCREASE
FrROM THE SEEDING PHASE. IN BoosTING PHASE, BASELINE & Is Useb IN OUR REWARD

Start From R C
Seeding Phase - 62.6 51.2
XE 63.3%7 55.3T41

Boosting Phase
DXE 65.7131 60.6%94
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TABLE VI

THe PERFORMANCE OF UsING DIFFERENT BASELINES £ OR &y As DiscRerANT REWARD (As IN EQ. (17)). T INDICATES

THE INCREASE FROM (WiTHouT BASELINE). WE Use DXE IN THE SEEDING PHASE

b B@4 M R C
- 135 16.1 46.1 12.7

Do 4460517 30204, 64315, 5647,
b 46409 305M,4 65.0Mg9 58.1%54
b 4690, 3120, 65.7%96 60.61479
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TABLE VII

CowmparisoN oF Using RNN, GRU anp LSTM As CAPTIONING DECODER. ALL THE SETTINGS INCLUDING THE
EmMBEDDING SizE AND THE HIDDEN STATE OF THEM ARE THE SAME

Methods B@4 M R C

RNN 415 283 61.7 52.1
GRU  436%,; 293%, 63515 55415,

LSTM  469%5, 31214 65714, 60.6%gs
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TABLE IX

CowmpaRIsoNs WITH STATE-OF-THE-ART METHODS oN MSVD BENCHMARK. THE BEST AND THE SECOND-BEST METHODS

1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuen Joyiny

ARE HIGHLIGHTED

Method B@ M R c
RecNet [86] 523 341 698 80.3
POS 7] 525 341 713 887
e MERN [71] 486 351 719 922
OA-BTG [11] 569 362 - 906
ORG-TRL[22] 543 364 739 952
STGraph[23] 522 369 739 930
DXE Ours (GLR) 577 386 749 959
PickNet [32] 461 331 692 760
RL POSk,[7] 539 349 721 910
VRE [77] 517 343 719 867
RL+DR Ours(GLR+PT) 605 389 764 1010
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IMPROVEMENTS OF STATE-OF-THE-ART METHODS UsING OUR TRAINING STRATEGY. 1 INDICATES THE INCREASE FROM

THEIR CoRRESPONDING ORIGINAL XE or RL REsuLTs

Method B@4 M R C

SAAT xg 405 28.2 60.9 49.1

XE ORG-TRL 43.6 29.7 62.1 50.9

STGraph 40.5 28.3 60.9 47.1

SBAT 429 28.9 61.5 51.6
SAAT,:  415%, 2941, 618%y 50.6%;5
ORG-TRL 44913 309%,, 63.6% 535%56
PXE STGraph 41711, 2971, 6211, 48.8%;
SBAT  4467; 3050 6321; 5361

HRL 413 28.7 61.7 48.0

PickNet 38.9 27.2 59.5 42.1

RL POSk; 41.3 28.7 62.1 53.4

SBAT 415 28.4 61.8 53.9
HRL 4285 3041,; 634%; 4951 ¢
PickNet ~ 40.6%,; 29.0%,5 61.0%s 43.2%,

RL+DR

POSg 4251, 304%; 63915 5495
SBAT  427%,, 3051, 6341 54.8%,
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