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A B S T R A C T

People all throughout the world have suffered from the COVID-19 pandemic. People can be infected after brief
contact, so how to assess the risk of infection for everyone effectively is a tricky challenge. In view of this
challenge, the combination of wireless networks with edge computing provides new possibilities for solving
the COVID-19 prevention problem. With this observation, this paper proposed a game theory-based COVID-
19 close contact detecting method with edge computing collaboration, named GCDM. The GCDM method is
an efficient method for detecting COVID-19 close contact infection with users’ location information. With
the help of edge computing’s feature, the GCDM can deal with the detecting requirements of computing
and storage and relieve the user privacy problem. Technically, as the game reaches equilibrium, the GCDM
method can maximize close contact detection completion rate while minimizing the latency and cost of the
evaluation process in a decentralized manner. The GCDM is described in detail and the performance of GCDM
is analyzed theoretically. Extensive experiments were conducted and experimental results demonstrate the
superior performance of GCDM over other three representative methods through comprehensive analysis.
. Introduction

Novel coronavirus pneumonia is a new acute respiratory infec-
ious disease [1]. The World Health Organization (WHO) named it as
OVID-19 and declared that COVID-19 is a public health emergency of

nternational concern (PHEIC) [2]. Since December 2019, the COVID-
9 epidemic has continued to spread around the world. It not only poses
evere tests to public medical and health systems [3] but also has a
uge impact on economic and trade activities [4]. According to WHO,
s of December 23, 2022, there had been over 650 million confirmed
ases and over 6.6 million deaths worldwide, making COVID-19 one
f the deadliest epidemics in human history [5]. Therefore, the use of
cientific methods to detect the spread of the epidemic has important
ractical significance [6]. Using mathematical methods to extrapolate
he spread and progression of COVID-19 can help researchers and
olicymakers understand how the virus spreads and provide important
eferences for formulating countermeasures, playing an important role
n the epidemic response.

Detecting traces of patients with COVID-19 is a prerequisite for
voiding the virus’s rapid spread [7]. The patients’ close contact should
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be recognized and quarantined as quickly as possible. However, be-
cause of the related community’s great mobility and density, detecting
close contacts of all confirmed cases during the incubation period is
tough. Modern life style provides a new view to solve this problem.
Nowadays, almost everyone has a mobile phone. Due to the limited
coverage of base stations, mobile phones will constantly switch the
connected base stations as the user’s geographical location changes [8].
Therefore, the base station connection data in the mobile phone records
the user’s spatio-temporal data. Traditionally, such computing tasks
have been performed only in the cloud center [9], based on large
amounts of data about a user’s location, resulting in extremely high
transmission latency. In addition, uploading all users’ temporal and
spatial information together to the cloud center will also lead to the
leakage of users’ privacy data because the cloud faces the problem of
single point of failure, and long transmission process will increase the
risk of privacy leakage. Now, a new computing paradigm can solve
these problems appropriately, which is called edge computing [10].

In recent years, edge computing has emerged as a promising com-
puting paradigm for addressing problems by bringing resources to the
ttps://doi.org/10.1016/j.comcom.2023.04.029
eceived 31 December 2022; Received in revised form 9 March 2023; Accepted 22
vailable online 8 May 2023
140-3664/© 2023 Elsevier B.V. All rights reserved.
April 2023

https://doi.org/10.1016/j.comcom.2023.04.029
https://www.elsevier.com/locate/comcom
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2023.04.029&domain=pdf
mailto:yueshen@smail.nju.edu.cn
mailto:liubw@smail.nju.edu.cn
mailto:xiaoyu.xia@rmit.edu.au
mailto:lianyongqi@gmail.com
mailto:njuxlxu@gmail.com
mailto:douwc@nju.edu.cn
https://doi.org/10.1016/j.comcom.2023.04.029


Y. Shen, B. Liu, X. Xia et al. Computer Communications 207 (2023) 36–45
network’s edge, which can reduce service latency and avoid the upload-
ing of sensitive data [11]. It has been widely applied in many fields
such as task offloading and data caching [12,13]. In an area powered
by edge computing, edge servers are located beside the access points
or base stations [14]. In the edge computing environment, vendors can
hire resources according to the same pay-as-you-go business pattern
as in cloud computing [15]. By sending users’ spatio-temporal data
to the edge servers, the possibility of a user becoming a close contact
with a COVID-19 patient can be detected. Furthermore, thanks to the
feature of the edge computing paradigm, users’ privacy spatio-temporal
data are sent to different edge servers in close proximity. The short
transmission process and distribution of edge servers’ location alleviate
the problem of privacy leakage to a great extent [16]. However, edge
servers’ computing and storage capabilities are indeed limited com-
pared with cloud computing [17], which may not meet the computation
or time-efficient requirements of all detecting activities. This poses a
significant difficulty to the edge computing collaborative COVID-19
close contact detection, which must be addressed properly.

Users need to complete their detection events before the specified
deadline and pay for the resources that they consume [18]. In the edge
computing diagram, there may be many offloading decisions that fit
the time limitation, thus each selfish user will choose the option which
is the most favorable to itself. From a system standpoint, real-time
resources are constrained, which may not suit the needs of all users.
Failing to detecting in time may increase the risk of getting infected and
speed up the spread of COVID-19. Therefore, while optimizing latency
and cost per user, it should be ensured that as many users as possible
can finish the detection event in time. Thus, improving the COVID-19
close contact detection completion rate while decreasing the overall
system latency and cost are two main purposes of the COVID-19 close
contact detecting problem under the edge computing environment.

What is more, even though distributed edge servers show advantage
over central cloud in terms of privacy protection, the advantage will
disappear if we design a centralized mechanism relying on a central
organization to collection all users’ information and decide the of-
floading decisions, which faces similar problems to traditional cloud
computing paradigm as discussed above. Therefore, considering the
distribution of the users and protection of privacy data, the COVID-19
close contact detecting problem should be solved in a decentralized way
without relying on any central organization. Each user makes decisions
in a distributed way and will not send any specific spatio-temporal
data until finally choosing the best edge server, which improves time
efficiency and mitigates privacy problem at the same time.

In this paper, an effective Game Theory-based Covid-19 Detecting
Method, called GCDM is proposed. GCDM aims to improve the COVID-
19 close contact detection efficiency and increase the utilization of the
edge resources. The GCDM allows selfish users to compete for the edge
resource sufficiently by leveraging exact potential game theory. It could
maximize close contact detection completion rate while minimizing the
latency and cost in a decentralized way. Three principal contributions
of this paper are:

• Considering selfishness and rationality of each user, the COVID-19
close contact detection problem is formulated systematically with
the edge computing collaboration. Through building a potential
function, it is proved that the game is an exact potential game
and can converge to a Nash Equilibrium within a finite number
of iterations.

• To reach a Nash Equilibrium solution, a game theory-based
COVID-19 close contact detection method, named GCDM, is pro-
posed. GCDM consists of four steps, including establishing an
exact potential game model, evaluating players, finding better
decisions and deciding actions.

• To demonstrate the performance of the method, GCDM is eval-
uated against three baseline methods through extensive experi-
ments and comparison analysis.
37
Fig. 1. A scenario of COVID-19 close contact detecting with edge computing
collaboration.

The rest of this paper is organized as follows. Preliminary knowl-
edge about exact potential game and edge computing environment is
discussed in Section 2. The formulation of COVID-19 close contact de-
tecting problem with edge computing collaboration is demonstrated in
Section 3. Section 4 gives the details of the game theory-based COVID-
19 close contact detection method. The experiments are presented and
discussed in Section 5. Related work is reviewed in Section 6 and
Section 7 gives a conclusion of the paper.

2. Preliminary knowledge

To facilitate the discussion of GCDM mechanism for COVID-19 close
contact detection services, this section gives a brief introduction of
the edge computing collaboration mode and the exact potential game
theory.

2.1. Edge collaboration mode

There are 𝑋 users denoted as 𝑈 = {𝑢1, 𝑢2,… , 𝑢𝑋}. Each user has
a COVID-19 close contact detection event to be processed, defined as
𝑒𝑣𝑒𝑛𝑡𝑝 = (𝑠𝑝, 𝑧𝑝, 𝑙𝑖𝑚𝑝, 𝛾𝑝,𝑡, 𝛾𝑝,𝑐 , 𝜃𝑝), where 𝑠𝑝 is the size of input data and 𝑧𝑝
is the number of CPU cycles required to complete the detection event.
𝑒𝑣𝑒𝑛𝑡𝑝 should be completed before deadline 𝑙𝑖𝑚𝑝, or it would fail. 𝛾𝑝,𝑡
and 𝛾𝑝,𝑐 are the weights of latency and cost when making offloading
decisions, which satisfy 0 ≤ 𝛾𝑝,𝑡, 𝛾𝑝,𝑐 ≤ 1 and 𝛾𝑝,𝑡 + 𝛾𝑝,𝑐 = 1. These two
parameters can represent each user’s individual preference for event
latency and event cost. Besides, we use 𝜃𝑝 ∈ {1,… , 𝑌 } to represent the
offloading decision. 𝜃𝑝 = 𝑞 represents that 𝑒𝑣𝑒𝑛𝑡𝑝 is offloaded to the 𝑞th
edge server to be executed.

There are 𝑌 edge servers denoted as 𝑆 = {𝑠1, 𝑠2,… , 𝑠𝑌 }, each of
which can be defined as 𝑠𝑞 = (𝑔𝑞 , ℎ𝑞 , 𝑢𝑞), where 𝑔𝑞 , ℎ𝑞 and 𝑢𝑞 repre-
sent communication capacity, computing capacity and unit computing
price, respectively. Due to limited resources of edge servers and great
demands from users’ detection events, we assume that each edge server
equally allocates communication and computing resources to all events
offloaded to it. The more events choosing the same edge server, the less
resources each can get.

A typical scenario is shown in Fig. 1. To ensure the normal operation
of users’ mobile phones, the phones need to frequently connect to
nearby base stations via wireless channels, which generates BS con-
nection data stored in phones and can reflect users’ spatio-temporal
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information. When it comes to COVID-19 close contact detection, the
BS connection data can serve as input. Through judging whether one
user’s spatio-temporal trajectory intersected with those of infected
people, we can evaluate the risk of injection and complete the close
contact detection event. Besides, to efficiently complete the detection
event, each user can select an appropriate edge server with low latency
and cost, and then offload the detection event to it for execution and
get evaluation result of infection risk.

2.2. Exact potential game

Game theory is a multidisciplinary concept designed to describe the
interaction of players in a multi-decision setting with rational behav-
iors [19]. Cooperative and non-cooperative games are two different
types of games. The following are descriptions of a non-cooperative
game and Nash Equilibrium.

A non-cooperative game consists of three elements. It can be for-
mulated as a triple 𝐺 = (N, {A𝑝}𝑝∈N, {C𝑝}𝑝∈N), where N is the set of
players, A𝑝 represents the decision space of player 𝑝, and C𝑝 is the
payoff function that player 𝑝 aims to minimize [20].

For the Nash Equilibrium, given 𝜃−𝑝 = {𝜃1,… , 𝜃𝑝−1, 𝜃𝑝+1,… , 𝜃𝑋} as
strategies of all other players except player 𝑝, a strategy profile 𝜽∗ =
{𝜃∗1 ,… , 𝜃∗𝑋} is a Nash Equilibrium of game 𝐺 if no player can further
reduce its payoff function by changing its strategy unilaterally [21].
When a game reaches a Nash Equilibrium, all players can obtain the
most advantageous decision for themselves and will not actively deviate
from the decision.

C𝑝(𝜃∗𝑝 , 𝜃
∗
−𝑝) ≤ C𝑝(𝜃𝑝, 𝜃∗−𝑝),∀𝑝 ∈ N,∀𝜃𝑝 ∈ A𝑝 (1)

As a subset of non-cooperative games, exact potential games pos-
sess good convergence features. According to the finite improvement
property, any exact potential game can reach a pure-strategy Nash
Equilibrium after a finite number of iterations (FIP). A game can be
called an exact potential game if we can find a potential function
𝜙(𝜃𝑝, 𝜃−𝑝) that satisfies the following equation for ∀𝑝 ∈ N, ∀𝜃𝑝, 𝜃′𝑝 ∈ A𝑝.

𝜙(𝜃′𝑝, 𝜃−𝑝) − 𝜙(𝜃𝑝, 𝜃−𝑝) = C𝑝(𝜃′𝑝, 𝜃−𝑝) − C𝑝(𝜃𝑝, 𝜃−𝑝) (2)

Besides, PoA (price of anarchy) is a game theory concept that is fre-
quently used to assess the effectiveness of a Nash Equilibrium solution.
The efficiency ratio of the worst case Nash Equilibrium strategy �̂� over
the centralized optimum strategy 𝜃∗ is used to quantify PoA.

𝑃𝑜𝐴 =

∑𝑁
𝑝=1 C𝑝(�̂�)

∑𝑁
𝑝=1 C𝑝(𝜃∗)

(3)

. Formulation of the edge computing collaborative COVID-19
lose contact detecting model

We begin this part by defining event latency, event cost, event
atency-cost, and event completion rate. We define the edge collab-
rative event offloading problem as a multi-objective optimization
roblem on this basis.

efinition 1 (𝐸𝐿𝑝). For 𝑒𝑣𝑒𝑛𝑡𝑝, event latency (𝐸𝐿𝑝) refers to the
ime to complete the detection event, which consists of data transmis-
ion latency and execution latency. 𝐸𝐿𝑝 can be calculated as follows,
here 𝑔 and ℎ represent the communication and computation resources
cquired by the event, respectively.

𝐿𝑝 = 𝐸𝐿𝑡𝑟𝑎𝑛𝑠
𝑝 + 𝐸𝐿𝑒𝑥𝑒𝑐

𝑝

=
𝑠𝑝
𝑔

+
𝑧𝑝
ℎ

(4)

Definition 2 (𝐸𝐶𝑝). For 𝑒𝑣𝑒𝑛𝑡𝑝, event cost (𝐸𝐶𝑝) refers to the cost
aid for computing resources when executing the event, which can be
alculated as the product of unit price and number of CPU cycles.

𝐶 = 𝑧 𝑢 (5)
𝑝 𝑝

38
efinition 3 (𝐸𝐿𝐶𝑝). For 𝑒𝑣𝑒𝑛𝑡𝑝, event latency-cost (𝐸𝐿𝐶𝑝) refers
to the weighted sum of event latency and event cost. When making
offloading decisions, each user attempts to minimize its own event la-
tency and event cost on the premise of meeting the deadline restriction.

𝐸𝐿𝐶𝑝 = 𝛾𝑝,𝑡𝐸𝐿𝑝 + 𝛾𝑝,𝑐𝐸𝐶𝑝 (6)

Definition 4 (𝐸𝐶𝑅). Given the set of all 𝑋 detection events in the
system, event completion rate (𝐸𝐶𝑅) is defined as the proportion of
the number of events completed before its deadline to the number of
all events 𝑋. 𝐼() is a symbolic function. If 𝐸𝐿𝑝 ≤ 𝑙𝑖𝑚𝑝, then 𝐼(𝐸𝐿𝑝 ≤
𝑙𝑖𝑚𝑝) = 1, otherwise 𝐼(𝐸𝐿𝑝 ≤ 𝑙𝑖𝑚𝑝) = 0.

𝐸𝐶𝑅 =

∑𝑋
𝑝=1 𝐼(𝐸𝐿𝑝 ≤ 𝑙𝑖𝑚𝑝)

𝑋
(7)

To calculate event latency-cost of each user, we take the 𝑝th user 𝑢𝑝
as an example. If 𝑢𝑝 decides to offload 𝑒𝑣𝑒𝑛𝑡𝑝 to the 𝑞th edge server 𝑠𝑞 ,
we should firstly count the number of events choosing the same edge
server:

𝑛𝑢𝑚𝑞 =
𝑋
∑

𝑥=1
𝐼(𝜃𝑥 = 𝑞) (8)

The 𝑞th edge server distributes its communication and computing
resources to 𝑛𝑢𝑚𝑞 events equally, so resources allocated to 𝑒𝑣𝑒𝑛𝑡𝑝 can
be calculated:

𝑔𝑝,𝑞 =
𝑔𝑞

𝑛𝑢𝑚𝑞
, ℎ𝑝,𝑞 =

ℎ𝑞
𝑛𝑢𝑚𝑞

(9)

Therefore, event latency-cost of 𝑢𝑝 equals to:

𝐸𝐿𝐶𝑝 = 𝐸𝐿𝐶𝑝,𝑞 = 𝛾𝑝,𝑡(
𝑠𝑝
𝑔𝑝,𝑞

+
𝑧𝑝
ℎ𝑝,𝑞

) + 𝛾𝑝,𝑐𝑧𝑝𝑢𝑞

= 𝛾𝑝,𝑡(
𝑠𝑝
𝑔𝑞

+
𝑧𝑝
ℎ𝑞

)
𝑋
∑

𝑥=1
𝐼(𝜃𝑥 = 𝑞) + 𝛾𝑝,𝑐𝑧𝑝𝑢𝑞

(10)

From the rational perspective of each individual user, 𝑢𝑝 intends to
make the event offloading decision which is the most beneficial to itself.
‘‘Most beneficial’’ means minimizing its event latency-cost (𝐸𝐿𝐶𝑝) on
the premise of meeting the deadline constraint.

From the overall perspective of the whole system, due to the limited
real-time resources, not all events can be completed before deadline.
While optimizing latency-cost of each user, it is necessary to maximize
the event completion rate (𝐸𝐶𝑅) of the system through restricting the
rationality of each user, so that more users’ COVID-19 close contact
detection events can be completed successfully in time.

According to above two perspectives from each individual user and
the whole system, the optimization problem of COVID-19 close contact
detection event offloading has two objectives: one is to minimize 𝐸𝐿𝐶
of each user, and the other is to maximize 𝐸𝐶𝑅 of the whole system.
Therefore, the optimization problem is formulated as follows:

min
𝜃𝑝

𝐸𝐿𝐶𝑝,∀𝑝 ∈ {1,… , 𝑋}

max 𝐸𝐶𝑅
(11)

4. A game theory-based COVID-19 close contact detecting method
with edge computing collaboration

This section covers the COVID-19 close contact detection method,
which is based on game theory. In the beginning, we construct a flow
chart to depict the overall strategy. Then the method’s four specific
phases and related algorithms are introduced in turn.
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Fig. 2. Overview of game theory-based COVID-19 close contact detecting method.
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.1. Overview of the GCDM method

In order to achieve the first goal of the optimization problem, each
ser sensibly strives to reduce its own 𝐸𝐿𝐶. Game theory naturally has
he benefit of taking into account each player’s rational demands. The
cope of game theory is very broad, and there exist a great number
f different game theory models such as Stackelberg game, Stochastic
ame, Minority game and so on. Through the problem formulation and
nalysis, we can conclude that our problem belongs to the scope of
on-cooperative game. Besides, among different non-cooperative game
odels, exact potential games shows exhibit convergence and finite

mprovement property, which means that the model can reach a pure-
trategy Nash Equilibrium after a finite number of iterations. These
ood properties are beneficial for quickly getting a good solution of
he problem. Therefore, the problem is initially represented as an exact
otential game.

In order to achieve the second goal of the optimization problem,
hich is to maximize the system’s 𝐸𝐶𝑅, the mutual influence of
arious users’ actions is critical. To enhance 𝐸𝐶𝑅 without breaking
he convergence of the exact potential game, we must limit each user’s
ationality to some extent.

Fig. 2 shows the overview of game theory-based COVID-19 Close
ontact detecting method, which consists of four steps:

• Step 1: Model the COVID-19 close contact detecting event offload-
ing problem as an exact potential game.

• Step 2: Evaluate each user of the exact potential game model
through estimating event urgency.

• Step 3: Find the set of offloading decisions better than current
decisions for each user.

• Step 4: Decide actions at the end of each iteration for each user.

Apparently, the method can be realized in a centralized manner
y relying on a central entity to evaluate event urgency and assign
n order for each user by sorting them according to event urgency.
owever, a centralized approach frequently encounters issues such as

ingle point of failure, privacy problems, and so on. Therefore, we
39
mplement the method shown in Fig. 2 in a decentralized way, where
riorities among different users are evaluated by broadcasting messages
nstead of relying on a centralized entity. Overall process of the method
s described as follows.

Algorithm 1 is firstly run to model the COVID-19 close contact de-
ection event offloading problem as an exact potential game. Then the
ame is run in an iterative manner until it reaches a Nash Equilibrium
nd outputs final offloading decisions of all users. During each iteration,
ach player simultaneously tries to optimize its offloading decision by
unning algorithm 2, 3, 4 in sequence. Take the 𝑝th player 𝑢𝑝 as an

example, the player firstly evaluates its event urgency based on the
global decisions of the last iteration with algorithm 2. Then, it adopts
algorithm 3 to finds better decisions 𝑜𝑝𝑡𝑝 satisfying three conditions,
and makes use of algorithm 4 to decide its action for current iteration.

4.2. Specification of the GCDM method

(1) Establish an Exact Potential Game Model
As the beginning step of GCDM, a game model based on each user’s

unique logic is created. Algorithm 1 shows the details.
According to the discussion of non-cooperative games, the game

could be described as 𝐺 = (N, {A𝑝}𝑝∈N, {C𝑝}𝑝∈N). The set of 𝑋 users
participate in the game as players. For player 𝑢𝑝, decision space A𝑝 is
{1,… , 𝑌 }, and 𝐸𝐿𝐶𝑝 serves as the payoff function C𝑝 which needs to
be minimized. We will prove that this game model is an exact potential
game when we analyze properties of the method in the next subsection.

(2) Evaluate Players of the Exact Potential Game Model
When running the exact potential game model, each rational player

is exclusively concerned with its own interest. However, the system’s
limited real-time edge resources may not be able to meet the needs
of all participants. Only taking into account the individual interests of
the players may result in a low 𝐸𝐶𝑅 and the inability of many users’
COVID-19 close contact detection events to be completed on time,
leading to the spread of the pandemic. Thus, as the second part of the
method, players are evaluated through estimating the degree of event
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Algorithm 1 Establish an exact potential game model
Input: attributes of users and edge servers
Output: an exact potential game model
1: Set players N = {𝑢1, ..., 𝑢𝑋}.
2: for 𝑢𝑝 in N do
3: Set decision space A𝑝 = {1, ..., 𝑌 }.
4: Set C𝑝 = 𝐸𝐿𝐶𝑝.
5: Establish a game model 𝐺 = (N, {A𝑝}𝑝∈N, {C𝑝}𝑝∈N).
6: return 𝐺

urgency. Higher-ranked players can choose real-time edge resources
and change offloading decisions earlier. Algorithm 2 shows the detailed
procedures.

Algorithm 2 Evaluate players of the exact potential game model
Input: 𝐺, attributes of 𝑢𝑝 and edge servers
Output: event urgency of 𝑢𝑝
1: initialize: event urgency 𝑢𝑟𝑔𝑒𝑛𝑐𝑦𝑝 of user 𝑢𝑝.
2: Set total latency 𝑡𝑜𝑡𝑎𝑙𝑝 = 0.
3: for 𝑞 in {1, ..., 𝑌 } do
4: Calculate latency 𝐸𝐿𝑝,𝑞 if 𝑢𝑝 offloads the detection event to 𝑠𝑞 .
5: 𝑡𝑜𝑡𝑎𝑙𝑝 = 𝑡𝑜𝑡𝑎𝑙𝑝 + 𝐸𝐿𝑝,𝑞 .
6: Calculate average latency by 𝑎𝑣𝑔𝑝 = 𝑡𝑜𝑡𝑎𝑙𝑝∕𝑌 .
7: Evaluate event urgency by 𝑢𝑟𝑔𝑒𝑛𝑐𝑦𝑝 = 𝑙𝑖𝑚𝑝∕𝑎𝑣𝑔𝑝.
8: return 𝑢𝑟𝑔𝑒𝑛𝑐𝑦𝑝

To evaluate urgency of users’ detection event, we firstly try to
alculate the sum and average of event latency under all possible
ffloading decisions by setting 𝜃𝑝 to every element in decision set
1,… , 𝑌 }.

𝑜𝑡𝑎𝑙𝑝 =
∑

𝜃𝑝∈{1,…,𝑌 }
𝐸𝐿𝑝,𝜃𝑝 (12)

𝑣𝑔𝑝 =
𝑡𝑜𝑡𝑎𝑙𝑝
𝑌

(13)

Then, we define 𝑢𝑝’s event urgency 𝑢𝑟𝑔𝑒𝑛𝑐𝑦𝑝 as the ratio of the
eadline to the average event latency under all possible offloading
ecisions. A smaller 𝑢𝑟𝑔𝑒𝑛𝑐𝑦𝑝 indicates that 𝑒𝑣𝑒𝑛𝑡𝑝 is more urgent, and
he decision space which can meet the deadline constraint is smaller,
o 𝑢𝑝 should better update its offloading decision earlier. Therefore,
sers are given priority according to event urgency for the subsequent
unning process.

𝑟𝑔𝑒𝑛𝑐𝑦𝑝 =
𝑙𝑖𝑚𝑝

𝑎𝑣𝑔𝑝
=

𝑙𝑖𝑚𝑝
∑

𝜃𝑝∈{1,…,𝑌 } 𝐸𝐿𝑝∕𝑌
(14)

3) Find Better Decisions Set
As the third step of the approach, we try to find the set of event

ffloading decisions better than current decision for each game player.
etailed steps are shown in algorithm 3.

In order to determine that new offloading decision 𝜃′𝑝 is better than
urrent offloading decision 𝜃𝑝 for 𝑢𝑝, three conditions should be met.
n the one hand, from the rational perspective of each individual user,
𝑝 wants to minimize 𝐸𝐿𝐶𝑝 on the premise of meeting the deadline
onstraint, so condition 1 and 2 should be satisfied. On the other hand,
rom the overall perspective of the whole system, if new decision is
ffloading to 𝑠𝑞 , then users with more urgent detection events than
𝑝 that decide to offload events to the same edge server will get less
esources, which leads to longer event latency and may decrease 𝐸𝐶𝑅
f the system. Therefore, it is necessary to restrict the rationality of
sers to satisfy condition 3.

• condition 1: 𝑒𝑣𝑒𝑛𝑡𝑝 can meet deadline constraint with 𝜃′𝑝, i.e. 𝐸𝐿′
𝑝

≤ 𝑙𝑖𝑚 .
𝑝

40
Algorithm 3 Find set of better decisions for each user
Input: 𝐺, attributes of 𝑢𝑝 and edge servers
Output: set of better event offloading decisions for 𝑢𝑝
1: initialize: empty set of better event offloading decision 𝑜𝑝𝑡𝑝.
2: for 𝑞 in {1, ..., 𝑌 } do
3: 𝑓𝑙𝑎𝑔 = 1.
4: Calculate event latency 𝐸𝐿′

𝑝 when 𝜃′
𝑝 = 𝑞.

5: if 𝐸𝐿′
𝑝 > 𝑙𝑖𝑚𝑝 then

6: 𝑓𝑙𝑎𝑔 = 0, continue.
7: Calculate event latency-cost 𝐸𝐿𝐶 ′

𝑝 when 𝜃′
𝑝 = 𝑞.

8: if 𝐸𝐿𝐶 ′
𝑝 ≥ 𝐸𝐿𝐶𝑝 then

9: 𝑓𝑙𝑎𝑔 = 0, continue.
0: for other 𝑢𝑘 with more urgent event and decision 𝜃𝑘 = 𝑞 do
1: if 𝐸𝐿′

𝑘 > 𝑙𝑖𝑚𝑘 then
2: 𝑓𝑙𝑎𝑔 = 0, break.
3: if 𝑓𝑙𝑎𝑔 == 1 then
4: Append 𝑞 to 𝑜𝑝𝑡𝑝.
5: return 𝑜𝑝𝑡𝑝

• condition 2: Event latency-cost of 𝑢𝑝 under 𝜃′𝑝 is smaller than that
of 𝜃𝑝, i.e. 𝐸𝐿𝐶 ′

𝑝 < 𝐸𝐿𝐶𝑝.
• condition 3: It should be ensured that users with more urgent

detection events than 𝑢𝑝 that decide to offload events to the same
edge server can still meet deadline constraints.

(4) Decide the Action for Each User
Since at most one player is allowed to update its decision during

each game iteration, as the fourth step of the method, each player has
to decide whether it has the opportunity to change its event offloading
decision at the end of each iteration and the judge mechanism should
be carefully designed. Detailed steps are shown in algorithm 4.

During each iteration, if user 𝑢𝑝 has not received any message from
other players, then it will broadcast a message to notify other players
that it wants to update its decision in this iteration. The message
includes information about event urgency 𝑢𝑟𝑔𝑒𝑛𝑐𝑦𝑝 and new decision
𝜃′𝑝. On the contrary, if 𝑢𝑝 has received a message from another player 𝑢𝑘,
then it will judge whether 𝑢𝑘’s detection event is more urgent. If 𝑢𝑘 has
a smaller event urgency value, then 𝑢𝑝 would keep silent and keep its
decision unchanged. When it comes to the end of current iteration, 𝑢𝑝
judges whether it has the opportunity to update its decision in current
iteration. 𝑢𝑝 can update offloading decision only if it has the smallest
urgency value among all users who compete for the opportunity to
update. Otherwise, 𝑢𝑝 would maintain its original decision unchanged
even though it has better decisions, because only at most one update is
allowed in each iteration. If 𝑢𝑝 does not receive any message from other
players, and it does not need to update its offloading decision, we can
conclude that a Nash Equilibrium has been reached and the algorithm
terminates.

4.3. Theoretical analysis of the GCDM method

(1) Convergence of the Method

Theorem 1. The game 𝐺 built by algorithm 1 is an exact potential game
with the following potential function:

𝜙(𝜃𝑝, 𝜃−𝑝) =
1
2

𝑋
∑

𝑥=1

𝑋
∑

𝑣≠𝑥

𝑌
∑

𝑦=1
𝛾𝑥,𝑡(

𝑠𝑥
𝑔𝑦

+
𝑧𝑥
ℎ𝑦

)𝐼(𝜃𝑥 = 𝑦)𝐼(𝜃𝑣 = 𝑦)

+
𝑋
∑

𝑌
∑

𝑂𝑥,𝑦𝐼(𝜃𝑥 = 𝑦)

(15)
𝑥=1 𝑦=1
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Algorithm 4 Decide the action for each user
Input: 𝐺, attributes of 𝑢𝑝 and edge servers, set of better decisions 𝑜𝑝𝑡𝑝
Output: event offloading decision 𝜃𝑝
1: if 𝑜𝑝𝑡𝑝 is not empty then
2: Select decision 𝜃′

𝑝 from 𝑜𝑝𝑡𝑝 with the minimum C𝑝.
3: if 𝑢𝑝 has received messages from 𝑢𝑘 and 𝑢𝑟𝑔𝑒𝑛𝑐𝑦𝑘 < 𝑢𝑟𝑔𝑒𝑛𝑐𝑦𝑝
then

4: 𝑢𝑝 keeps silent.
5: else
6: 𝑢𝑝 broadcasts 𝑢𝑟𝑔𝑒𝑛𝑐𝑦𝑝 and 𝜃′

𝑝.

7: if current iteration ends then
8: if 𝑢𝑟𝑔𝑒𝑛𝑐𝑦𝑝 is the smallest among all requesting users then
9: 𝑢𝑝 updates decision to 𝜃′

𝑝.
0: else
1: 𝑢𝑝 maintains original decision 𝜃𝑝.
2: if no message received in current iteration then

13: One NE has been reached, break.
14: return 𝜃𝑝

where

𝑂𝑥,𝑦 = 𝛾𝑥,𝑡(
𝑠𝑥
𝑔𝑦

+
𝑧𝑥
ℎ𝑦

) + 𝛾𝑥,𝑐𝑧𝑥𝑢𝑦, 𝑦 ∈ {1,… , 𝑌 } (16)

roof. According to description of the exact potential game, we should
rove that the equation 𝛥𝜙 = 𝛥C𝑝 holds for all possible cases when a
layer changes event offloading decision, in which 𝛥𝜙 = 𝜙(𝜃′𝑝, 𝜃−𝑝) −
(𝜃𝑝, 𝜃−𝑝), and 𝛥C𝑝 = C𝑝(𝜃′𝑝, 𝜃−𝑝) − C𝑝(𝜃𝑝, 𝜃−𝑝). All possible cases can be

summarized as 𝜃𝑝 = 𝑞 ∈ {1,… , 𝑌 }, 𝜃′𝑝 = 𝑘 ∈ {1,… , 𝑌 }, where 𝑞 ≠ 𝑘.
Firstly, the original decision of player 𝑢𝑝 is offloading the detection

event to the 𝑞th edge server 𝑠𝑞 , i.e. 𝜃𝑝 = 𝑞. We can calculate the original
value of potential function 𝜙 as follows.

𝜙(𝜃𝑝, 𝜃−𝑝) = 𝜙(𝑞, 𝜃−𝑝)

= 1
2

𝑋
∑

𝑥≠𝑝

𝑋
∑

𝑣≠𝑥
𝑣≠𝑝

𝑌
∑

𝑦=1
𝛾𝑥,𝑡(

𝑥𝑥
𝑔𝑦

+
𝑧𝑥
ℎ𝑦

)𝐼(𝜃𝑥 = 𝑦)𝐼(𝜃𝑣 = 𝑦)

+ 1
2
𝛾𝑝,𝑡(

𝑠𝑝
𝑔𝑞

+
𝑧𝑝
ℎ𝑞

)
𝑋
∑

𝑥≠𝑝
𝐼(𝜃𝑥 = 𝑞) + 1

2
𝛾𝑝,𝑡(

𝑠𝑝
𝑔𝑞

+
𝑧𝑝
ℎ𝑞

)
𝑋
∑

𝑥≠𝑝
𝐼(𝜃𝑥 = 𝑞)

+
𝑋
∑

𝑥≠𝑝

𝑌
∑

𝑦=1
𝑂𝑥,𝑦𝐼(𝜃𝑥 = 𝑦) + 𝑂𝑝,𝑞

(17)

Then, the player 𝑢𝑝 updates its offloading decision, and decides to
offload its detection event to another 𝑘th edge server 𝑠𝑘, i.e. 𝜃𝑝′ = 𝑘.
We can calculate the updated value of potential function 𝜙 as follows.

𝜙(𝜃𝑝′, 𝜃−𝑝) = 𝜙(𝑘, 𝜃−𝑝)

= 1
2

𝑋
∑

𝑥≠𝑝

𝑋
∑

𝑣≠𝑥
𝑣≠𝑝

𝑌
∑

𝑦=1
𝛾𝑥,𝑡(

𝑠𝑥
𝑔𝑦

+
𝑧𝑥
ℎ𝑦

)𝐼(𝜃𝑥 = 𝑦)𝐼(𝜃𝑣 = 𝑦)

+ 1
2
𝛾𝑝,𝑡(

𝑠𝑝
𝑔𝑘

+
𝑧𝑝
ℎ𝑘

)
𝑋
∑

𝑥≠𝑝
𝐼(𝜃𝑥 = 𝑘) + 1

2
𝛾𝑝,𝑡(

𝑠𝑝
𝑔𝑘

+
𝑧𝑝
ℎ𝑘

)
𝑋
∑

𝑥≠𝑝
𝐼(𝜃𝑥 = 𝑘)

+
𝑋
∑

𝑥≠𝑝

𝑌
∑

𝑦=1
𝑂𝑥,𝑦𝐼(𝜃𝑥 = 𝑦) + 𝑂𝑝,𝑘

(18)

The change in potential function, denoted by 𝛥𝜙, can be determined
41
using the original and updated values of the potential function.

𝛥𝜙 = 𝜙(𝑘, 𝜃−𝑝) − 𝜙(𝑞, 𝜃−𝑝)

= 𝑂𝑝,𝑘 + 𝛾𝑝,𝑡(
𝑠𝑝
𝑔𝑘

+
𝑧𝑝
ℎ𝑘

)
𝑋
∑

𝑥≠𝑝
𝐼(𝜃𝑥 = 𝑘) − 𝑂𝑝,𝑞 − 𝛾𝑝,𝑡(

𝑠𝑝
𝑔𝑞

+
𝑧𝑝
ℎ𝑞

)
𝑋
∑

𝑥≠𝑝
𝐼(𝜃𝑥 = 𝑞)

(19)

The change in the payoff function of player 𝑢𝑝, indicated by 𝛥C𝑝,
should then be obtained. The original and updated values of 𝑢𝑝’s payout
function should be acquired in advance, similar to the calculation of 𝛥𝜙.
The original payoff function value is presented below.

C𝑝(𝜃𝑝, 𝜃−𝑝) = C𝑝(𝑞, 𝜃−𝑝) = 𝐸𝐿𝐶𝑝,𝑞

= 𝛾𝑝,𝑡(
𝑠𝑝
𝑔𝑞

+
𝑧𝑝
ℎ𝑞

)
𝑋
∑

𝑥=1
𝐼(𝜃𝑥 = 𝑞) + 𝛾𝑝,𝑐𝑧𝑝𝑢𝑞

= 𝛾𝑝,𝑡(
𝑠𝑝
𝑔𝑞

+
𝑧𝑝
ℎ𝑞

)
𝑋
∑

𝑥≠𝑝
𝐼(𝜃𝑥 = 𝑞) + 𝛾𝑝,𝑡(

𝑠𝑝
𝑔𝑞

+
𝑧𝑝
ℎ𝑞

) + 𝛾𝑝,𝑐𝑧𝑝𝑢𝑞

= 𝛾𝑝,𝑡(
𝑠𝑝
𝑔𝑞

+
𝑧𝑝
ℎ𝑞

)
𝑋
∑

𝑥≠𝑝
𝐼(𝜃𝑥 = 𝑞) + 𝑂𝑝,𝑞

(20)

Similarly, the updated value of 𝑢𝑝’s payoff function when 𝜃𝑝 = 𝑘 is
equals to

C𝑝(𝜃𝑝′, 𝜃−𝑝) = C𝑝(𝑘, 𝜃−𝑝) = 𝐸𝐿𝐶𝑝,𝑘

= 𝛾𝑝,𝑡(
𝑠𝑝
𝑔𝑘

+
𝑧𝑝
ℎ𝑘

)
𝑋
∑

𝑥=1
𝐼(𝜃𝑥 = 𝑘) + 𝛾𝑝,𝑐𝑧𝑝𝑢𝑘

= 𝛾𝑝,𝑡(
𝑠𝑝
𝑔𝑘

+
𝑧𝑝
ℎ𝑘

)
𝑋
∑

𝑥≠𝑝
𝐼(𝜃𝑥 = 𝑘) + 𝛾𝑝,𝑡(

𝑠𝑝
𝑔𝑘

+
𝑧𝑝
ℎ𝑘

) + 𝛾𝑝,𝑐𝑧𝑝𝑢𝑘

= 𝛾𝑝,𝑡(
𝑠𝑝
𝑔𝑘

+
𝑧𝑝
ℎ𝑘

)
𝑋
∑

𝑥≠𝑝
𝐼(𝜃𝑥 = 𝑘) + 𝑂𝑝,𝑘

(21)

The change in payoff function can be determined using the original
and updated values of the payoff function of palyer 𝑢𝑝.

𝛥C𝑝 = C𝑝(𝑘, 𝜃−𝑝) − C𝑝(𝑞, 𝜃−𝑝)

= 𝑂𝑝,𝑘 + 𝛾𝑝,𝑡(
𝑠𝑝
𝑔𝑘

+
𝑧𝑝
ℎ𝑘

)
𝑋
∑

𝑥≠𝑝
𝐼(𝜃𝑥 = 𝑘) − 𝑂𝑝,𝑞 − 𝛾𝑝,𝑡(

𝑠𝑝
𝑔𝑞

+
𝑧𝑝
ℎ𝑞

)
𝑋
∑

𝑥≠𝑝
𝐼(𝜃𝑥 = 𝑞)

(22)

According to Eqs. (19) and (22), the equation 𝛥𝜙 = 𝛥C𝑝 holds for all
possible cases. As a result, 𝐺 is an exact potential game, which possesses
finite improvement property (FIP). Therefore, the game can attain a
pure-strategy Nash Equilibrium within a finite number of iterations.

(2) PoA of the Method

Theorem 2. PoA of the game 𝐺 built by algorithm 1 satisfies:

1 ≤ 𝑃𝑜𝐴 ≤
∑𝑋

𝑝=1 𝐸𝐿𝐶𝑚𝑎𝑥
𝑝,𝑞

∑𝑋
𝑝=1 𝐸𝐿𝐶𝑚𝑖𝑛

𝑝,𝑞

(23)

Proof. When 𝑢𝑝 offloads its detection event to the 𝑞th edge server, the
communication and computing resources allocated to it satisfies:
𝑔𝑞
𝑋

≤ 𝑔𝑝,𝑞 ≤ 𝑔𝑞 ,
ℎ𝑞
𝑋

≤ ℎ𝑝,𝑞 ≤ ℎ𝑞 (24)

The lower and upper bounds of latency-cost while offloading the
vent to the edge server could then be calculated.

𝐿𝐶𝑝(�̂�) ≤ 𝐸𝐿𝐶𝑚𝑎𝑥
𝑝,𝑞 = 𝑋 × 𝛾𝑝,𝑡(

𝑠𝑝
𝑔𝑞

+
𝑧𝑝
ℎ𝑞

) + 𝛾𝑝,𝑐𝑧𝑝𝑢𝑞 (25)

𝐸𝐿𝐶𝑝(𝜃∗) ≥ 𝐸𝐿𝐶𝑚𝑖𝑛
𝑝,𝑞 = 𝛾𝑝,𝑡(

𝑠𝑝 +
𝑧𝑝 ) + 𝛾𝑝,𝑐𝑧𝑝𝑢𝑞 (26)
𝑔𝑞 ℎ𝑞
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Table 1
Parameters of edge servers and detection events.
Variable Value range

Communication capacity (Mbps) (5, 10) × 9.97

Computing capacity (GHz) {5, 6, 8, 9}

Unit price (per 1e6 cycles) {0.8, 0.9, 1, 1.1, 1.2}

Input data size (KB) (100,600)
Cycles required (cycles) (1, 6) × 1𝑒5

Weight of latency {0.1, 0.3, 0.5, 0.7, 0.9}

Therefore, we can get

≤ 𝑃𝑜𝐴 ≤
∑𝑋

𝑝=1 𝐸𝐿𝐶𝑚𝑎𝑥
𝑝,𝑞

∑𝑋
𝑝=1 𝐸𝐿𝐶𝑚𝑖𝑛

𝑝,𝑞

=

∑𝑋
𝑝=1(𝑋 × 𝛾𝑝,𝑡(

𝑠𝑝
𝑔𝑞

+ 𝑧𝑝
ℎ𝑞
) + 𝛾𝑝,𝑐𝑧𝑝𝑢𝑞)

∑𝑋
𝑝=1(𝛾𝑝,𝑡(

𝑠𝑝
𝑔𝑞

+ 𝑧𝑝
ℎ𝑞
) + 𝛾𝑝,𝑐𝑧𝑝𝑢𝑞)

(27)

(3) Time Complexity of the Method
The proposed method runs in an iterative manner. During each

iteration, all users run algorithm 2, 3, 4 in sequence together in a
distributed way. In algorithm 2, user 𝑢𝑝 traverses all edge servers to
evaluate event urgency with time complexity 𝑂(𝑌 ). In algorithm 3,
user 𝑢𝑝 also need to traverse all edge servers to judge whether it can
meet three conditions and whether it can be an optional choice. Among
three conditions, the first and second condition can be finished in 𝑂(1)
time. However, when considering the third condition, 𝑢𝑝 should visit
other users with the same decision, the number of which is 𝑂(𝑋∕𝑌 ) on
average. Therefore, time complexity of algorithm 3 equals to 𝑂(𝑌 (1 +
𝑋∕𝑌 )) = 𝑂(𝑋 + 𝑌 ). Algorithm 4 with only several judgments can
be finished in 𝑂(1) time. Therefore, time complexity of one iteration
can be obtained from the sum of three algorithms, which equals to
𝑂(1) + 𝑂(𝑋 + 𝑌 ) + 𝑂(1) = 𝑂(𝑋 + 𝑌 ). Besides, we denote the number of
iterations to reach a Nash Equilibrium as 𝐶, which increases linearly
with the number of users 𝑋. Then the total time complexity of the
proposed method is 𝑂(𝐶(𝑋 + 𝑌 )), which can be executed in a fast
manner in practice.

5. Performance evaluation

5.1. Experiment settings

The proposed game theory-based COVID-19 close contact detect-
ing method(GCDM) is implemented with python 3.9. Parameters of
edge servers shown in Table 1 are set with reference to [22], which
are claimed to be real-world values obtained from other work. The
computing resources of each edge server is randomly picked from
{5,6,8,9}GHz, and communication resources is 9.97𝑅 Mbps, where 𝑅
is an integer randomly picked from [5, 10]. Besides, last three rows of
Table 1 are parameters of detection events, where {} means selecting a
random number from the set, and () indicates randomly generating an
integer within the range.

To evaluate GCDM comprehensively, we simulate two scenarios
by altering the values of the number of users and the number of
edge servers, one for each time. As shown in Table 2, we fix the
values of one parameter when the value of the other parameter varies.
For the first experiment setting, we fix the number of edge servers
as 25 and set the number of users as 200, 400, 600, 800, 1000 in
turn to conduct experiments and comparison analysis. For the second
experiment setting, we fix the number of users as 800 and set the
number of edge servers as 10, 20, 30, 40, 50 to conduct experiments
and comparison analysis.

In the experiments, we compare GCDM’s performance to three
baseline methods which have been proposed to solve task offloading
problems to optimize latency or task completion rate.

• LFC [23]: Events are firstly evaluated and assigned priorities by
evaluating deadlines. Then, each user chooses the optimal server
to meet the deadline.
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Table 2
Experiment environment settings.
Set ID Total number of edge servers Total number of users

1 25 200, 400, 600, 800, 1000
2 10, 20, 30, 40, 50 800

Fig. 3. Average EL via number of users.

Fig. 4. Average EL via number of edge servers.

• DCO [24]: A standard potential game model is built and run to
determine the offloading decisions without taking deadlines into
account.

• Dedas [25]: This method adopts a heuristic idea. If multiple edge
servers can finish the event before the corresponding deadline,
then the one with the greatest difference between deadline and
event latency is chosen. Besides, if all edge servers fail to meet its
deadline constraint, then the one that causes the least number of
successful events to fail will be selected.

5.2. Comparison analysis

Based on the principles of control variable method shown in Ta-
ble 2, we compare GCDM with aforementioned three methods, and we
mainly discuss four metrics, including event latency, event cost, event
latency-cost and event completion rate.
(1) Event Latency (EL)

‘‘Average event latency’’ refers to the average latency to finish
all users’ COVID-19 close contact detection events. Results of two
experiment sets about average event latency are shown in Fig. 3 and
Fig. 4.

Fig. 3 demonstrates that the average event latency of all four
techniques grows as the number of users increases, which is easy to
anticipate and understand. More users indicates more detection events
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Fig. 5. Average EC via number of users.

Fig. 6. Average EC via number of edge servers.

to be offloaded. However, number of edge servers remains unchanged,
so resources allocated to each user decreases and incurs longer latency.
In addition, another conclusion can be found from the figure when we
compare the performance of four methods. When the number of users is
in a low level, average event latency of four methods are relatively close
because system resources are rich enough to complete all detection
events in time. However, with the number of users increasing, system
resources become more and more limited, and our method GCDM
gradually shows it advantage over other three techniques.

On the contrary, Fig. 4 shows that as the number of edge servers
rises, average event latency of all four methods declines. More edge
servers can provide more resources while number of users’ detection
events remains unchanged, so each event can be allocated more re-
sources and be completed in a shorter time. Similar to the conclusion in
Fig. 3, our method GCDM presents more obvious advantages over other
three methods in face of edge resources shortage. Apart from these,
another phenomenon in the figure is that when the number of edge
servers increases from 10 to 20, EL of all four methods experience a
sharp decline. After that, the downward trend gradually slows down.
(2) Event Cost (EC)

‘‘Average event cost’’ refers to the average cost paid by all users
in the system for consuming computing resources. The results of two
experiment sets about average event cost are shown in Fig. 5 and Fig. 6.

We can find a slight increasing trend and a slight decreasing trend
in these two figures separately, but the trends are not too obvious.
Users are charged by edge servers in terms of CPU cycles used, which
is only affected by fixed value of CPU cycles needed to finish the
detection event. Besides, the difference between charging standard of
different edge servers may not be two large. Therefore, average event

cost only experiences a slight fluctuation when the number of users or
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Fig. 7. Average ELC via number of users.

Fig. 8. Average ELC via number of edge servers.

edge servers changes. Furthermore, compared with LFC and Dedas, our
method GCDM and the other game theory-based method DCO achieves
relatively low EC in that cost is considered as an important factor when
building utility functions.
(3) Event Latency-Cost (ELC)

‘‘Average event latency-cost’’ refers to the average weighted sum of
latency and cost of all users’ COVID-19 close contact detection events.
Results of two experiment sets about average latency-cost are shown in
Figs. 7 and 8.

These two figures show similar ascending and descending trends to
Figs. 3 and 4 about average EL, because ELC is the weighted sum of EL
and EC, and the fluctuation of average EC is slight. With the number of
users decreasing or the number of edge servers increasing, each event
can be allocated more resources with similar unit price, which incurs
much shorter event latency and relatively smaller event cost, resulting
in smaller event latency-cost.

Through comparison, it can be found that GCDM has obvious advan-
tage over the other three methods in face of system resource shortage
when the number of users is large or the number of edge servers is
small. Besides, the four methods depict the same order in terms of
ELC for two different experiment settings, which indirectly verify the
effectiveness of the results of our experiments. Through calculation, we
can find that GCDM decreases average event latency-cost by 2.52%,
3.45% and 6.68% respectively compared with LFC, DCO and Dedas for
the first experiment set and decreases average event latency-cost by
2.13%, 3.84% and 7.18% respectively for the second experiment set.
(4) Event Completion Rate (ECR)

‘‘Event completion rate’’ refers to the proportion of detection events
that can be completed before the given deadline to all of the events in
the system. Improving event completion rate is one of the optimization
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Fig. 9. ECR via number of users.

Fig. 10. ECR via number of edge servers.

oal of our method. Obviously, methods with higher 𝐸𝐶𝑅 are better.
esults of two experiment sets in terms of event completion rate are
hown in Figs. 9 and 10, in which the trends are on the contrary to
hose in Figs. 7 and 8, which is very reasonable, because more resources
eans shorter latency but higher possibility to be finished in time.

In Fig. 9, when the number of users is on a low level, edge resources
n the system is sufficient to finish all detection events before deadlines,
o event completion rate of all four methods can reach 100%. After that,
ith more users existing in the system, each event can be allocated

ess resources, which may not meet the need to be finished in time.
herefore, event completion rate of all four methods gradually decline.
esides, our method GCDM shows more obvious advantage over other
hree methods in face of system resources shortage and similar con-
lusions can also be obtained from Fig. 10. Additionally, an obvious
ncrease can be found in Fig. 10 when number of edge servers increases
rom 10 to 20, followed by a more moderate trend.

It can also be found that the four methods follow the same order in
erms of ECR for two different experiment settings, which indirectly
erify the effectiveness of the results of our experiments. Through
alculation, we can find that GCDM increases event completion rate by
.02%, 2.98% and 3.56% respectively compared with LFC, DCO and
edas for the first experiment set and increases event completion rate
y 5.33%, 4.3% and 4.95% respectively for the second experiment set.

. Related work

The rapid spread of disease in most nations throughout the world
as had a significant impact on society, the economy, and the health-
are system and many works have been done to tackle these prob-

ems [26]. For COVID-19, a lot of works have also been carried out
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to deal with the threat of the COVID-19 from different kinds of per-
spectives. Wang et al. [27] proposed an rapid diagnosis method of
COVID-19. They use the deep learning-based model to implement the
automatic diagnosis of COVID-19 which is helpful to counter the out-
break of SARS-CoV-2. Without the necessity for annotating the lesions
for training, the technique can reliably estimate the COVID-19 infection
probability and detect lesion locations in chest CT. The deep learning
method is simple to train and performs well in identifying COVID-19
patients. Oh et al. [28] proposed a patch-based convolution neural
network method. The method can solve the problem of the difficulty
of collecting CXR data set for deep neural network training which is
inspired by the CXR radiographs’ potential imaging biomarkers. Roy
et al. [29] developed an deep learning based assisted diagnosis method
of lung diseases. The method relies on uninorms for effective video-
level frame score aggregation. They also offer a fresh fully-annotated
dataset of LUS pictures gathered from different Italian hospitals, as well
as a deep network built using Spatial Transformer Networks.

Long latency between mobile devices and cloud computing infras-
tructures makes it difficult to fulfill the latency-sensitive tasks’ require-
ments. Edge computing has emerged as a new computing paradigm
aimed at addressing the problem. It has been widely used to address
a variety of issues in the edge computing environment. For example,
Zhou et al. [30] introduced the A-YONet deep neural network model for
tracking multitarget detection in smart IoT devices in an edge comput-
ing environment. A-YONet is built by merging the benefits of YOLO and
MTCNN. They also created a detection technique based on an anchor
box preadjusting scheme and a multilayer feature fusion mechanism.
Wang et al. [31] proposed Div_PreAPI, a MF-based recommendation
method to improve the diversity of the recommendation. To provide
diverse and tailored API suggestions, Div_PreAPI incorporates a weight-
ing technique and neighborhood information into matrix factorization
(MF). Based on locality-sensitive hashing, Kong et al. [32]proposed a
unique multitype health data privacy-aware prediction approach. The
technique can forecast missing health data while avoiding the problems
of privacy disclosure and diverse data kinds. It can also achieve a decent
balance between prediction accuracy and privacy protection.

Users are usually geographically distributed and the method used
under the wireless distributed scenario is required to be decentralized.
There exist many classic techniques which can fulfill the requirements
like block chain [33–35] and game theory [36]. As a powerful tool to
evaluate the interaction between multiple different players according to
their individual interest and rationality, game theory has been success-
fully applied in many fields [37]. Refs. [22,24,38] all adopt potential
game theory to determine an offloading decision for each device to
jointly minimize task delay and energy consumption, in which [24]
adopts cloud computing model, [38] uses edge computing model,
and [22] adopts end–edge–cloud collaboration mode. These works only
take into account each device’s individual rationality, ignoring the
mutual effect between the task completion of different devices, which
leads to many task failures and a low task completion rate when system
resources are not sufficient.

To the best of our knowledge, few work focus on the close contact
detection problem for COVID-19 through the view point of edge com-
puting. Inspired by the above studies, a game theory-based COVID-19
close contact detecting method, named GCDM, is developed. The GCDM
can provide cost-effective strategies for the COVID-19 close contact
detection problem with a high close contact detection completion rate.

7. Conclusion

Using the location data of the mobile phones is a promising way
to detect the close contact patient of COVID-19. However, too much
patient privacy data uploaded to the cloud center will overwhelm the
network and the privacy of user information cannot be guaranteed. To
tackle these problems, we propose a game theory-based COVID-19 close

contact detecting method with edge computing collaboration called
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L

GCDM. GCDM adopts exact potential game theory with edge computing
paradigm, which can maximize close contact detection completion rate
while minimizing the cost of the evaluation process in a decentralized
way. Extensive experiments were carried out to compare the GCDM
with three other methodologies, demonstrating that the GCDM works
effectively.
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