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With the advent of volumetric EM techniques, large connectomic datasets are being created, providing neuroscience research-
ers with knowledge about the full connectivity of neural circuits under study. This allows for numerical simulation of
detailed, biophysical models of each neuron participating in the circuit. However, these models typically include a large num-
ber of parameters, and insight into which of these are essential for circuit function is not readily obtained. Here, we review
two mathematical strategies for gaining insight into connectomics data: linear dynamical systems analysis and matrix reorder-
ing techniques. Such analytical treatment can allow us to make predictions about time constants of information processing
and functional subunits in large networks.
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Significance Statement

This viewpoint provides a concise overview on how to extract important insights from Connectomics data by mathematical meth-
ods. First, it explains how new dynamics and new time constants can evolve, simply through connectivity between neurons. These
new time-constants can be far longer than the intrinsic membrane time-constants of the individual neurons. Second, it summarizes
how structural motifs in the circuit can be discovered. Specifically, there are tools to decide whether or not a circuit is strictly feed-
forward or whether feed-back connections exist. Only by reordering connectivity matrices can such motifs be made visible.

Introduction
The quest for understanding the function and dysfunction of
organs, including the brain, has been classically subdivided into
two disciplines, anatomy and physiology, which examine, respec-
tively, structural and functional properties from separate but
complementary perspectives. Of course, this historical dichot-
omy was never absolute as probably best evidenced by the neuro-
biological pioneer Santiago Ramon y Cajal (1911), who always
studied anatomic structures in the light of current functional
insights. Modern developments of functional imaging techniques
(Kim and Schnitzer, 2022) even make such disciplinary and
methodological distinctions virtually impossible. Nevertheless,
our limited success in understanding brain function has often
been excused by technological shortcomings that only allow
studying reduced systems, preventing us from seeing the whole
anatomic and physiological complexity at the same time. With
the advent of connectomics (Denk and Horstmann, 2004;
Lichtman and Denk, 2011; Abbott et al., 2020), these limitations
are being overcome, and the anatomic connections of large brain
regions and complete functional subcircuits (White et al., 1986;
Briggman et al., 2011; Helmstaedter et al., 2013; Takemura et al.,
2017; Shinomiya et al., 2019) have been revealed. At the same

time, we witness simultaneous optical (Ghosh et al., 2011;
Aimon et al., 2019; Kim and Schnitzer, 2022) and electrical
(Buzsaki et al., 2015; Jun et al., 2017; Steinmetz et al., 2019; Allen
et al., 2019; Gardner et al., 2022) recordings of many hundreds of
neurons. Yet these spectacularly valuable datasets have not read-
ily uncovered the remaining mysteries of neural function, but
instead clearly revealed the next boundaries we need to cross:
They are theoretical, data analytical, and mathematical.

Although we are far from well equipped to master all chal-
lenges imposed on us by new connectomic data and large-scale
single-unit recordings, we do not need to start from scratch.
Computational neuroscientists have explored tools to study ac-
tivity in interacting neural networks over many decades (Herz et
al., 2006) and have established a set of standard mathematical
tools by which such data can be viewed (Dayan and Abbott,
2005). Since the methods encompass large-scale simulation tech-
niques (Markram et al., 2015; Lazar et al., 2021), mean-field
approaches (Nakagawa et al., 2013; Gerstner, 2000), and mathe-
matical and graph-theoretical (Sporns et al., 2000; Rajan and
Abbott, 2006) techniques, no single review is able to treat of all
of those with due respect.

In this review, we will lay our main focus on dynamical sys-
tems approaches for linear networks, since they combine a num-
ber of advantages that make them attractive as a standard tool set
to systems neuroscientists. First, they can be clearly related to
underlying anatomic and physiological elements (see below).
Second, they have been demonstrated to successfully explain
physiological phenomena (Seung et al., 2000a,b; Usher and
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McClelland, 2001; Goldman et al., 2002; White et al., 2004).
Third, the simplifications made in these models are obvious, and
numerical simulations of a nonsimplified (i.e., nonlinear) system
can be readily compared with the theoretical predictions. And
finally, there exist established mathematical tools from a stand-
ard repertoire that is taught to physicists, computer scientists,
engineers, chemists, and to an increasing extent to biologists as
well.

Model design
For reasons of better illustration, we illustrate mathematical
modeling for the small, but well-studied neural circuit of fly
motion processing (Fig. 1A). At its core, it is composed of 15 ge-
netically, anatomically, and physiologically characterized neu-
rons that are all located within each of the 750 columns of the
Drosophila optic lobe. The output neurons of the circuit, T4 and
T5, are the primary, motion-sensitive neurons of the fly, which

C
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Figure 1. Network architecture, connectivity matrix, and general layout of a recurrent network. A, Circuit diagram of the fly motion vision system. Retinal input (gray, only one is shown)
arrives at laminar neurons (green), which project to medulla (red) and lobula (blue) neurons. From there, activity reaches the T4 (dark red) and T5 (dark blue) cells. In this system, the action
of the neurotransmitters is known: arrows indicate excitation; discs indicate inhibition. B, The number of synapses between neuron types is summarized in a connectivity matrix. C, If one inter-
prets the number of synapses between each pair of cells as the total synaptic strength of this connection, the matrix in B defines a recurrent neural network in which inputs from all presynaptic
cells are collected at “dendrites” (horizontal bars). The retinal input I(t) provides additional external drive to each neuron. A, B, Reproduced from Borst et al. (2020b), with permission.
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compute the direction of ON- (T4) and OFF- (T5) edges along
one of the four cardinal directions (Maisak et al., 2013; for
review, see Borst et al., 2020a). We also know about the type and
response characteristics of the retinal input (R) that drives the
circuit. All connections between the various circuit elements
have been thoroughly quantified by volumetric EM studies
(Shinomiya et al., 2019) and are summarized in a 16� 16 matrix
(Fig. 1B). The rows of this matrix collect all inputs to a specific
cell, the columns all output from a specific cell. Since the retinal
input cells do not receive input from the rest of the circuit, the
first row is empty. The retinal cells are the only ones that receive
external visual input, and thus are the only ones that receive a
contribution from the input vector IðtÞ ¼ ½I1ðtÞ; :::; I16ðtÞ�T ¼
½IðtÞ; 0; :::; 0�T (Fig. 1C).

The dynamics of the membrane potentials Vi(t) relative to the
resting potential of each neuron can then be computed by the
differential equation as follows:

t
d
dt

ViðtÞ ¼ �ViðtÞ1
X16
j¼1

Mijf ðVjðtÞÞ1 IiðtÞ: (1)

Here, we assume passive membrane properties only (i.e.,
without the participation of any voltage-activated ion channels).
If we compare Equation 1 to the one of a first order low-pass fil-
ter as follows:

t
d
dt

yðtÞ ¼ �yðtÞ1 xðtÞ; (2)

where x(t) is the input and y(t) is the output signal of the filter,
we realize that the input to each neuron consists of two parts,
that is, the external, visual input Ii(t) and the internal one, which
is the sum of all presynaptic elements weighted by their respec-
tive number of synapses, as defined by the connectivity matrix
M. Furthermore, the activity of a presynaptic neuron is passed
through a transfer function f, that captures the translation from
the presynaptic voltage Vj(t) to synaptic transmission. For many
graded response neurons in the fly visual system, the function f is
well approximated by a rectilinear function (Groschner et al.,
2022); that is, it prohibits transmission below a certain threshold
(approximately resting potential) and is linear above this thresh-
old. In spiking neural networks, f is considered to be the input-
output function that translates membrane depolarization into fir-
ing rate. The latter simplification is a good approximation if syn-
aptic integration acts on a slower time scale than membrane
dynamics, that is, if t is large compared to the time scale of
fluctuations in the entries of I (Dayan and Abbott, 2005). In any
case, Equation 1 can be solved numerically by replacing the dif-

ferential
d
dt

ViðtÞ with
1
Dt

ðViðt1DtÞ � ViðtÞÞ and, choosing a

small enough time step Dt and starting from a given value of
Vi(t = 0), by iterating through time.

Before going into further mathematical detail, we should con-
sider the general purpose of such connectomics-based network
modeling. While in an ideal experimental world the connectivity
matrix M would be fully and accurately determined, allowing for
quantitative predictions of the system response to any time-
dependent stimulus I(t), real connectomic data mostly pro-
vide only the number of connections or may only include
part of the circuit elements. Even if the respective neurotrans-
mitters are known, the real connection strength in terms of
the postsynaptic potential amplitude, and particularly the time

course, is mostly a matter of guessing, although synapse sizes are
becoming increasingly available from a number of EM datasets,
which allows inference about connection strength for different
cell types (Motta et al., 2019). Furthermore, synaptic plasticity
involving, for example, changes in presynaptic release dynamics
or neuromodulation, as well as long-range synaptic inputs from
nonimaged brain regions, is entirely out of scope. Thus, the ma-
trix M is never fully experimentally constrained, which is exactly
the reason why dynamical systems modeling is so crucial: It allows
us to set further constraints on the matrix elements of M (the syn-
aptic connection strengths) as well as on the parameters determin-
ing single-cell dynamics, by comparing between model outcomes
and measurements. There are two general strategies for making
this comparison: biophysical dynamical systems approaches
and regression-based approaches from machine learning. In
Linear models, we will treat biophysical approaches; in Matrix
exegesis, we will provide a brief introduction to nondynamical
graph-theoretical approaches; and regression-based approaches
are briefly referred to in the Discussion.

Linear models
Linear approximations of dynamical systems allow for in-depth
mathematical treatment. Moreover, unbiased information proc-
essing requires a linear regime (e.g., Atick, 1992), since only in
such regimes are changes in the input always translated into pro-
portional changes in the output; there is no information transfer
if the membrane voltage Vj is below threshold or so large that it
consistently evokes maximal response. As a note of caution, we
would like to stress that linearization is a coarse approximation,
which, of course, introduces inaccuracies and errors. One cannot
expect quantitative agreement between a linear model and the
true biological circuit dynamics. However, in addition to the
advantage of analytical tractability we will exploit next, lineariza-
tion allows for a reduction of parameters, combining multiple
physiological properties into one effective weight, which greatly
increases the feasibility of parameter fitting. Matrix entries of M
thus not only reflect synaptic efficacy, but also the slope of the f-I
curve of the input neuron, which depends on multiple morpho-
logical parameters as well as cellular conductances and their
current modulatory states. Linear models thus always reflect an
approximation to the current regime of operation of the circuit.
Conversely, the real biophysical circuit may generally correspond
to multiple linear models (for threshold linear neurons, see
Curto et al., 2019), depending on its mode of operation. Linear
models can hence make qualitative predictions about which
regimes are possible in a circuit and, together with the connectiv-
ity matrix, constrain the contribution of individual neurons for
each of those regimes.

Formally, the linear counterpart of the dynamical system from
Equation 1 is obtained by setting f(V) = V. Since not all neurons
possess the same membrane time constant t , one may straightfor-
wardly generalize the dynamical equation tomultiple time constants
by replacing t in Equation 1 by a diagonal matrix T with the differ-
ent time constants on the diagonal. This then leads to a system of
linear differential equations in matrix form as follows:

T _V ðtÞ ¼ �VðtÞ1MVðtÞ1 IðtÞ (3)

that can be solved numerically and allows for a direct compari-
son with the nonlinear system. In addition, it opens the route to
analytical treatment. For example, the steady state of the system
for a constant input I can be computed by setting _V ðtÞ to zero
and solving the resulting system of linear equations as follows:
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ðM� 1lÞV ¼ �I (4)

for V. Here, the symbol 1l stands for the identity matrix, which
carries 1s along its diagonal and is zero elsewhere.

Introducing the dynamical matrix A ¼ T�1 ðM� 1lÞ, Equation
3 simplifies to the following:

_VðtÞ ¼ AVðtÞ1T�1 IðtÞ ; (5)

which has the standard form of a linear differential equation
with a matrix A taking the role of a growth rate.

Analytical solution and eigen decomposition
The benefit of linearity in dynamical system analysis is that
closed-form solutions can be found. For stationary systems (i.e.,
all synaptic weights are constant), these solutions are solely
determined by the eigenvalues l 1; :::; l N and eigenvectors
b1; :::;N of the matrix A. For an explanation of eigenvectors and
eigenvalues, see Figure 2. Let us first consider the situation when

there is no input, that is, I(t) = 0. Then, the solution of the differ-
ential Equation 3 equals the following:

VðtÞ ¼ S exp½tK� S�1Vð0Þ� �
(6)

with the matrix S ¼ b1; :::; bNð Þ containing all eigenvectors of A,
and the diagonal matrix K ¼ diagðl 1; :::; l NÞ all its eigenvalues.
Since

exp½tK� ¼ diagðetl 1 ; :::; etl N Þ ; (7)

Equation 6 reflects the exponential decay of the voltage from its
current state V(0) to the resting potential (V = 0) in the absence
of further input. For unconnected neurons (M = 0! A = –T–1),
each of the neurons decays to rest with its intrinsic membrane time
constant. If the connectivity matrixM is not zero, we still predict ex-
ponential decay to rest, as long as all eigenvalues l have negative
real parts. In this case, however, the decay time constants depend
on both the intrinsic membrane time constants and the connectivity

Figure 2. Brief introduction to linear algebra. A, Matrix-vector-multiplication. The result y (green) of multiplying a matrix M with a vector x (red) is a linear combination of the columns of
the matrix M. B, The difference vectors y – x (black) provide a graphical interpretation of the action of a matrix, which is illustrated for three example matrices: a rotational matrix, and an iso-
tropic diagonal matrix. Vectors (red) for which the result y does not change directions compared with x are called eigenvectors. A 2 � 2 matrix has at most 2 eigenvectors. The constant l ,
which determines the multiplicative scaling of the output y, is called eigenvalue. Eigenvalues are calculated by solving the equation Mx ¼ l x, which leads to ðM� l 1lÞx ¼ 0. This
requires that detðM� l 1lÞ ¼ 0. Solving this so-called “characteristic polynome” yields the eigenvalues l . The corresponding eigenvectors are obtained by inserting them into
ðM� l 1lÞx ¼ 0 and solving for x. Contractions/expansions have eigenvalues smaller/larger than 1, and correspond to arrows pointing inwards/outwards, respectively. C, Most square matri-
ces A can be expressed by an eigenvector decomposition A ¼ SKS�1 (Golub and Wilkinson, 1976). The basis transformation S–1 rotates the vector x into a coordinate system in which the
eigenvectors of the transformed matrix K are parallel to the coordinate axes. The matrix S rotates the output back to the original coordinate system. For further reading, see Strang (2009)
and Christodoulou and Vogels (2022) or the video series linear algebra from 3blue1brown.
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of the neuron within the circuit. In cases where the eigenvalues are
complex, l ¼ r1 iv , the model predicts oscillatory solutions,
since exp½ðr1 ivÞt� ¼ exp½rt� ½cosðv tÞ1 isinðv tÞ�. If the real part
of only one of the l s is positive, the model predicts exponen-
tial growth and the voltages may settle at a new steady state
that is outside the realm of the linear part of the transfer
function f. Despite the fact that having no input is a relatively
uninteresting situation physiologically, it nevertheless pro-
vides us already with fundamental insight into the connectiv-
ity matrix. In particular, we realize that the eigenvalues of A
must all have negative real parts if the circuit should express
a stable zero state in the case of no input.

In the more relevant and interesting case, the network is
driven by a non-zero input I(t). In the example of the fly visual
system, this would correspond to the situation when the fly is vis-
ually stimulated and the photoreceptors thus become active.
Then, a closed solution can also be found using the previously
introduced elements as follows:

VðtÞ ¼ S
ðt

�1

dt9 exp½ðt � t9ÞK� S�1T�1Iðt9Þ ; (8)

This equation reflects a convolution of the input T�1I(t)
with the impulse response matrix exp½tA� ¼ S exp½tK�S�1.
In the above equations, the reader may have noted a simi-
larity to simple linear filters like the first order low-pass fil-
ter described by the differential equation in Formula 2: for
zero input, the filter decays to zero from whatever value it
has been before, for non-zero input, the output is obtained
by convolving the input with the impulse response of the
filter. The difference from a 1-dimensional filter (one input
signal x(t), one output signal y(t)) is that we now deal with a
multidimensional filter, where input and output signals are
described as vectors as a function of time. The filter properties
then depend on both the connectivity and the intrinsic time con-
stants of the elements, and the calculation requires a projection of

the input signal into the so-called “eigenspace” of the connectivity
matrix and back again.

The solution of Equation 8 is exemplified in Figure 3A for a sim-
ple neural circuit that consists of two neurons connected in
sequence with a feedback synapse of strength b. The circuit is stimu-
lated via a 1-s-long depolarizing pulse to neuron 1. The voltage
propagates from neuron 1 to neuron 2 as indicated by the delay. In
the phase plane (V 1, V 2) (Fig. 3B), the initial stimulus drives the
voltage to some state in the top right quadrant. After the stimulus is
shut off, the trajectory follows the vector representation of the ma-
trix and converges back to the origin along the direction of one of
the eigenvectors (red). Both eigenvectors (red and blue) point to-
ward the steady-state rendering the circuit stable.

Eigenvalues as inverse time constants
The analytical solution in Equation 8 not only allows us to make
qualitative statements about the global system behavior, but in
some simple cases, it also allows us to derive formulas for the
eigenvalues (Fig. 4) and thereby discuss the dependence of global
circuit behavior on the connectivity parameters. In the model
circuit from Figure 3, we vary the strength b of the feedback syn-
apse while keeping a= 1 and find that an increased feedback pro-
longs the decay constant of the pulse response. In networks
without feedback, the eigenvalues are always the inverse cellular
time constants. Feedback generally generates new time constants
and thereby allows for signal processing at time scales that go
beyond the ones of the isolated elements. This is reflected by the
fact that the eigenvalues now depend not only on the cellular
time constants, but also on the connectivity parameters. The
time scale of activity decay in the network may substantially
exceed the single neuron time scales, extending over seconds to
minutes and thereby provide a substrate of working memory
(Seung, 1996, 2003). In the extreme case of b= 1, that is, if the
feedback connection is as strong as the feedforward connection,
one eigenvalue becomes 0; and, thus, the time constant goes to
infinity (Fig. 4, blue curve). This case corresponds to a perfect

Figure 3. Time course of voltage signals and phase space of a 2-neuron circuit. A, Analytical solutions of the membrane potentials of two neurons (light and dark gray) in a feedback circuit
on a 1 s constant input to neuron 1. The dynamical matrix A includes both neuronal (t 1, t 2) and connectivity (a,b) parameters. Solutions were obtained for a = 1, b = 0.5, t 1 = 0.1 s, t 2 =
0.2 s. B, Graphical representation of the matrix from A (arrows) and its eigenvectors (red, blue). The trajectory V2 versus V1 from A (color dots) follows the vectors representing the matrix after
the stimulus is switched off (1 s) and converges to the direction of the red eigenvector.
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integration of the input signal, as argued for the oculomotor sys-
tem (Seung et al., 2000a; Goldman et al., 2002).

Eigenvalues determine the input gain of network modes
Eigenvalues of A not only determine the time constants by which ac-
tivity patterns rise and decay, they also define an “input resistance”
(i.e., gain constant) of the pattern, equivalently to the relation
between membrane time constant and input resistance of nerve
membranes. For a constant input current (vector) I, the steady state
solution from Equation 4 can be expressed in eigenmodes as follows:

V ¼ �
XN
n¼1

bn
b*nT

�1I
l n

; (9)

with b*n denoting the rows of S�1. The overlap b*n T�1I thereby
measures how much of the n-th eigenmode is present in the
input pattern. For stable modes l n , 0ð Þ, the contribution of
the n-th mode to the steady state output pattern V is thus

weighted by the positive gain factor
1

�l n
, which can be consid-

ered to be the input resistance of this eigenmode. If �l n is large
(time constant small), the gain factor is small and corresponds to
a “leaky” pattern with little contribution to the output pattern. If
�l n is small (time constant large), the gain factor is large and
corresponds to an integrator pattern with large contribution to
the output pattern.

Eigenvalues of the connectivity matrix thus allow us to trans-
late intuitions from single-cell electrophysiology to the realm of
activity patterns in networks.

Matrix exegesis
We have argued that feedback has profound effects on circuit
computation, even for linear models. It, therefore, would be
helpful to readily identify feedback from a circuit diagram (con-
nectome) without simulations or analytical assessment of net-
work dynamics. How would a connectivity matrix of a pure
feedforward circuit differ from the one of a circuit that has feed-
back? In a pure feedforward network, the first neuron does not
receive input from any of the following neurons; that is, the top
row contains 0’s only (Fig. 5, top right). The second neuron
receives input from the first one only, so in row 2, there is only
one entry in column 1. The third neuron receives input at most
from neuron one and two, so maximum entries in row 3 are in
columns 1 and 2. Thus, in general, in a pure feedforward circuit,
the output of any neuron n has no effect on its own activity and
only influences neurons m. n. This is reflected in its connectiv-
ity matrix M that has only entries below the diagonal. Such a ma-
trix is said to be “lower triangular.” Unfortunately, however,
neurons are numbered in an arbitrary way, so the connectivity
matrix is scrambled. In order to see whether it is purely feedfor-
ward or not, the circuit elements need to be reordered. For sys-
tems without feedback, there always exists a reordering such that
the matrix M has lower-triangular form (Fig. 5, top row).

True feedback connections are immune to such reordering of
the connectivity matrix (Fig. 5, bottom row) and cannot be
brought into lower-triangular form. A simple criterion to check
whether a connectome is feedforward and the connectivity ma-
trix M can be reordered into lower-triangular form is to test for
nilpotence of M: Whenever there exists a finite integer power a,
such that Ma = 0, the connectome is strictly feedforward.

Figure 4. Feedback prolongs time constants. Responses of the same circuit as in Figure 3 to a 1 s constant input to neuron 1 for varying feedback strength b. The eigenvalues

l 1;2 ¼
�ðt 11t 2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt 1 � t 2Þ214abt 1t 2

q
2 t 1t 2

define the new effective time constants t 91;2 ¼ �ðl 1;2Þ�1 of the feedback circuit and depend on the connectivity parameters a and b.

Without feedback (b=0), the time constants t 91;2 are identical to the cellular time constants t 1;2 and the circuit becomes a second order low-pass filter. For a = b = 1, the time constant t 92 reaches
1, which means perfect integration (blue). For b. 1 (a=1), l 2 becomes negative, indicating unstable self-excitation leading to unbounded voltage growth (as long as the linear regimen is valid).
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Physiologically, the condition Ma = 0 reflects the fact that any ac-
tivity in a pure feedforward network inevitably dies out after a fi-
nite amount of time steps. Recurrent loops, however, can keep
the network activity indefinitely, if the synapses are strong
enough.

Evidently, connectomes are never strictly feedforward; how-
ever, approximate feedforward organization has been reported
for subcircuits (e.g., Borst et al., 2020a), and even for some cell
classes in the whole Caenorhabditis elegans connectome (Durbin,
1987). Approximate feedforwardness also seems reasonable
given that, on a large scale, an animal needs to select its motor
output depending on sensory input. Finding feedforward, or
“almost” feedforward motifs in the connectivity matrix, hence,
can reveal important insight into the local flow of information.

While for small circuits with few neurons (e.g., Fig. 5), reor-
dering into lower-triangular form could be done by visual
inspection and trial-and-error, such practices are intractable for
larger connectomes: here, numerical tools are clearly required. A
classical method from linear algebra that has been successfully

applied to neural circuit connectivity (Goldman, 2009) is the
Schur decomposition. This method uses the fact that, for any
diagonalizable matrix A, there exists a unitary basis transforma-
tion matrix U (where UpU ¼ 1l), such that

R ¼ UpAU (10)

is a lower-triangular matrix. Typical software packages for linear
algebra include algorithms for Schur decomposition. However,
the standard mathematical literature (and thus many numerical
packages) considers R as being an upper-triangular matrix,
which can be trivially turned into a lower-triangular matrix by
transposition.

While Schur decomposition identifies feedforward motifs in
networks, it has the downside that it only does so in a trans-
formed neuron space, that is, it comes along with a transforma-
tion from activities of single neurons to activity of neuronal
populations P ¼ UpV, for which the system is feedforward. Each
entry in P denotes a population activity variable, which arises

Figure 5. Matrix reordering. The numbering of neurons in a circuit is arbitrary. Random ordering (left column) does not readily reveal feedforward and feedback structure in the connectivity
matrix. It can, however, be revealed by appropriate reordering (right column).
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from a linear combination of the original
neuronal activities V. The feedforward ma-
trix R can thus be considered as connecting
neural ensembles (or population patterns)
in sequence. Generally, the matrix A will
nevertheless be recurrent; that is, the neu-
rons within an ensemble will be recursively
coupled. If and only if the transformation
matrix U is a permutation matrix (a square
binary matrix that has exactly one entry of
1 in each row and each column and 0’s
elsewhere), the matrix R is a reordered ver-
sion of A and, hence, truly feedforward
with no single neuron’s activity having an
effect on itself. Thus, while the Schur
decomposition provides a robust solution
of the reordering problem at the level of
population patterns, it is insufficient to do
so at the single-cell level.

A more direct interpretation in terms
of single neurons, however, can be
achieved by classical matrix reordering
techniques (Robinson, 1951; for review,
see Liiv, 2010; Behrisch et al., 2016), which
determine index permutations such that
the shape of the matrix optimizes some
objective. In general, both row and column
indices can be reordered independently,
but for connectomic analyses only algo-
rithms that use the same permutation for
columns and rows (presynaptic and postsy-
naptic neurons) are meaningful. A standard
objective used to find optimal permutations
is bandwidth minimization (Leung et al.,
1984), that is, keeping all matrix elements in
as few bands as possible close to the diago-
nal. Such minimal bandwidth matrices
readily allow translation into circuit
schemes. Classical solutions are based on
the Cuthill-McKee algorithm (Cuthill and
McKee, 1969), improved versions of which
(George, 1971; Gibbs et al., 1976) are avail-
able in standard numerics packages as
Scipy (Virtanen et al., 2020) (Fig. 6A,
top middle).

Although the problem is solved in prin-
ciple, in a neuroscience context (Carmel et
al., 2004; Seung, 2009; Varshney et al.,
2011), the algorithms are numerically costly
(Monien and Sudborough, 1985) and not
very well feasible for large connectomic
data. Therefore, several new approaches are
actively being developed, including heuris-
tics (Wang et al., 2014), kernel-based meth-
ods (Bollen et al., 2018), and deep neural
networks (Watanabe and Suzuki, 2021),
usually for independent column and row
index permutations.

“Feedforwardness,” however, not only requires small band-
width of the connectivity matrix, but also a serial arrangement of
connections. The latter point is illustrated by the page-rank algo-
rithm (Page et al., 1999) (Fig. 6A, bottom middle). This algo-
rithm is used in Internet searches to quantify the importance of

websites, with the most important one having the last index.
While page rank graphs are computationally highly efficient and
also tend to reduce upper triangle entries, they are not good in
sorting feedforward dependencies in the less important (earlier)
nodes.

A family of algorithms that both detect feedforwardness
and reduce upper-triangle entries are flow-graph approaches.

D

B

CA

Figure 6. Matrix reordering methods. A, Left, Example of a matrix implementing a single feedforward sequence, which is
distorted by a few random feedback and out-of-sequence feedforward components (top). Random index shuffling yields a
scrambled version of the original matrix (bottom). Middle, Outcome of matrix reordering algorithms applied to the scrambled
matrix based on bandwidth minimization (top, reverse Cuthill McKee) and propagating ranks (bottom). Right, Outcome of
matrix reordering using the python package Tarjan (top), and a custom-modified version minimizing the upper triangular ele-
ments in loops (bottom). B, Application of the modified Tarjan procedure to a 66� 66 random matrix (sparseness 0.15), the
full connectome of the fly optic lobe (red represents hyperpolarizing connections), and a thresholded version of the optic lobe
connectome only considering connections with .10 synapses. C, Modified Tarjan reordering of the fly subcircuit for ON-
motion detection (top) and a reduced version with a threshold at 20 synapses (bottom). Saturation of colors (green represents
excitatory; red represents inhibitory) illustrates synapse numbers (black). D, Top, Original connectome derived from chemical
synapses of the entire worm hermaphrodite C. elegans (454 node) (Cook et al., 2019), reordered with the original (middle)
and modified (right) Tarjan algorithm. Bottom, Same as in top, but only taking into account connections with 4 and more
synapses (independent of neurotransmitter).
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Developed in the 1970s for analyzing the command flow of
computer programs to prove theorems of program termina-
tion, these approaches are based on a “depth-first search”
(considered within the class of “topological sorting” algo-
rithms) that reduces graphs into loops (Tarjan, 1972, 1974)
(Fig. 6A, right). A flow graph-based algorithm even finds
feedforward structures in random graphs (Fig. 6B, left) and
also identifies sequential structure in the full connectome of
the fly optic lobe (66 nodes) (Shinomiya et al., 2019) (Fig.
6B, middle). The detected order, however, still provides no
immediate recipe for functional interpretation.

A simple strategy for extracting physiological insight
from matrix reordering is to set a threshold on the synapse
numbers. Only considering connections above that threshold
effectively disregards weaker routes of information flow.
Even a moderately low threshold of 10 synapses gives rise to
a mostly feedforward matrix for the full connectome of the
fly optic lobe (Fig. 6B, right), which allows identification of
circuit modules that can be studied independently of the rest
of the network. This idea is illustrated by the ON-motion
subcircuit (Takemura et al., 2017), which comprises those
cells that provide input to T4 cells. Figure 6C depicts two
versions of this subcircuit: one including all connections
(top) and one including only connections with .20 synapses
(bottom). The reduced matrix identifies a subnetwork of
recurrently connected Mi4 and Mi9 cells that drive no other
neurons than T4 cells and receives input from L3 and L5
only. The thresholded matrix also identifies one large feed-
back loop via L1. Application of the Tarjan-derived reorder-
ing to the whole worm connectome (Cook et al., 2019) (Fig.
6D) yields consistent conclusions, in that thresholded con-
nectivity is largely feedforward (originally observed in
Durbin, 1987). Functional analysis using these identified

submodules of course can post hoc be checked with simula-
tions or eigenvalue analysis of the full connectome.

Of course, thresholding also changes the optimal sequence
order of the neurons, but we would argue that stronger con-
nections should also be assigned a larger weight in matrix
reordering.

The practical feasibility of matrix reordering techniques
strongly depends on how the algorithm scales with matrix size
and thus the required computing resources. In the case of the
original Tarjan algorithm (Tarjan, 1972, 1974) computing time
was shown to efficiently scale with the number S of synapses as
S log ðSÞ (Fig. 7). For comparison, we also used a brute force
approach, in which the number of truly recurrent connections is
identified in two steps: In the first step, the cost function to be
minimized calculates the sum of the lengths (i.e., index differen-
ces) of all connections in the upper triangle of the connectivity
matrix; in the second step, the cost function only calculates the
number of entries in the upper triangle, regardless of the length
of the connection. In each of the two steps, permutations are
tested in a systematic way, ordered by the lengths of the
exchanged sequences. Naturally, this causes the algorithm’s com-
puting time to scale much worse with the size of the matrix than
the graph theoretical approaches, but it reaches the best results
regarding a minimization of the upper triangular entries (Fig. 7,
bottom). The graph theoretical approaches excel in finding a sin-
gle connected feedforward structure (first lower subdiagonal).

Apart from CPU time, quantitative comparisons of algo-
rithms require definition of quality measures for their outcome.
In Figure 7, we choose two measures to compare different algo-
rithms: the first measure (“recurrency”) is defined by the increase
of entries in the upper triangle of the matrix ordered by the re-
spective algorithm relative to the original matrix, the second
measure (“feedforwardness”) is defined as the (normalized)

Figure 7. Scaling of reordering algorithms. Top, Example of a random binary 60� 60 matrix M with half of the edges filled in the lower and a quarter of edges filled in the top triangle
(and no self-connections). After random index permutation (scrambled), we applied three reordering algorithms, the two graph-based methods from Figure 6A, and a brute-force approach
(BFA) minimizing the entries in the top triangle as explained in the text. The performance of the reordering is quantified by three measures. The excess ratio in the top triangle (top) measures
the increase of entries in the top triangle relative to the original matrix. The Order index measures the fraction of filled entries in the first subdiagonal in the bottom triangle and reveals the
extent to which the algorithm has identified a closed path from a first to a last node. Finally, the CPU time used on a standard PC indicates the applicability of the algorithm to large connec-
tomes. Bottom, Three performance measures as a function of node number (colors as on top). Solid lines indicate the median and the area of the 90th percentile obtained from 15 repetitions.
Dashed black line on the right indicates the theoretical scaling law/ N2lnN (multiplied by an arbitrary constant for better comparison).
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number of matrix entries in the first subdiagonal. Optimizing for
one does not necessarily optimize the other (Behrisch et al.,
2020). Large feedforwardness, hence, may reflect a graph of
many feedforwardly ordered loops, whereas low recurrency
reduces feedback but does not necessarily identify the optimal
order of information flow.

Discussion and Outlook
The connectivity matrix resulting from volumetric EM analysis
contains much information about the functional properties of a
neural circuit. Yet, these are not obvious at first sight. Linear
algebra provides a lot of tools useful in two ways: (1) they allow
for detecting functional substructures of a circuit (e.g., by sepa-
rating feedforward from feedback connections); and (2) they
allow for predicting time constants of particular elements within
the circuit that arise from network architecture, and not from
intrinsic membrane properties.

Open problems and success stories
Although linear models provide important tools to dissect spe-
cific network regimens, they are unarguably limited as they can-
not explain transitions between these regimens as, for example,
in multistability, or they ignore nonlinearities of spike generation
(e.g., Lehnert et al., 2014) and synaptic transmission (e.g.,
Wienecke et al., 2018; Mishra et al., 2023). Some progress has
been made in the development of analytical tools for threshold
linear networks by dividing up the state space into multiple sub-
spaces with linear dynamics (Curto et al., 2019; Santander et al.,
2021). To our knowledge, however, these have not been applied
to connectomics data. Tschopp et al. (2018) used a connectome-
constrained (rectified linear) network model of the fly visual sys-
tem to optimize the synaptic weights to specific computer vision
tasks, nicely illustrating how EM connectivity data can be used as
a seed to facilitate parameter estimation (for review, see Litwin-
Kumar and Turaga, 2019). In a similar vein, Klinger et al. (2021)
compared the synaptic connections resulting from simple net-
work models to connectomic data of the neocortical column,
using approximate Bayesian estimation to judge which of the
models best explains the observed connectivity. Qualitative
insight into the dynamical effects of connectivity parameters is
less straightforward when directly optimizing parameters of non-
linear models. A promising approach is deep density estimators
(Goncalves et al., 2020; Bittner et al., 2021), which predict distri-
butions for parameters of mechanistic models when trained with
activity data.

Large-scale connectomics data do not necessarily rely on sin-
gle-neuron models but can use population models with smooth
nonlinear activation functions. For example, dynamical mean
field models (Deco et al., 2008; Deco and Jirsa, 2012) incorporate
nonlinearities f that are microscopically derived from averaging
activity of pools of spiking-neuron models (Brunel and Hakim,
1999), and the objective of fitting is to replicate the functional
connectivity matrix (activity covariance) obtained from whole-
brain fMRI. Thereby, constraining M as much as possible by
functional connectivity turned out to be essential to achieve good
fits (Cabral et al., 2017), indicating the general importance of the
underlying large-scale network structure. By design, however,
dynamical mean fields are not applicable to microscopic single-
cell–based models, let alone for circuits consisting of graded
response neurons, such as in the fly visual pathway.

Generalized linear models (GLMs), which have been success-
fully applied to small- and medium-scale circuits (Paninski,
2004; Pillow et al., 2008; Pho et al., 2018), could be considered as

a compromise between brute-force nonlinear fitting and qualita-
tive interpretability of connectivity parameters. In GLMs, the
voltage variable V(t) arises from the input I in very much the
same way as in the example from Equation 8. Therefore, qualita-
tive analysis of eigenvalues of A can be compared with the best-
fit solution obtained from mapping V(t) into a mean firing rate
by a so-called inverse link function f(V). The inverse link func-
tion models the spiking nonlinearity and is determined by the
firing statistics of the model. For Poisson noise, f is exponential
and generally interpreted as the hazard function of the Poisson
process. For graded neurons, however, there is so far no general
agreement on the choice of noise model and inverse link func-
tion. Also, the application of GLMs to large connectomes is lim-
ited by numerical optimization in high-dimensional nonlinear
parameter spaces.

In conclusion, although which single approach to connec-
tome-based nonlinear modeling (if any) will become the gold
standard remains to be determined, techniques from linear alge-
bra can be advantageously applied to a simplified linear circuit
derived from a well-constrained connectivity matrix. In combi-
nation with numerical simulations of a biophysically more realis-
tic circuit (e.g., taking into account voltage-gated ion channels
and further nonlinear characteristics of neural transmission),
this approach can reveal deep insight into the particular function
of a circuit and the microscopic biological mechanisms on which
it is based.
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