
RESEARCH ARTICLE

A complex systems model of breast cancer

etiology: The Paradigm II Model

Robert A. HiattID
1,2*, Lee WordenID

3, David Rehkopf4, Natalie Engmann5,

Melissa Troester6, John S. Witte4, Kaya Balke2, Christian JacksonID
4, Janice Barlow7,

Suzanne E. Fenton8, Sarah Gehlert9, Ross A. Hammond10, George Kaplan11,

John Kornak1, Krisida Nishioka12, Thomas McKone13, Martyn T. Smith14,

Leonardo Trasande15, Travis C. Porco1,3

1 Department of Epidemiology and Biostatistics, School of Medicine, University of California San Francisco,

San Francisco, California, United States of America, 2 Helen Diller Family Comprehensive Cancer Center,

University of California San Francisco, San Francisco, California, United States of America, 3 Francis I.

Proctor Foundation for Research in Ophthalmology, University of California San Francisco, San Francisco,

California, United States of America, 4 Department of Epidemiology and Population Health, Stanford

University School of Medicine, Stanford, California, United States of America, 5 Genentech, Inc. South San

Francisco, San Francisco, California, United States of America, 6 Department of Epidemiology, University of

North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America, 7 Zero Breast Cancer

(retired), San Rafael, California, United States of America, 8 Division of the National Toxicology Program,

National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park,

North Carolina, United States of America, 9 Suzanne Dworak-Peck School, University of Southern California,

Los Angeles, United States of America, 10 Brown School, Washington University, St Louis, Missouri, United

States of America, 11 University of Michigan (retired), Ann Arbor, Michigan, United States of America,

12 School of Law, University of California, Berkeley, Berkeley, California, United States of America,

13 School of Public Health, University of California, Berkeley, (Emeritus), Berkeley, California, United States

of America, 14 Division of Environmental Health Sciences, School of Public Health, University of California,

Berkeley, Berkeley, California, United States of America, 15 Department of Pediatrics, NYU Grossman

School of Medicine, New York City, New York, United States of America

* robert.hiatt@ucsf.edu

Abstract

Background

Complex systems models of breast cancer have previously focused on prediction of progno-

sis and clinical events for individual women. There is a need for understanding breast cancer

at the population level for public health decision-making, for identifying gaps in epidemio-

logic knowledge and for the education of the public as to the complexity of this most common

of cancers.

Methods and findings

We developed an agent-based model of breast cancer for the women of the state of Califor-

nia using data from the U.S. Census, the California Health Interview Survey, the California

Cancer Registry, the National Health and Nutrition Examination Survey and the literature.

The model was implemented in the Julia programming language and R computing environ-

ment. The Paradigm II model development followed a transdisciplinary process with exper-

tise from multiple relevant disciplinary experts from genetics to epidemiology and sociology

with the goal of exploring both upstream determinants at the population level and
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pathophysiologic etiologic factors at the biologic level. The resulting model reproduces in a

reasonable manner the overall age-specific incidence curve for the years 2008–2012 and

incidence and relative risks due to specific risk factors such as BRCA1, polygenic risk, alco-

hol consumption, hormone therapy, breastfeeding, oral contraceptive use and scenarios for

environmental toxin exposures.

Conclusions

The Paradigm II model illustrates the role of multiple etiologic factors in breast cancer from

domains of biology, behavior and the environment. The value of the model is in providing a

virtual laboratory to evaluate a wide range of potential interventions into the social, environ-

mental and behavioral determinants of breast cancer at the population level.

I. Introduction

Complexity theory and complex systems thinking supports scientific exploration of the causes

of disease that go beyond simple additive models and reductionist approaches to knowledge

acquisition [1–5]. Reductionist approaches have generated understanding on specific relation-

ships based on an exposure-outcome model, but it is becoming increasingly clear that the real

world is more complex and other approaches are needed by epidemiologists and other popula-

tion scientists to capture properties of emergence, interacting feedback loops, and adaptation

to change over time [6,7]. Agent-based models are one type of dynamic systems model

approach to such complexity because they consist of heterogeneous individual entities (agents)

that can interact and change over time in response to other agents and environmental expo-

sures [8] and produce observations that one might not expect from a detailed (reductionist)

examination of the individual agents themselves [4,6,9,10]. They can give life to the oft used

quote from Aristotle that ‘the whole is more than the sum of its parts’. In this paper we describe

our use of an agent-based model to help understand the complexity of breast cancer etiology.

Breast cancer is the most common female cancer worldwide and the second leading cause

of death from cancer (after lung cancer) in the United States [11,12]. In 2022 there was an esti-

mated 287,850 new invasive female breast cancer cases and 43,250 deaths [11,12]. Conse-

quently, it is not surprising that there has been an enormous amount of research done on this

cancer to understand its origins and how to prevent and treat it successfully. This corpus of

research has created a very complex picture of breast cancer etiology, to say nothing of the

health care procedures developed to diagnose and treat it. The research has long since gone

past any effort to find a single independent cause and instead has built an understanding of its

critical dependence on endocrine and reproductive factors over the life course as well as the

effects of external exposures to a large variety of agents and circumstances [13,14]. These fac-

tors work at multiple levels from biologic to environmental and societal operating over time

[15] to result in markedly different incidence rates by race, ethnicity, socioeconomic status,

region and country. This complexity has made breast cancer ideally suited to complex systems

modeling studies, given the non-linear interaction between all the relevant causative factors in

women over their life course [16].

Models of breast cancer risk have taken several approaches. Some of the best known mod-

els, such as the Gail model [14,17], attempt to predict risk at the individual level given charac-

teristics of the individual, whereas others have used more epidemiologic data to enhance

predictive abilities using detailed cohort data such as the Rosner-Colditz model and its
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enhancements [18–21] and the model of Tyrer, Duffy and Cuzick [22]. The Cancer Interven-

tion and Surveillance Modeling Network (CISNET) has produced six models since 2000 when

funding from the National Cancer Institute began. Their collaborative output has been sub-

stantial over the years and their influence on policies for screening and treatment have had a

notable impact on guidelines. Their purpose has always been to evaluate the impact of cancer

control interventions on population trends in breast cancer incidence and mortality and to

project future trends [23,24]. Many other models of breast cancer have focused on one aspect

or another of the development of the tumor, the influence of genetic predisposition (e.g.,

BRCA1&2 or the path to metastasis [25]. These other models are important for understanding

breast cancer pathobiology and for clinical and personal decision-making, but do not inform

interventions and policy in population health.

The rationale for our interest in developing the Paradigm II (PII) model was to be useful in

supporting prevention measures at the population level prior to diagnosis and treatment. We

undertook the development of such a model that accounts for etiologic factors, not only in

breast cancer risk behaviors and biology, but also more “upstream” factors in the social, built

(i.e., man-made) and toxicological environment. Mechanistic models are important because

they provide an avenue to understanding how processes at the individual level generate

observed epidemiological patterns at the population level. Our intent is that the Paradigm II

model can be used to test population health interventions in silico because this approach lends

itself to understanding relative and synergistic contributions of inputs at multiple levels.

The increasing availability of large, heterogeneous data sources together with increasing

computer power makes it possible to construct comprehensive population models for chronic

disease in general and breast cancer in particular.

We have published two iterations of a conceptual framework on which this agent-based

model is based [26,27]. We chose the name, Paradigm Model, to reflect our sense that this

approach to understanding causal factors for breast cancer reflects an important shift in think-

ing from more traditional linear approaches that include one or a small number of etiologic

factors [4]. In the current revision of the Paradigm model, begun in 2015, 96 variables are

included in four domains of social, environmental, behavioral and biologic determinants

[26,27]. The Paradigm II (PII) Model was designed mechanistically and mathematically with a

reduced number of etiologic variables, which while large make the model more manageable.

This model begins with a classical branching process model at the cellular level [28], from

which individual-level disease states are derived. Population-level states are then formed as a

distribution over the individual level states [29].

Our goal in developing this model was to explore the role of more upstream determinants at

the population level while illustrating the contribution to breast cancer causation of multiple fac-

tors at different levels of biologic organization [30]. Conceptually we approached this inquiry

from the perspective of population health and ‘convergence science’ by taking a transdisciplinary

approach to framing a common question (i.e., the etiology of breast cancer) that required input

from multiple disciplines [31]. Here we report on the development of the PII model and a

description of its characteristics. We intend that future uses of the model will allow us to explore

specific questions including: (1) health inequities by income and education (including, for exam-

ple, the effect of policies such as the earned income tax credit), (2) the effect of obesity-related

interventions at different stages of life, and (3) the effects of environmental chemical exposures.

II. Methods

We have previously described the process for developing a conceptual model of the complex

etiology of breast cancer [27]. As described we took a conscious transdisciplinary approach
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[32–36] to the problem and assembled a multidisciplinary 15 person panel with individual

expertise in epidemiology, genetics, breast cancer biology, toxicology, biostatistics, population

health, mathematical and agent-based modeling, and advocacy. The panel convened three

times a year for two years to discuss issues, compile the most up to date literature and debate

various challenging aspects of both the conceptual and mathematical model. Individual meet-

ings with team members and consultations occurred between the full panel meetings to

address specific questions.

Variables for the model were selected based on current knowledge as assessed by the expert

panel members and a literature review that sought to identify all recent and relevant systematic

reviews and large high quality studies where systematic reviews were not available. Inclusion

and exclusion decisions as well as criteria for both the strength of association and the quality of

the data were established and followed as has been previously described [27].

PII is an agent-based microsimulation model of the physiology and population distribution
of breast cancer for the 18,736,126 women in the state of California in 2010, connecting pat-

terns across scales from the gradual transformation of human tissue to statewide incidence

patterns. Simulated individuals were tracked from birth to death, modeling explicitly the

growth and loss of breast tissue and progressive transformations of tissue through a series of

classes potentially leading to cancer. Conceptual and unobservable, these classes do not corre-

spond to life course events, but to internal developments within cells that are milestones on

the road to cancer. Exposures relevant to growth, cell loss, and transformation of tissue were

distributed according to population level data, including the U.S. Census, the California Can-

cer Registry, a component of the National Cancer Institute’s Surveillance, Epidemiology, and

End Results (SEER) program [37], the California Health Interview Survey (CHIS) [38], and

the National Health and Nutrition Examination Survey (NHANES) [39]. We modeled the

demographic distribution of California in detail allowing close examination of the relationship

between population statistics and breast cancer incidence. Our model was a stochastic individ-

ual-based model with hidden (unobserved) pre-cancer and cancer classes of transformed cells

evolving over time. (See S1 Appendix).

The model was implemented in the Julia programming language, a relatively new comput-

ing environment that is optimized for high computational efficiency and rapid, flexible soft-

ware development (Version 0.5.1) [40]. Data were pre- and post-processed using the R

computing environment (R Foundation for Statistical Computing, Vienna, Austria; Version

3.6.1) [41].

II.A. Physiology model

The physiological layer of the PII model simulated the transformation from healthy dense

breast tissue, which reflects the breast tissue at risk better than total breast tissue [42–44]. This

tissue is transformed through a series of intermediate states to the potential emergence of a

malignancy and its detection (Fig 1). Focusing on etiology, we were interested in the incidence

of breast cancer, not in its clinical presentation, treatment and survival. Transformation was

modeled as a stochastic process in which tissue at multiple classes of transformed cells could

coexist in a single body. Rates of tissue growth, transformation, and cell loss were affected dur-

ing each modeled individual’s life course by genetic background of both high and low pene-

trance gene mutations, developmental and reproductive events of menarche, parity, and

menopause and then behaviors and exposures to breastfeeding, exogenous hormones, chemi-

cal toxicants, obesity (i.e., body mass index (BMI)), alcohol consumption, and smoking. Many

more factors from the social, built and chemical environment were in the conceptual model

[27] and are characteristics of the base population. However, in this version of the

PLOS ONE The Paradigm II Model of breast cancer etiology

PLOS ONE | https://doi.org/10.1371/journal.pone.0282878 May 19, 2023 4 / 24

https://doi.org/10.1371/journal.pone.0282878


mathematical model only this subset of factors was included because they were judged by our

transdisciplinary team as most critical to breast cancer etiology. Rates of detection of malig-

nant tissue were affected by age-dependent screening rates with mammography. When malig-

nant tissue was detected in a modeled individual, the individual was included in population-

wide cancer incidence statistics.

II.A.1. Individual-based simulation. The rate parameters of the branching process were

modified by hormone levels during the different life stages modeled by Pike [45], and by

breastfeeding behavior and other exposures such as alcohol consumption, listed above. This

involved the idea of a transformation of the time axis using “tissue age”, which advances at a

time-varying rate. Hazard was closely related to the fifth to sixth power of tissue age observed

in patterns of incidence from registry data [37]. We modeled the progression of tissue to

malignancy using a multi-stage model based on the classic multi-stage theory of Armitage and

Fig 1. Progression of tissue through transformations to malignancy in model. At each stage of transformation,

tissue is acted on by processed of cell division (tissue growth), removal, and transformation to the next stage. Different

classes of damage occur at different stages of progression. Individuals with malignant tissue are included in incidence

statistics by a process of detection.

https://doi.org/10.1371/journal.pone.0282878.g001
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Doll [46]. Demographic distributions of age at menarche and other reproductive milestones

came from NHANES or were specified directly [39].

Agents were introduced at birth and advanced in age each year. Age was not directly

involved in the carcinogenesis process, but events such as menarche, child bearing, and meno-

pause occurred as a function of age, and variables such as breast density and tissue growth rate

(reflecting the impact of estrogen exposure) depended on the agent’s age as pre-menarche,

pre-menopausal or post-menopausal.

II.A.2. Rates of transformation. Transformation of healthy dense breast tissue to modi-

fied or damaged tissue, and from one pool or class of modified tissue to the next, occurred at a

constant rate. We considered dense breast tissue as the target for transformation in the model

even though we recognize that there are effects on carcinogenesis from surrounding stromal

tissue [47]. The number of transformations, affects the shape of the age-incidence curve

matched to reported incidence data [28]. The log-slope of incidence observed in the California

data was found to be in between those produced by a model with five transformations and one

with six transformations, when transformation rates are homogeneous. We fine-tuned the

slope by the following logic. If we were to model six transformations and increase the rate of

the final transformation step to near infinity, independent of the other steps, the result would

be effectively the same as a five-transformation model. It follows that increasing the rate of the

sixth step to a large but not infinite value must produce an intermediate slope. Consequently

we used a six-transformation model and calibrated its transformation rates by adjusting the

rate for the first five steps to produce cancer incidence at approximately the right ages and

adjusting the rate for the final step separately to produce a slope comparable to the observed

incidence. The classes of cell transformation were introduced into the model to fit observed

age-specific incidence rates. Transformation rates were modified by smoking, alcohol use, and

BRCA1 and by low-penetrance genetic variants as discussed in more detail below.

II.A. 3. Growth rates. The rates of growth of each class of tissue varied throughout the life

course according to the function developed by Pike et al. [45]. We began with a baseline

growth rate assumed to be the same for all classes of modified tissue except the final class.

Growth rates were modified according to age dependent developmental events, using the mul-

tipliers estimated by Pike et al.[45]: 0 before menarche; 1 from menarche to the first full-term

birth; 2.2 the year of the first full-term birth, and subsequently 0.70 until menopause; and

0.105 after menopause.

The growth rate of cancerous tissue was assumed much greater than that of the preceding

class and was calibrated to produce timing and overall magnitude of incidence comparable to

that observed. Growth rates were modified in ways discussed below by BMI and hormone

exposure from hormone therapy and oral contraception.

II.A. 4. Cell loss rates. Rates of cell loss were slower for later classes of modified tissue,

calibrated roughly linearly from a baseline rate for once-modified tissue to 0.48 times that for

pre-cancerous tissue, and 0.25 times the baseline for cancerous tissue. All cell loss rates were

elevated by a factor of 100 during years of breastfeeding, i.e., in model individuals who

breastfed, in the year after each birth [48]. Loss rates were also elevated at very advanced ages,

to reflect a drop in age-specific incidence observed in California (and national) incidence data.

The age of onset and magnitude of this decrease in incidence were calibrated to California age-

specific incidence data [37].

II.A.5. The pool of susceptible tissue. The transformation of healthy dense tissue to the

first pool of modified tissue occurred at the same per-capita rate as the accumulation of subse-

quent transformations, in proportion to a quantity of dense breast tissue that was susceptible

to the first transformation process. All quantities of breast tissue were modeled in abstract

units of volume, in order to capture the interactions between these pools of tissue without
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reflecting the true numbers of cells or grams of tissue. Accordingly, the modeled pool of dense

tissue was considered to be a proxy for all the breast tissue of an individual calibrated to yield

the needed incidence pattern.

Change in dense breast tissue over the life-course was modeled using an idealized tissue-

volume dynamic in which the volume rose from zero at menarche to a constant baseline vol-

ume (in abstract units of volume), declined by 5% at menopause, which was modeled as a

point in time, and declined by 1% at each year after menopause. The baseline post-menarche

dense tissue volume was modeled as constant across all individuals, and was a parameter cali-

brated to the age-specific incidence curve reported by the California Cancer Registry [37].

Mammographic density is associated with a markedly increased risk of invasive breast cancer

[49]. To a first order, breast density was considered as a function of dense volume and BMI

[50]. Breast density was considered to be modeled by the above effect of dense volume and the

effects of BMI [42], since breast density itself was not available to be included in the model.

II.A.6. Detection. Cancerous tissue was detected when it reached a threshold magnitude

in the absence of screening, and at a smaller threshold in years when screening was done.

Thresholds were calibrated by simulating the Canadian National Breast Screening study [51–

53], to produce comparable levels of detected cancer at one year from introduction of screen-

ing at age 40 years and at two to five years from introduction of screening in populations aged

40–49 and aged 50–59.

II.B. The population model

The population layer of the PII model used individual-level data from NHANES [39] and

racial/ethnic and education level population data reported by the California Department of

Finance from the 2010 census [54] to distribute demographic variables across the simulated

population accurately. These variables include joint distribution of ages at menopause, menar-

che and childbirth, breastfeeding, smoking, alcohol use, BMI, education, and race/ethnicity.

BRCA1 mutations were distributed using recorded prevalence by race/ethnicity [55,56] and a

polygenic risk score summarizing low-penetrance genetic exposures was assigned according to

its reported population-wide distribution [55]. Due to the disproportionate representation of

white subjects in the studies used, we assumed the distribution of risk in non-white subjects to

be comparable though it may be driven by a different distribution of underlying genetic vari-

ants. CHIS 2005 data on screening behavior was used to model frequency of screening per

individual according to race/ethnicity and rural/urban location [38]. Annual survival by age

was drawn from the California Cancer Registry [37].

Unobservable rate constants in the model were calibrated to produce age-specific incidence

comparable to that reported by the California Cancer Registry for the State of California

(2008–2012) [37], and to reproduce reported risks for specific exposures, as detailed below.

Quantitative calibration criteria are discussed in the context of individual variables, below. The

life courses of 1,000,000 individuals were simulated to generate model incidence over the syn-

thetic population described above. Results described below are reported from this population,

unless noted otherwise. The cancer screening, hormone therapy, and oral contraception statis-

tics are generated in separate population simulations constructed to replicate the outcomes of

randomized controlled trials, as described below, and sensitivity analysis was performed by a

sample of simulations of synthetic populations and controlled trials with modified parameters,

as described below.

II.B.1. Genetic exposures. High-penetrance genes were modeled using the distribution

and effect of the BRCA1 gene [55] which we considered illustrative of the contribution of

germline mutations. BRCA1 confers a slightly higher risk of breast cancer and is associated
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with more aggressive disease compared to BRCA2. BRCA 1 prevalence was assigned to ran-

dom individuals at a rate dependent on race/ethnicity. The effect of BRCA 1 was modeled in

multiple ways for comparison: 1) the presence of damaged cells at birth (early or late classes);

2) the increased rates of accumulation of damage; 3) the reduced removal of damaged tissue;

and 4) the increased growth rate of damaged tissue. Results were compared in order to select

one of the four choices based on its ability to reproduce the effect of BRCA1 on age specific

risk. The effect of BRCA1 in the model was calibrated to approximate a breast cancer risk of

57% by age 75.

Low-penetrance genes were modeled using a polygenic risk score [57] that summarized the

effect of many common genetic variants on breast cancer risk. A polygenic risk score was

assigned to individuals using a normal distribution as described in Mavaddat et al [57]. Due to

the disproportionate representation of white subjects in the studies used, we assumed the distri-

bution of risk in non-white subjects to be comparable though it may be driven by a different dis-

tribution of underlying genetic variants. The polygenic risk score was assumed to correspond to

an alteration in the individual’s physiology in the same way as the BRCA1 variant, the risk score

being used as a multiplier on the rate constants chosen to model BRCA1, with a scaling constant

to be determined by calibration to the resulting cancer risk outcomes reported in [57].

II.B. 2. Obesity and body mass index. Obesity was modeled using BMI values that were

sampled from the NHANES population [39] and transformed to the four World Health Orga-

nization standard categories: Underweight (less than 18.5), Normal (18.5–24.99), Overweight

(25–29.99), and Obese (30 or more). We were concerned about the effect of obesity on elevated

post-menopausal cancer incidence and not on the protective effect of the much smaller num-

ber of pre-menopausal cancers, so we modeled its effect only in the postmenopausal years

determined for each woman based on the model. We used data from large systematic reviews

to assign increased risk of 12% for each five point increase in BMI [58] and a 20–40% increase

for obese women compared to normal weight women [59]. In our model, BMI category mem-

bership was transformed into a multiplier for the rates of tissue growth, starting at the time of

menopause reflecting the understanding that BMI increases breast cancer risk.

II.B.3. Alcohol use. Alcohol exposure was also sampled from the NHANES population’s

‘drinks per year’ variable [39]. A ‘drink’ is defined as a 12oz beer, 5 oz. of wine or a 1.5 oz shot

of liquor. Model individuals’ tissue growth rates were amplified in proportion to the number

of drinks per year. Estimates of the effect of alcohol were taken from a meta-analysis of pooled

data from 118 studies that reported that i that light drinkers have a slightly increased (1.04-fold

higher) risk of breast cancer, moderate drinkers (1.23-fold higher) and heavy drinkers

(1.6-fold higher) compared with nondrinkers [60]. Moderate drinking is defined as up to 1

drink a day for women, and heavy drinking as 4 or more drinks a day or 8 or more a week.

The Paradigm model was calibrated to reproduce a similar magnitude of risk increase for

moderate drinkers.

II.B.4. Oral contraception. NHANES reported ever use and starting and stopping ages

for oral contraceptive (OC) use [39]. Because of gaps in the data we did not use the raw values

present in the NHANES data set, instead aggregating their joint probability density, and draw-

ing starting and stopping ages jointly for each model OC user. Due to small subpopulation

sizes in NHANES, we used an aggregated statistic to describe OC starting and stopping ages.

Starting ages were taken from individuals who began OC after menarche, and stopping ages

from individuals who stopped before menopause. Starting and stopping ages were each aggre-

gated into four quantiles. For model individuals, starting and stopping ages, random draws

were taken from the joint distribution of quantiles, and the median starting and stopping ages

in the quantiles drawn were used as the model individuals’ starting and stopping ages. OC use

was assumed to increase hormone levels and thus tissue growth rates by a fixed factor during
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the ages of exposure. The magnitude of this factor was calibrated to reported relative risks asso-

ciated with OC exposure [61].

II.B.5. Breast feeding. Breastfeeding is modeled as protective. The population distribu-

tion of breast feeding is modeled using the “ever breastfed” variable of the NHANES data set

[39]. Individuals who breastfeed are modeled as breastfeeding during the year following each

birth. Breast feeding is modeled as a constant factor increase in tissue removal rate for all clas-

ses of transformation, calibrated to produce a relative risk at age 75 of roughly 0.76 [62].

II.B.6. Hormone therapy. Hormone therapy (HT) was widely used to treat symptoms of

menopause up until the time following the publication of results of the randomized Woman’s

Health Initiative in 2002 that showed no benefit for heart disease and an increased risk of

breast cancer [63]. In our model we used data from NHANES (1988–94) before 2002 that

recorded individuals who used combined estrogen/progestin HT, and their starting and stop-

ping ages [64]. Because of gaps in the data we did not use the exact starting and stopping ages

reported for each NHANES individual, and instead collected the HT age data into a summa-

rized distribution of stopping ages conditional on starting age. Due to small subpopulation

sizes, we aggregated starting age and duration of use into four quantiles each.

Each modeled HT user was assigned a duration of HT use by drawing a quantile of duration

of use from the distribution of these quantiles given the quantile of the starting age that was

assumed equal to the age of menopause. The median of the quantile drawn was used as the

model individual’s duration of use. Individuals exposed to HT were assumed to experience

higher levels of hormone exposure than would otherwise occur after menopause, modeled as a

high tissue growth rate, until their age of stopping HT. Relative risks associated with HT were

taken from the Oxford Collaborative Group on Hormonal Factors in Breast Cancer [65].

II.B.7. Smoking. Smoking behavior was sampled from the NHANES population’s ‘ever-

smoke’ variable [39]. Individuals with a value of 1 for this variable were assumed to be smokers

throughout their life-course. Smokers’ rates of transformation of tissue were accelerated by a

constant factor, whose magnitude was calibrated to produce a population-wide relative risk at

age 75 comparable to that observed based on an average starting date of 15 years. Nearly 90%

of adult smokers report having started before age 18 years [66].

II.B. 8. Chemical exposures. Rather than model the potential effects of a number of

chemical toxicants on breast cancer etiology [27], we examined several types or classes of

chemical-exposure scenarios based on literature that documented effects from exposures in
utero [67–73], exposures by endocrine disrupting chemicals that lowered the age of pubertal

transition [69–71] and genotoxic exposures during adult life [68,72,73]. The effects of chemical

exposures were modeled by exploring the effects of different classes of damage at different clas-

ses of progression as illustrated in Fig 1. These were for exposures in utero 1) prenatal expo-

sure, introducing some damaged tissue at birth, and 2) prenatal exposure that alters

programming by increasing transformation or other rates; for exposures that lower the age of

puberty 3) a brief increase in accumulation of the first class of genetic (somatic) damage, in the

20th year only, 4) a persistent increase in accumulation of the first class of damage, from age 20

to 29, 5) each of the above exposures, but affecting the 5th class of damage, and for genotoxic

exposures in adult life 6) increase in estrogen-like exposure, i.e. accelerated growth of damaged

tissue,. Each of these scenarios was modeled by simulating an idealized population of individu-

als with identical life histories, divided into a control group and a experimental group for com-

parison. Each of these individuals experienced menarche at age 12, menopause at age 45, had

no children, had no BRCA genes and polygenic risk score of 0.69, did not smoke, and had nor-

mal BM.

II.B.9. Screening. Screening frequency varies with race/ethnicity, and between rural and

urban populations and is important because it affects the probability of detection of a given
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breast cancer. We used CHIS [38] to estimate rural/urban proportion as a function of race/eth-

nicity and assigned model individuals as rural or urban using those frequencies. Frequency of

screening by race/ethnicity for rural and urban populations was also taken from CHIS, and we

used that distribution of values to assign frequency of screening for each model individual

given their rural/urban assignment. The frequency was the number of screenings a survey

respondent reported in the last 7 years, from 0 to 7. We used the results of the Canadian

National Breast Screening Study [51–53] to calibrate the relative risks generated by the model

in women aged 40–49 and 50–59, at 1–5 years from the introduction of annual screening in

the treatment group in simulation of the Canadian study. Tumor size thresholds for detection

with and without screening and the growth rate of malignant tissue were adjusted to calibrate

the result of this experiment in simulation.

II.C. Sensitivity analysis

Sensitivity analysis was performed using a Latin Hypercube sample of 100 combinations of

parameter values perturbed from the values attained by calibration. In each case, 100,000 indi-

vidual life courses were simulated using the California synthetic population model and in the

simulated screening, hormone therapy, and oral contraception trials described above. The sensi-

tivity of outcomes to parameter values was estimated from the model results by linear regression.

III. Results

III.A. Physiology model

The age distribution for women in California for the year 2000 is given in Fig 2. This data

forms the basis for the simulation of breast cancer and associated risk factors and was created

by backfitting to births based on the population distribution in 2000.

Fig 2. Age distribution of women in California, 2000, and model based distribution.

https://doi.org/10.1371/journal.pone.0282878.g002
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The age specific incidence and cumulative incidence in breast cancer in California, compar-

ing the actual data for California from 2008–2012 with our modeled population is shown in

Fig 3. The model was calibrated to California Cancer Registry data (SEER). The step functions

for the actual California data (green line) are due to the 5 year age categories available for this

data which we obtained from SEER. The age-specific incidence curve had 3 parts—initial

onset, reduced slope at later ages and a drop off after the age of 75. We next present age-spe-

cific incidence and cumulative incidence for variables included in the model. Most exposures

are presented in the form of the actual incidence as a function of presence/absence of an expo-

sure variable, for example BRCA, in the synthetic population. The exceptions are OC, HT, and

screening, which are each presented as outcomes in a simulated randomized controlled trial

rather than as observational outcomes in the synthetic population because they provided a

comparison group for the effect of these exposures. Chemical exposures are modeled using

scenarios (i.e.,II.B.8.).

III.B. Population model

III.B.1. Genetic exposures. We calibrated the effect of BRCA1 to data, from multiple sce-

narios as described in section II.B.1. We chose the second scenario “increased accumulation of

damaged cells” for our general model (Fig 4). BRCA is a DNA repair gene, and the mutation

causes decreased repair of damaged DNA, increasing accumulation of damage [56]. Cumula-

tive risk at age 75 due to BRCA is 0.57. After calibration, the model also produces a cumulative

risk of 0.57 at age 75 associated with possession of the BRCA1 gene. Fig 4a shows the cumula-

tive incidence of breast cancer by BRCA1 status. The well-known importance of this genetic

trait is reflected in the markedly higher cumulative incidence and age-specific incidence.

Based on our models, as shown in Fig 4b, the differential in incidence reaches its peak around

the age of 60, with much less when overall incidence declines with ages.

Fig 3. Age specific incidence of breast cancer in California (2008–2012) and in model population. The flat line at

high ages (green curve) is due to the lack of specific age category information for ages 80 and above.

https://doi.org/10.1371/journal.pone.0282878.g003
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We next present information on genome-wide influences on age specific incidence (Fig 5a)

and cumulative incidence (Fig 5b) from low-penetrance genes that have effects similar to the

effect of BRAC1.

III.B.2. Alcohol. Alcohol exposure can increase the risk of cancer and is treated as an

exogenous hazard unrelated to hormone exposure. Fig 6 shows the result of calibrating effect

of alcohol consumption to breast cancer incidence. Suzuki [74] reported relative risk associ-

ated with consumption of 10g/day of alcohol at 1.12 (95% CI 1.08–1.15) for ER+ and 1.04

(95% CI 0.98–1.09) for ER-/PR- cancers, while the Collaborative Group [75] reported 7.1%

increase in risk per 10g/day. We calibrated the effect of 10g/day alcohol on tissue transforma-

tion to produce comparable increase in cumulative risk of cancer to age 75 (Fig 6). The relative

risk associated with moderate drinking in model individuals is 1.37. As shown in Fig 6a, we

would expect cumulative incidence in California to be approximately 3% lower over all ages if

women were in the low alcohol use category of 0 to 125 drinks per year.

III.B.3. Oral contraception. The observed relative risk associated with ever use of oral

contraception was estimated at 1.24 (95% CI: 1.15–1.33). In detail, 1–4 years after stopping RR

was 1.16 (95% CI: 1.08–1.23), 5–9 years after stopping was 1.07 (95% CI: 1.02–1.13), and after

10 years was effectively no longer elevated [61] (Table 1). The relative risk associated with use

of oral contraception in the model was 1.17 during use, 1.17 in the first four years after use,

1.17 five to nine years after stopping, and 1.24 after ten or more years.

Fig 4. Age-specific incidence (a) and cumulative incidence (b) of breast cancer in model individuals in the

California/NHANES synthetic population, stratified by BRCA1 exposure.

https://doi.org/10.1371/journal.pone.0282878.g004

Fig 5. Age-specific incidence (a) and cumulative incidence (b) of breast cancer in model individuals in the

California/NHANES synthetic population, stratified by polygenic risk score.

https://doi.org/10.1371/journal.pone.0282878.g005
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III.B. 4. Breastfeeding. The observed relative risk of breast cancer associated with breast-

feeding has been estimated at 0.78 (95% CI: 0.64–0.94) for ER+/PR+, 0.74 (95% CI: 0.61–0.89)

for ER-/PR- [48]. In the absence of clear evidence to the contrary we opted to model them as

having the same effect. The effect of breastfeeding on tissue removal was calibrated to produce

comparabledecrease in cumulative risk to age 75 in model individuals (Fig 7). The relative risk

to age 75 associated with breastfeeding in model individuals was 0.74.

III.B.5. Hormone therapy. The impact of hormone therapy on tissue growth rates was

calibrated to the risk results reported by the Oxford Collaborative Group [65], which were

stratified by duration of use and time since last use, and controlled for a number of demo-

graphic variables. We calibrated by a simulated experiment, in which the treatment group was

comprised of HT users sampled from NHANES and the control group was made up of

NHANES HT users altered to not use HT (Table 2).

Fig 6. Age-specific incidence (a) and cumulative incidence (b) of breast cancer in model individuals in the

California/NHANES synthetic population, stratified by alcohol use.

https://doi.org/10.1371/journal.pone.0282878.g006

Table 1. Relative risks associated with oral contraceptives compared with model results.

Quantity Reported Value Model Value

Relative risk during oral contraception use 1.24 (1.15–1.33) 1.17

Relative risk 1–4 years after oral contraception use 1.16 (1.08–1.23) 1.17

Relative risk 5–9 years after oral contraception use 1.07 (1.02–1.13) 1.17

Relative risk 10+ years after oral contraception use 1.01 (0.96–1.05) 1.25

https://doi.org/10.1371/journal.pone.0282878.t001

Fig 7. Age-specific incidence (a) cumulative incidence (b) of breast cancer in model individuals in the California/

NHANES synthetic population, stratified by ever breastfeeding.

https://doi.org/10.1371/journal.pone.0282878.g007
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III.B.6. Chemical exposures. The results of simulating the effects of harmful chemical

exposures on breast cancer incidence in an idealized, uniform population, under a number

of assumptions about the effect of exposure on physiology, are depicted in Figs 8–12. These

results illustrate multiple possible actions of environmental chemicals on breast cancer

incidence.Note that we can compare the timing of incidence resulting from these expo-

sures, but in general the magnitude of the outcome should not be compared, since the expo-

sures have not been calibrated to produce comparable magnitudes of outcome. Exceptions

are: 1-year introductions of damaged tissue (including the prenatal case) can be compared

for magnitude, and 10-year introductions of damaged tissue can be compared for

magnitude.

III.B. 9. Screening. The effect of cancer screening on incidence was evaluated in the

model by simulation of the study reported by Miller[51–53]. In this case the model results did

not closely reproduce the reported results as summarized in Table 3.

III.C. Sensitivity analysis

Results of sensitivity analysis are displayed in Fig 13. Each shaded square represents the partial

correlation coefficient between a model parameter and an outcome with the increase or

decrease in an outcome variable associated with a unit of increase in a parameter value. Many

of these sensitivity values are relatively close to zero, while a few larger correlations stand out.

We note that the parameter “growth_rate_attenuation” controls the gradual increase in tissue

growth rates at later classess of transformation relative to the first stage, and that its class

appears to have an especially large impact on outcomes having to do with the time lag from

exposures to cancer incidence. The relation between BMI and some of the same outcomes

may be worthy of further investigation in the future.

Table 2. Relative risks associated with hormone therapy compared with model results.

Quantity Reported Value (Confidence

Interval)

Model

Value

Relative risk of hormone therapy by duration of use: 1–4 years 1.05 (1.011–1.089) 1.08

Relative risk of hormone therapy by duration of use: 10–14

years

1.09 (1.003–1.177) 1.24

Relative risk of hormone therapy by time since first use: <5

years

0.99 (0.925–1.055) 1.04

Relative risk of hormone therapy by time since first use: 5–9

years

1.11 (1.042–1.178) 1.14

Relative risk of hormone therapy by time since first use: 10–14

years

1.19 (1.113–1.267) 1.11

Relative risk of hormone therapy by time since first use: 15–19

years

1.22 (1.139–1.301) 1.16

Relative risk of hormone therapy by time since first use: > =

20 years

1.20 (1.125–1.275) 1.10

Relative risk of hormone therapy by time since last use: 1–4

years

1.10 (1.037–1.163) 1.08

Relative risk of hormone therapy by time since last use: 5–9

years

1.01 (0.942–1.078) 1.17

Relative risk of hormone therapy by time since last use: 10–14

years

1.05 (0.966–1.134) 1.17

Relative risk of hormone therapy by time since last use: > = 15

years

1.12 (1.036–1.204) 1.08

https://doi.org/10.1371/journal.pone.0282878.t002
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Fig 8. Effect of brief increase in damage on simulated incidence of (A, B) advancing a portion of each individual’s

tissue to the first class of damage at age 20; (C, D) advancing a portion of each individual’s tissue to the fifth class

of damage at age 20.

https://doi.org/10.1371/journal.pone.0282878.g008

Fig 9. Effect of sustained increase in damage on simulated incidence of (A, B) advancing a portion of each

individual’s tissue (half as much as in previous figure) to the first class of damage each year for 10 years starting at

age 20; (C, D) advancing a portion of each individual’s tissue to the fifth class of damage each year as in (A, B).

https://doi.org/10.1371/journal.pone.0282878.g009
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IV. Discussions/Conclusions

Most models of breast cancer seek to predict outcomes for individual women [17,19,22], to

predict the population impact of interventions at the clincal level (e.g., screening and treat-

ment) [23,24] or to explain aspects of the biology of breast cancer, such as the process of metas-

tasis[25]. The PII model attempts to describe breast cancer in a population, in this case the

population of women in the State of California. The PII model is one example of a systems epi-

demiology approach, which has been defined as the study of “risk and outcomes that incorpo-

rates high-dimensional measurements from multiple domains, assesses the inter-relationships

between risk factors, and considers changes over time” [76]. This perspective is of value to

Fig 10. Effect of prenatal increase in damage on simulated incidence of (A, B) advancing a portion of each

individual’s tissue to the first class of damage at birth; (C, D) advancing a portion of each individual’s tissue to the

fifth class of damage at birth.

https://doi.org/10.1371/journal.pone.0282878.g010

Fig 11. Effect of lifelong increase in tissue growth rate on simulated incidence of increased tissue growth rate over

the entire life course.

https://doi.org/10.1371/journal.pone.0282878.g011
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public health investigators and decision-makers interested in the impact of breast cancer on

population health. We use a risk modeling approach, synthesizing demography and life course

events, calibrated to observed incidence data and informed by studies of risk factors. The PII

model illustrates age specific patterns, demonstrates the effects of changes from tissue level to

individual to population, including the effects of decreasing breast density, BRCA1 genetic sta-

tus, exogenous hormonal exposures, alcohol and smoking exposures, the impact of chemical

toxicologic exposures of a number of types and changes in population-based screening guide-

lines. The PII model views women as “agents” who have individual physiologic characteristics

that determine the growth, transformation and removal of breast tissue over their lifetimes

and then, at the population level, how exposures from behaviors (e.g., alcohol consumption)

and the environment (e.g., environmental chemicals, mammographic screening) influence the

evolution of pathophysiologic processes that can result in the diagnosis of a breast cancer.

The PII model recognizes that breast cancer etiology is a complex process and tries to incor-

porate influences from multiple levels of determinants from “genes to society”. A limitation of

current approaches to modeling breast cancer, including the PII model, is that the model must

Fig 12. Effect of lifelong decrease in tissue removal rate on simulated incidence of (A, B) advancing a portion of

each individual’s tissue to the first class of damage at birth; (C, D) advancing a portion of each individual’s tissue

to the fifth class of damage at birth.

https://doi.org/10.1371/journal.pone.0282878.g012

Table 3. Relative risks in screening study compared with model results.

Quantity Reported Value Model Value

Relative risk in first year of screening age 40–49 3.1 1.81

Relative risk in second-fifth year of screening age 40–49 1.25 1.03

Relative risk in first year of screening age 50–59 3.6 1.74

Relative risk in second-fifth year of screening age 50–59 1.25 1.02

https://doi.org/10.1371/journal.pone.0282878.t003
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be limited in scope to avoid being overly cumbersome, but still reflect breast cancer incidence

in California. Also as the complexity of models increase, overfitting may result and generate

biases that make generalization difficult [77]. For example, one simplication was to assume

that individuals coded as smokers were smokers throughout their lives (lns 359–360). Future

interations of the PII model can assume that some fraction of the ever smolers became ex-

smokers. Future explorations can simulate effects of alterations in malleable factors affecting

behaviors (e.g., dietary and alcohol consumption, effects on obesity), regulation of environ-

mental chemical exposures (e.g., air pollution) and social stressors (e.g., income inequality).

The PII model qualitatively replicates the observed pattern of age-specific incidence, includ-

ing the observed drop at higher ages. The current model overestimated breast cancer incidence

in women over 75 possibly due to the small absolute numbers of cases over that age. The fit in

ages over 75 years may be improved by additional calibration. The model includes the influ-

ence of multiple developmental and reproductive factors such as menarche, breast density,

breastfeeding, and menopause as well as the effects of genetics for both high and low pene-

trance genes, race/ethnicity in the population of California women and obesity. Behaviors

included alcohol consumption, smoking, exogenous estrogen use (i.e., oral contraceptives and

hormone therapy) and screening with mammography. We note that the model did not closely

Fig 13. Sensitivity of absolute and relative risks to model parameters as reflected by their partial correlation coefficients.

https://doi.org/10.1371/journal.pone.0282878.g013
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reproduce the values for screening generated from the cited publications of the Canadian

National Breast Screening study [51–53] and we do not currently have an explanation for this

discrepancy. The model also incorporates estimates of the potential impact of environmental

chemicals in early development and adulthood. All these factors interact within the model to

reflect their real-life causal nature rather than the more traditional approach using multivari-

able regression that largely focuses on the independent influence of individual factors. Our

approach begins to treat a complex system with a flexible modeling framework that more accu-

rately represents how multiple factors interact and change over the life course.

The strengths of the PII model derive from its population health perspective and value to deci-

sion-making at the policy level. The simulation will hopefully allow future investigations to fill

gaps by providing a framework to understand the areas where more empirical data are needed. in

our knowledge and help the lay public understand the complexity of this most common of can-

cers. Among its limitations are that its representation of some risk factors are approximations

and the transformation rates do not necessarily correspond to specific biologic processes or

observable clinical states. We did not attempt to subdivide breast cancer into the several distin-

guishable subtypes based on biomarkers now accepted in the field and it remains an open chal-

lenge to find ways to incorporate the finding from animal studies into a human agent based

model. Our results may be made to more accurately reflect known relationships with further cali-

bration. Its value in solving outstanding questions in breast cancer etiology has yet to be demon-

strated. Our intent is to make the code for the PII model available to interested investigators [78].

The goals of simplicity and parsimony in modeling are balanced against the need to repre-

sent the age-specific incidence of breast cancer in light of the many known risk factors, as well

as socioeconomic and race/ethnic disparities. In principle, the model can be applied to any

population, and can be used to make prospective forecasts of incidence. Our model provides a

path to integrate population health data and prospective studies in constructing a unified view

of this complex disease.

The process of arriving at the PII model was truly transdisciplinary with input from a team

of scientists, community representatives, and modelers with expertise in diverse fields includ-

ing genetics, epidemiology, biostatistics, and social sciences. Input was invited and received in

open collegial interactions over a two-year period with multiple iterations of results and modi-

fications to the model. As with other approaches to complex systems problems, we found a

transdisciplinary approach to be essential to the development of the PII model [79].

Modifications will continue as further attempts are made to refine the model, use it for

addressing particular problems or challenges in population health, and to add additional factors

as science presents them. Although there remain many limitations, the refinement of the model

is an iterative process. Finally, the PII model did accomplish our goal of creating a model to

explore the role of more upstream determinants at the population level while illustrating the con-

tribution to breast cancer causation of multiple factors at different levels of biologic organization.
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