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Abstract

Protein Tyrosine Phosphatase receptor type D (PTPRD) is a member of the protein tyrosine

phosphatase family that mediates cell adhesion and synaptic specification. Genetic studies

have linked Ptprd to several neuropsychiatric phenotypes, including Restless Leg Syn-

drome (RLS), opioid abuse disorder, and antipsychotic-induced weight gain. Genome-wide

association studies (GWAS) of either pediatric obsessive-compulsive traits, or Obsessive-

Compulsive Disorder (OCD), have identified loci near PTPRD as genome-wide significant,

or strongly suggestive for this trait. We assessed Ptprd wild-type (WT), heterozygous (HT),

and knockout (KO) mice for behavioral dimensions that are altered in OCD, including anxi-

ety and exploration (open field test, dig test), perseverative behavior (splash-induced

grooming, spatial d), sensorimotor gating (prepulse inhibition), and home cage goal-directed

behavior (nest building). No effect of genotype was observed in any measure of the open

field test, dig test, or splash test. However, Ptprd KO mice of both sexes showed impair-

ments in nest building behavior. Finally, female, but not male, Ptprd KO mice showed defi-

cits in prepulse inhibition, an operational measure of sensorimotor gating that is reduced in

female, but not male, OCD patients. Our results indicate that constitutive lack of Ptprd may

contribute to the development of certain domains that are altered OCD, including goal-

directed behavior, and reduced sensorimotor gating specifically in females.

Introduction

Obsessive-Compulsive Disorder (OCD) is a common and disabling neuropsychiatric disorder

with a lifetime prevalence of approximately 2–3% [1]. OCD is characterized by intrusive

thoughts, images, or impulses, and/or repetitive compulsive behaviors [2]. OCD is widely con-

sidered to be polygenic in origin [3–5], and family and twin studies have estimated heritability

as high as 50% [6,7]. Two genome-wide association studies (GWAS) of OCD have been pub-

lished to date, as well as a meta-analysis [7–10]. Both the GWAS by Stewart et al. (2013) and
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the meta-analysis identified a variant located near the gene protein tyrosine phosphatase, recep-
tor type, D (PTPRD) as one of the top signals [8], although neither study identified any single-

nucleotide polymorphism (SNP) as genome-wide significant. Additionally, a GWAS of pediat-

ric obsessive-compulsive traits identified a locus within in an intron of PTPRD that achieved

genome-wide significance [11]. Thus, although GWAS studies to date remain underpowered

for identifying genome-wide significant single nucleotide polymorphisms (SNPs) for OCD or

OC traits, PTPRD has emerged from these studies as a top candidate gene of interest.

Both common and rare variants have been identified for PTPRD, a cell-adhesion molecule

and synaptic specifier which has been implicated in a number of brain phenotypes and disor-

ders [12]. For example, common variation in PTPRD has been associated with Restless Leg

Syndrome [13,14], which is characterized by irresistible urges to move the limbs and repetitive

movements of the affected limb that serve to quench these urges [15,16]. Furthermore, SNPs

in the PTPRD locus were associated with neurofibrillary tangle density in Alzheimer’s disease

and accounted for 3% of individual differences in neurofibrillary pathology [12,17]. Other

common SNPs in PTPRD have been implicated in atypical antipsychotic-induced weight gain

[18,19]. A homozygous PTPRD micodeletion was identified in an individual with intellectual

disability [20]; however, more evidence will be required to establish a role for PTPRD deletion

in cognitive disability. Thus, PTPRD plays a role in many brain-related phenotypes, in addi-

tion to OCD.

PTPRD undergoes homomeric binding and acts as a hemophilic, neurite-promoting cell

adhesion molecule for neurons [21]. In addition to homomeric binding, PTPRD also binds to

additional ligands. For example, PTPRD has been reported to bind to interleukin 1 receptor

accessory protein [22], netrin-G ligand-3 (NGL-3) [23], and synaptic adhesion-like molecules

(SALMs) [24]. Interestingly, PTPRD also directly binds with all SLIT and NTRK-like

(SLITRK) family member proteins, including SLITRK1 and SLITRK5 [25,26], which have

been implicated in OCD by rodent preclinical work and human genetic studies evaluating rare

variants [27–30].

Although a number of studies have characterized constitutive Ptprd HT and KO mice in

the open field and other behavioral paradigms [31–33], no animal studies to date have exam-

ined the role of Ptprd on behavioral phenotypes relevant to OCD. Here, we performed an ini-

tial behavioral characterization of Ptprd WT, HT, and KO mice of both sexes in the open field

and the dig test to assess exploration and anxiety, which are reduced and increased in OCD,

respectively [34–37]. To assess perseverative behavior, we assessed route stereotypy in the

open field using spatial d [38–40], and splash-induced grooming to assess perseverative

grooming behavior [41,42]. To evaluate goal-directed behavior, which is reduced in OCD [43–

45], we assessed nest building in the home cage [46–48]. Finally, we measured prepulse inhibi-

tion (PPI) to assess sensorimotor gating [49–52], which is reduced preferentially in females,

and not males, with OCD [53,54].

Materials and methods

Animals

Ptprd knockout (KO) mice on a mixed 129X1/SvJ x 129S1/Sy background were generously

provided by Dr. Noriko Uetani at McGill University [33]. Experimental cohorts were gener-

ated from heterozygous (HT) Ptprd crosses. Male and female wildtype (WT), heterozygous

(HT), and knockout (KO) young adult mice 8–11 weeks of age were used for experiments

(females: 16 WT, 16 HT, 9 KO; males: 16 WT, 16 HT, 11 KO). Mice were group housed under

a 12hr light/dark cycle (lights on at 0700) with food and water available ad libitum. Behavioral

testing was performed during the light-on portion of the light cycle. The PCR genotyping

PLOS ONE Ptprd KO mice exhibit nest building deficits and female-specific reductions in PPI

PLOS ONE | https://doi.org/10.1371/journal.pone.0277446 May 19, 2023 2 / 16

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0277446


protocol for Ptprd knockout (KO) mice was also provided by Dr. Noriko Uetani, and has been

described earlier [55]. All methods and animal care procedures were prospectively approved

by the University of California San Diego Animal Care and Use Committee (Protocol Num-

ber: S15266), and all aspects of the study were carried out in accordance with the recommen-

dations of the National Institutes of Health’s Guide for the Care and Use of Laboratory

Animals. At the end of experiments, mice were sacrificed using carbon dioxide inhalation

using an Animal Care Panel approved apparatus followed by cervical dislocation.

Behavioral experiments

As we have done previously [41], mice were first tested in the open field test, and then approxi-

mately 10 min later in the dig test, and then immediately in the splash test. Open field, dig, and

splash testing required 4 days, with mice divided into counterbalanced testing batches. Next,

mice were tested for nest building over two days. Finally, mice were tested for PPI over two

more days. Experimental mice were all from one cohort.

Open field

Mice were placed in the corner of automated activity chambers, which were 41cm x 41cm with

a 16 x 16 photobeam grid, and 2.54cm between each photobeam (Accusan, Columbus, OH).

Activity was recorded for 60 minutes [41]. Total distance traveled was quantified to assess

locomotor activity. Vertical activity was used to assess rearing, an exploratory behavior. Per-

cent center distance was calculated as [(center distance/total distance) x 100] and was used as a

measure of anxiety, with increases in center distance interpreted as a decrease in anxiety. The

spatial scaling exponent d (spatial d) was calculated using NightOwl software (Custom) and

Python (Python Software Foundation, Beaverton, OR) to assess the degree to which consecu-

tive movements were along a straight line (d~1), meandering (d~1.5), or contained many

directional changes (d~2).

Dig test

Immediately after open field, mice were placed in a standard cage with fresh bedding 1” deep

and video recorded for 3 minutes as described previously [41]. Videos were then scored by an

experimenter blind to genotype and sex. Measures were latency to dig, total time digging,

number of bouts digging, and average bout duration. A digging bout was defined as significant

displacement of bedding due to limb or nose movement lasting at least one second, and not

separated by more than one second of rest. Increases in digging behavior indicated increased

exploration.

Splash test

Following the dig test, mice were allowed to habituate to the test cage for 1 hour. Mice were

then removed from the test cage, sprayed twice on their dorsal surface from approximately 5”

away with a 10% sucrose solution, and returned to the test cage [41]. Behavior was videotaped

for 5 minutes, and then scored by a blind experimenter for latency to groom, total time groom-

ing, number of grooming bouts, and average bout duration. A grooming bout was defined as

any number of leg strokes along the body, a minimum of 2 arm strokes over the face/head, or

any amount of time spent licking/biting the fur, with a break not separated by more than 2 sec-

onds. Decreases in grooming in response to sucrose spray were interpreted as increased

anhedonia.
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Nest building

Nest building was used to assess goal-directed behavior. As described previously [39,56], mice

were placed into a novel cage with an unused nestlet (a 2” x 2” square of cotton fiber; Ancare).

Nests were photographed at 0, 2, 4, and 6 hrs. Nests were scored by an experimenter blinded

to genotype and sex, as described previously. Briefly, nests were given a score of 0–5 according

to the following criteria: 0 = untouched, 1 = minimal pieces ripped off; 2 = major pieces of

nestlet square left intact; 3 = all/most ripped up but not organized; 4 = all ripped up, organized

into clear nest but not perfect, no tight walls; 5 = all ripped up, organized into clear nest, tight

walls. Additionally, nests were weighed at time 0 and 6 hours, and the amount of nestlet used

was calculated by subtracting the intact portion of the nestlet remaining at 6 hours from the

original nestlet weight at time 0.

Prepulse inhibition

Prepulse inhibition was used as an index of sensorimotor gating, which is reduced in female

patients with OCD [53]. Mice were placed into startle chambers that consisted of a Plexiglas

cylinder resting on a Plexiglas platform in a sound-attenuating, ventilated chamber (San Diego

Instruments, CA). Sessions were 20 minutes long. The first 5 minutes consisted of acclimation

to the background (65 dB) noise, followed by four consecutive blocks of test trials. Testing con-

sisted of a pseudo random representation of five different types of trials: a 40-millisecond

broadband 120 dB burst (pulse alone trial); three different prepulse pulse trials in which

20-millisecond long 3 dB, 6 dB, or 12 dB above background stimuli preceded the 120 dB pulse

by 100 milliseconds (onset to onset); and a no stimulus trial, in which only background noise

(65 dB) was presented. Blocks one and four consisted of six consecutive Pulse alone trials,

while blocks two and three contained six Pulse alone trials, five pp3p120 trials, five pp6p120

trials, five p12p120 trials and four No stimulus trials. Thus, the entire session consisted of 62

test trials. PPI was calculated as [(startled amplitude pulse–startle amplitude prepulse + pulse)/

startle amplitude pulse) x 100]. Reduced PPI is thought to reflect impaired sensorimotor gat-

ing. Startle magnitude was calculated as the average response to 120 dB pulse trials from blocks

two and three. Startle habituation was assessed as the average of 120 dB pulse trials from all 4

blocks [57,58].

Statistical analysis

Multi-way ANOVAs were performed for all measures with sex and genotype as between-sub-

jects factors. Main effects of genotype were resolved using Student Newman-Keuls post hoc

tests. For the analysis of the open field, nest building test, and startle habituation, time was an

additional within subjects factor. For the analysis of PPI, both prepulse intensity and block

were additional within-subjects factors. Interactions were resolved using Student Newman-

Keuls post hoc tests or post hoc ANOVAs with the Bonferonni correction applied as appropri-

ate. For all measures, outliers were removed if their value was greater than two standard devia-

tions above or below the mean. Alpha was set at 0.05.

Results

Open field

The measures of total distance traveled (Fig 1A), center time (Fig 1B), center distance traveled

(Fig 1C), percent of total traveled time spent in center (Fig 1D), rearing (Fig 1E), and spatial d
(Fig 1F) were not altered by Ptprd genotype or sex, and no interactions were observed.
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Dig test

Time spent digging (Fig 2A) and the measures of latency to dig (Fig 2B), number of dig bouts

(Fig 2C), and average duration of dig bout (Fig 2D) were not altered by genotype or sex. No

interaction of genotype and sex was observed for time spent digging [F(1,2) = 2.00, p = .14].

Splash test

The measures of time spent grooming (Fig 3A), latency to groom (Fig 3B), number of groom-

ing bouts (Fig 3C), and average groom bout duration (Fig 3D) were not altered by Ptprd geno-

type or sex.

Nest building

ANOVA revealed that genotype [F(2, 78) = 8.34] (p<0.05) influenced Nestlet score (Fig 4A), and an

interaction of genotype and block [F(8, 312) = 2.25] (p<0.05) was observed. Post-hoc analysis

revealed that Ptprd KO mice made worse nests at the 2, 4, and 6 hour timepoints compared to Ptprd
WT and HT mice. Additionally, genotype [F(2, 78) = 3.618] (p<0.05) influenced the percent of

nestlet used (Fig 4B), with Ptprd KO mice using less percent nestlet than Ptprd HT or WT mice.

PPI

ANOVA revealed a genotype by sex interaction [F(2, 78) = 3.31] (p<0.05) for percent prepulse

inhibition; no other interactions were found. Post-hoc ANOVAs examining effects of Ptprd
genotype within each sex identified an effect of Ptprd genotype within females [F(2, 38) = 3.58]

(p = .038)(Fig 5A), but not males. However, this p value fell just short of the p = 0.025 cut-off

Fig 1. Unaltered open field behavior in mice lacking Ptprd. (A) Total distance traveled. (B) Total time spent in the

center. (C) Total distance traveled in the center. (D) Percent distance traveled in the center divided by total distance

traveled. (E) Total number of rearings. (F) The average spatial d value over the entire session. Mean ± s.e.m,

n = females: 16 WT, 16 HT, 9 KO; males: 16 WT, 16HT, 11 KO.

https://doi.org/10.1371/journal.pone.0277446.g001
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following Bonferroni correction. We performed Newman-Keuls planned comparisons, which

revealed that within females, Ptprd KO mice showed reduced percent prepulse inhibition rela-

tive to both Ptprd WT and HT mice. Additionally, post-hoc Newman-Keuls revealed that

within Ptprd knockout mice, females had lower percent prepulse inhibition than males.

ANOVA revealed a main effect of sex [F(1, 78) = 8.51] (p<0.01) on startle magnitude, with

males showing a larger average startle magnitude than females (Fig 5B). Additionally, an

ANOVA assessing the effects of sex and genotype across all four blocks also found a main

effect of sex [F(1, 78) = 8.78] (p< 0.01), with males showing larger startle magnitudes than

females. However, no interactions including block were observed, indicating there were no dif-

ferences in startle habituation between any of the groups (Fig 5C).

Discussion

Here we show that Ptprd KO mice show impairments in nest building behavior, a goal directed

behavior performed by mice in the home cage, and deficits in PPI only in females. The other

Fig 2. Unaltered digging behavior in mice lacking Ptprd. (A) Total time spent digging. (B) Latency to dig. (C) Total

number of digging bouts. (D) The average duration of all digging bouts. Mean ± s.e.m.

https://doi.org/10.1371/journal.pone.0277446.g002
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behavioral constructs that were assessed including anxiety/exploration, perseverative behav-

iors, and locomotion, were unaltered by Ptprd genotype. Specifically, we did not observe any

anxiety-related changes in center measures of the open field, or changes in overall locomotion

between genotypes. We also did not find any effect of Ptprd genotype on exploratory measures

in the open field including rearing behavior, or changes in the dig test. Finally, Ptprd genotype

did not affect the expression of perseverative behaviors including splash-induced grooming or

route stereotypy. Thus, Ptprd KO mice showed deficits in two constructs that are impaired in

OCD patients, which are goal-directed behavior and sensorimotor gating. However, showing

deficits in these two behavioral domains is not specific to OCD, but is also characteristic of

other neuropsychiatric disorders including schizophrenia [59–63]. Although variation in

PTPRD has been linked to OCD, no significant association has yet been made to schizophrenia

by human genetic studies.

We evaluated mice in the open field and the dig test to assess exploration and anxiety, since

patients with OCD show increases in anxiety and reductions in exploration or novelty-seeking

Fig 3. Unaltered splash-induced grooming behavior in mice lacking Ptprd. (A) Total time spent grooming. (B)

Latency to groom. (C) Total number of grooming bouts. (D) The average duration of all grooming bouts. Mean ± s.e.

m.

https://doi.org/10.1371/journal.pone.0277446.g003
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behavior [34–37,64,65]. However, we observed no effect of Ptprd genotype on measures of

exploration in the open field including rearing (Fig 1E), or on digging measures of the dig test

(Fig 2). Furthermore, we found no effect of Ptprd genotype on anxiety-related measures of

center time, center distance, or center/total distance traveled in the open field (Fig 1B–1D). It

should be noted that OCD was removed from the category of anxiety disorders in DSM V, and

was placed under the heading of ‘Obsessive-Compulsive and Related Disorders‘. The rationale

for this change was that obsessions and compulsions, and not anxiety, are the fundamental fea-

tures of the disorder. For example, OCD patients often experience negative affect including

disgust, discomfort, and unease in relation to particular stimuli, but not all patients experience

anxiety [66,67]. Therefore, while the open field test provides a classical measure of anxiety, this

measure might not capture other forms of negative emotions. For example, center measures of

the open field are highly responsive to classical anxiolytic drugs [68], while the obsessions and

compulsions of OCD are not [69,70]. We did not find any effect of Ptprd genotype on overall

locomotor activity in the open field (Fig 1A). These findings are in contrast to a previous

Fig 4. Impaired nest-building behavior in mice lacking Ptprd. (A) Nestlet score at 0, 2, 4, 6, and 24 hours after the

beginning of the test. (B) Percent of the nestlet used by the end of the test. Mean ± s.e.m. An asterisk indicates a

significant difference from both HT and WT mice.

https://doi.org/10.1371/journal.pone.0277446.g004

Fig 5. Reduced percent prepulse inhibition only in female mice lacking Ptprd. (A) Percent prepulse inhibition

averaged across prepulse intensity. (B) Average startle magnitude during blocks two and three. (C) Average startle

magnitude is shown for each of four blocks. Mean ± s.e.m. An asterisk indicates a significant difference from both HT

and WT mice of the same sex. A pound sign indicates a significant difference from males within the same genotype.

https://doi.org/10.1371/journal.pone.0277446.g005
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report suggesting that Ptprd KO mice show small increases in locomotion in a conditioned

place preference apparatus compared to Ptprd WT and HT mice [32].

Grooming behavior has been frequently assessed in rodents in an attempt to study the

repetitive behaviors observed in OCD patients; however, this approach relies largely on face

validity. Indeed, several mouse genetic models that show robust overgrooming behavior,

including SAPAP3 KO and SLTRK5 KO mice [29,71–73] are constitutive knockout mouse

models for genes that have been tentatively linked with OCD [28,74]. However, a definitive

link for these genes with OCD remains to be established by large scale human genetic studies.

We did not observe any effect of Ptprd genotype on grooming behavior in the splash test (Fig

3), which involves spraying the dorsal surface of the mouse to elicit grooming behavior. We

also investigated the role of Ptprd in another form of perseverative behavior, which is route ste-

reotypy in the open field. Route stereotypy refers to repetitive circling of the edges of the open

field along with increased smoothness of the locomotor path, and has been observed other

mouse studies of OCD-related behavior [38,39,41,75]. Since we did not find any changes in

spatial d (Fig 1F), which quantifies the smoothness of the path of the animal, or reductions in

center measures in the open field, Ptprd genotype did not alter route stereotypy. In summary,

we did not find any effect Ptprd genotype on perseverative behaviors in the tests employed.

OCD patients exhibit reductions in goal-directed behavior and increases in habitual behav-

ior [43–45]. Indeed, compulsive behaviors are defined as maladaptive repetitive behaviors that

are performed despite no longer leading to a goal, and are typically inflexible in nature [76–

78]. Rodent nest building is considered a goal-directed behavior [46–48] that can be readily

assessed in the home cage. We previously reported that mice lacking Btbd3, another top OCD

candidate gene identified in the GWAS by Stewart et al. (2013), show reductions in nestlet

behavior [39]. Here, we found that Ptprd KO mice had lower nest building scores than Ptprd
WT and HT mice at the 2, 4, and 6 hour timepoints (Fig 4A). Although they achieved the same

nestlet score as the other genotypes by 24 hours, they also used less of the nestlet overall com-

pared to Ptprd WT and HT mice (Fig 4B). Future studies will evaluate Ptprd KO mice in a

probabilistic learning task (PLT) which can be used to measure goal-directed versus habitual

decision-making strategies in both rodent and humans [79,80], with OCD patients showing a

shift towards habitual choices in this paradigm [81,82].

PPI is a form of startle plasticity that can be measured similarly in both humans and ani-

mals, and provides an operational measure of sensorimotor gating. PPI is reduced in OCD

patients [54,83,84], and intrusive thoughts, images and impulses and repetitive actions are

thought to reflect failure to gate incoming stimuli and outgoing motor routines, respectively

[84]. A more recent study assessing PPI in OCD patients using more subjects suggested that

among OCD patients, the deficits in PPI are more pronounced in females than males [53].

Similarly, we found that female, but not male, Ptprd KO mice showed reductions in PPI com-

pared to female Ptprd WT and HT mice, as well as male Ptprd KO mice (Fig 5A). The reduc-

tion in PPI observed in female Ptprd KO mice was found across all prepulse intensities, as with

female OCD patients reported in Ahmari et al. (2016). The reduction in PPI observed in

female Ptprd KO mice was not an artifact of any effect of Ptprd genotype on block 2 and 3 star-

tle magnitude, which is used in the calculation of PPI values. Specifically, no effect of Ptprd
genotype was found on block 2 and 3 startle values (Fig 5B); only a main effect for males to

show higher startle overall was observed. There was also no effect of Ptprd genotype on startle

habituation across blocks 1–4 (Fig 5C). Consistent with this finding, patients with OCD exhibit

startle habituation that is comparable to control subjects [54,83]. However, patients with other

neuropsychiatric disorders, such as schizophrenia, exhibit deficits in both PPI and startle

habituation [63,85]. In summary, Ptprd KO mice show a sexually dimorphic reduction in PPI

without any change in startle habituation, similar to OCD patients.
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A caveat to our present findings is that Ptprd KO mice die at moderate rates prior to and

after birth [31,33], which can bias behavioral results. In the present study, Ptprd HT breeding

pairs generated 32 Ptprd WT, but only 20 Ptprd KO mice, indicating that approximately 63%

of the expected number of Ptprd KO mice survived until adulthood. Since no deaths were

noted, it is likely that Ptprd KO mice had reduced viability at the embryonic stage. If more of

the Ptprd KO mice had survived, they may have contributed more cases of the behavioral

impairments observed, or even shown additional phenotypic changes. In addition, Ptprd KO

mice have been reported to show spatial learning deficits in the Morris Water Maze, the rein-

forced T-maze, and radial arm maze tasks [31,33]. Furthermore, homozygous PTPRD gene

microdeletion in humans has been implicated in intellectual disability [20]. However, the spa-

tial learning deficits in Ptprd KO mice are unlikely to underlie the PPI deficits we observed

only in female Ptprd KO mice (Fig 5A), as PPI is pre-attentional gating mechanism [86]. Fur-

thermore, it has been suggested that the performance of mice in nest building and spatial

learning tasks are uncorrelated [87]. Thus, the deficits in nest building and PPI observed in

Ptprd KO mice are likely independent from any spatial learning deficits.

Whether PTPRD function is increased or decreased in OCD patients or individuals with

OC-traits remains unresolved. Although another study reported one case of a copy number

variant (CNV) duplication including PTPRD [88] in pediatric OCD, more work will be

required to determine whether increase or decrease of Ptprd function is linked with OCD. To

our knowledge, only Ptprd KO mice, and not Ptprd overexpressing mice, are available for

study. Here, we found that Ptprd KO, but not Ptprd HT, mice showed two phenotypes that are

exhibited by OCD patients: reduced goal-directed behavior, and reduced PPI in females only.

However, our findings do not rule out the possibility that Ptprd KO mice might show increases

in perseverative behavior or anxiety in other behavioral tests. Future studies should investigate

the behavioral consequences of overexpressing Ptprd in mice to further clarify the role of

PTPRD function in OCD-related behavioral domains. Furthermore, additional information

regarding the status of PTPRD function in OCD patients would permit the generation of more

useful animal genetic models.

Conclusions

Together, the results presented here show that loss of Ptprd function reduces goal-directed

behavior in the home cage, and disrupts PPI specifically in females, which are two phenotypes

that are directly relevant to OCD. Future studies should further confirm the role of Ptprd in

goal-directed behavior using a translational behavioral paradigm that has yielded differences

between OCD patients and controls. Furthermore, future studies should investigate the role of

gain-of-function of Ptprd to further clarify the role of this gene in regulating OCD-relevant

domains. Such animal studies and more human genetic studies will be critical to determine

the role of PTPRD variation in risk for OCD and OC-traits.
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