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ABSTRACT

Objective: We propose a system, quEHRy, to retrieve precise, interpretable answers to natural language

questions from structured data in electronic health records (EHRs).

Materials and Methods: We develop/synthesize the main components of quEHRy: concept normalization

(MetaMap), time frame classification (new), semantic parsing (existing), visualization with question understanding

(new), and query module for FHIR mapping/processing (new). We evaluate quEHRy on 2 clinical question answering

(QA) datasets. We evaluate each component separately as well as holistically to gain deeper insights. We also

conduct a thorough error analysis for a crucial subcomponent, medical concept normalization.

Results: Using gold concepts, the precision of quEHRy is 98.33% and 90.91% for the 2 datasets, while the overall

accuracy was 97.41% and 87.75%. Precision was 94.03% and 87.79% even after employing an automated

medical concept extraction system (MetaMap). Most incorrectly predicted medical concepts were broader in

nature than gold-annotated concepts (representative of the ones present in EHRs), eg, Diabetes versus Diabetes

Mellitus, Non-Insulin-Dependent.

Discussion: The primary performance barrier to deployment of the system is due to errors in medical concept

extraction (a component not studied in this article), which affects the downstream generation of correct logical

structures. This indicates the need to build QA-specific clinical concept normalizers that understand EHR context

to extract the “relevant” medical concepts from questions.

Conclusion: We present an end-to-end QA system that allows information access from EHRs using natural

language and returns an exact, verifiable answer. Our proposed system is high-precision and interpretable,

checking off the requirements for clinical use.

Key words: question answering, electronic health records, natural language processing, artificial intelligence, machine learning,

FHIR

BACKGROUND AND SIGNIFICANCE

A tremendous amount of useful patient information in electronic

health records (EHRs) is frequently accessed by clinicians to provide

care. However, issues associated with EHRs (related to their usabil-

ity1 and navigation2) hinder accessing information from these sys-

tems.3 Efforts to tackle these issues rely on visualization4 (eg,

showing information as charts) or information retrieval5 (IR)

(surfacing information through keyword-based searches). Though

such methods improve information access, for a given information

need (eg, lab value, procedure status), they still present users excess

information (eg, a table full of lab values, a long list of procedures)

over what is needed (a single lab value or procedure). In other

words, these methods are unable to grasp the exact information
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needs of users. To this end, question answering (QA) provides a nat-

ural way to identify information needs and return an exact, verifi-

able answer.6

Information in EHRs is present in 2 primary formats: structured

(eg, lab values) and unstructured (eg, clinical notes), where each

type requires different tools for querying. Unstructured notes cer-

tainly contain a wealth of patient information, and they are highly

amenable to many state-of-the-art QA methods.7–9 Importantly, the

methods for unstructured data are not amenable to structured data,

which is also far less studied.

Structured information is generally stored in databases with

sophisticated schemas. Keyword-based searches are unable to take

full advantage of such schemas as they simply match text.10 How-

ever, the power underlying the complexity of such schemas can be

harnessed using query mechanisms understood by such databases

(eg, SQL, FHIR).11 However, most clinicians are not well-versed

with such query languages and it would be burdensome to train

them to interact using such queries. Instead, a more intuitive

approach is to let clinicians pose information needs using natural

language to a system capable of retrieving answers to those exact

needs from EHRs.12,13

EHR-based IR is well-studied,5,10,14–16 where a user is presented

with a list of results, which may not even contain an answer.17 On

the contrary, our QA system aims to return a single, exact, verifiable

answer (focusing on precision). This corresponds to the QA task

known as factoid QA, which is amenable to the types of structured

data found in EHRs. Notably, in order to have a single, exact

answer, factoid-type questions are relatively unambiguous and have

comparatively simple syntactic structures (which aligns well with

our methodology). Moreover, traditional EHR IR systems are

largely tailored for unstructured EHR data18 and fail to take advant-

age of the full set of capabilities offered by structured databases

(present in EHRs). There are efforts to use semantics with IR to

include structured EHR data in the searches.5,10,16 However, these

methods still depend on text-based searches, and thus are unable to

grasp exact information needs. Furthermore, such simple text

searching techniques are unable to provide any feedback on how

user queries are interpreted. Our system, on the contrary, is able to

show an exact representation of predicted information needs for the

input question.

At a high level, most biomedical QA systems are focused on

either biomedical literature data,19,20 consumer health data,21–23 or

EHR data.7,8 Most biomedical literature QA systems focus on iden-

tifying medical evidence for clinicians or researchers, while con-

sumer health QA systems focus on providing easy-to-understand

medical information to nonexperts. Surveys of biomedical QA sys-

tems24,25 indicate that EHR QA methods have received relatively lit-

tle attention, and no system to our knowledge has presented an end-

to-end QA system that could be integrated directly into an EHR.

Most prior work in EHR QA for structured data is aimed at creating

datasets (manually26–29 or automatically7,30–32), or focuses on indi-

vidual components and not an end-to-end EHR QA solution. Most

studies deal with the semantic parsing component (mapping ques-

tions to logical forms [LFs]) using rule-based,26,33,34 traditional

machine learning,35 and advanced deep learning30,36 techniques.

Still, identifying a machine-understandable LF is not practically use-

ful unless it is mapped to an EHR-understandable query language to

retrieve actual answers. One of the main contributions of this work

includes designing and developing a query module that is capable of

handling a wide variety of logical constructs and FHIR resources.

Other essential parts of end-to-end EHR QA for structured data

include concept normalization and time frame classification. Con-

cept normalization is a well-studied task in the clinical domain,37–42

however it is largely explored independent of a target application

(such as QA in our case). To our knowledge, no work has focused

on this task for clinical questions. Similarly, temporal information

extraction is a widely explored topic,43,44 yet no previous work has

pursued this task for EHR QA.

To our knowledge, no previous work has looked at the problems

and challenges underlying EHR QA as an end-to-end process that

starts from a question and ends at an exact answer. It is critical to

tackle EHR QA in a practical, end-to-end, manner as ultimately that

is how these systems will be useful in practice. This is accomplished

by converting the question to a corresponding machine-

understandable form that then is mapped to FHIR45 (Fast Health-

care Interoperability Resources) queries (an EHR query language).

Additionally, our system is interpretable by displaying understood

information needs in the form of an easily and rapidly understand-

able diagram. Such interpretability is of paramount importance in

the clinical domain as it enables clinicians to understand and rely on

such advanced query mechanisms.46–48 Moreover, quEHRy is a

high-precision system that, to the best of its ability, refrains from

giving an incorrect answer. Like the important principle of “non-

maleficence” in medical ethics to “do no harm,” quEHRy strives to

“give no incorrect answer.” Specifically, rather than providing likely

incorrect answers to the clinician, it favors responses such as “No

answer available” or “Unable to understand the question,” thereby

further increasing trust in the system.49

OBJECTIVE

Our objectives of this article are to:

• Build an end-to-end EHR QA pipeline taking in a natural lan-

guage question and returning an exact answer with high preci-

sion along with an interpretable visualization highlighting

underlying information needs.
• Convert LFs to FHIR queries for fetching structured information

from EHRs.
• Integrate a third-party concept normalizer, a new time frame

classifier, and an existing semantic parser for end-to-end LF

generation.
• Evaluate the QA components in isolation and end-to-end on 2

clinical datasets for a comprehensive performance assessment.

While the data28,29 and the semantic parsing component35 have

been published separately, all other parts of the QA system, includ-

ing the contributions listed above, are novel. Further, we make our

datasets and source code publicly available.

DATA

We use 2 clinical QA datasets in this study.28,29 Each consists of

questions answerable using EHR data along with their correspond-

ing LFs. An LF represents the meaning of a natural language utter-

ance unambiguously (thus, machine-understandable). In our

datasets, these representations are based on k-calculus, consisting of

logical predicates and their arguments. There are 2 broad categories

of logical predicates, concept and nonconcept predicates, which dif-

fer in terms of function. Concept predicates (eg, has_concept())

retrieve information from the EHR while nonconcept predicates
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(eg, latest()) manipulate this information. There may be many or

few predicates in a LF depending upon the complexity or informa-

tion requirement of a question. Concept predicates assume 3 types

of arguments: concept variable (an instantiation of the concept

type), concept code (from standard ontology such as Unified Medi-

cal Language System [UMLS]), and implicit time frame (temporal

restrictions on the events such as visit for events that happened dur-

ing the current encounter). For other types of predicates, arguments

such as location references (eg, BICU) and measurements (eg, 38C)

are used to supply the required information for retrieving an

exact answer. For instance, a natural language question “What is the

result of the CT scan?” is semantically represented as LF

“latest(kx.has_concept(x, 0040405, visit))” where latest() and has_con-

cept() are logical predicates with x (a variable of type concept),

0040405 (UMLS concept unique identifier [CUI] for X-Ray Computed

Tomography which is matched with the concept codes found within

the FHIR resources) and visit (implicit time frame signifying the current

hospital visit) as arguments. Table 1 provides more examples, while

further details can be found in prior work.27,29

One of the datasets was constructed by a physician and an infor-

maticist using an annotation tool based on FHIR.28 We refer to this

dataset as FHIRDATA. The annotators were asked to create questions

that could be answered using the data from the FHIR server that they

were able to review. They were also asked to indicate the answers to

these constructed questions via the annotation tool. The CUI for the

concepts in the question are automatically populated based on the

selected answer from FHIR. Notably, this can result in a more granu-

lar concept than is identifiable from the question alone. This is a rep-

resentative dataset for the task as it originates from a FHIR server

itself. The questions in the other dataset, which we refer to as ICU-

DATA, were collected from shadowing clinicians in an intensive care

unit (ICU) setting26 and further annotated with their corresponding

LFs.29 This dataset captures the realistic information needs of the

task. Some examples and the descriptive statistics for both datasets

are presented in Table 1. We used a local FHIR instance with syn-

thetic data50 for FHIRDATA. For ICUDATA, we manually inserted

answers to the questions into this same server. More details about

the datasets are included in Supplementary Section S1.

MATERIALS AND METHODS

System overview
An overall view of our system is presented in Figure 1. Again, the

design philosophy is a high-precision tool that “knows what it does

Table 1. Examples and descriptive statistics

(a) Examples from the datasets used in this study. Q: question; LF: logical form.

Corpus Example questions with logical forms

FHIRDATA Q: Does the patient have any history of Otitis media?

LF: delta(kx.has_concept(x, C0029882, history))

Q: When did she last visit the clinic?

LF: time(latest(kx.has_concept(x, C0422299, pmh)))

Q: What was the dose for amoxicillin?

LF: dose(latest(kx.has_concept(x, C1298551, pmh)))

Q: When did the Alzheimer’s disease start?

LF: time(earliest(kx.has_concept(x, C0002395, pmh)))

Q: What was the highest hemoglobin A1c value in the past 4 years?

LF: max(lambda(kx.has_concept(x, C0366781, history) ^ time_within(x, ‘in the past 4 years’)))

Q: Has his hemoglobin A1c ever been less than 6?

LF: delta(kx.has_concept(x, C0366781, history) ^ less_than(x, ‘6’))

ICUDATA Q: Do they have any chest drain?

LF: delta(kx.has_concept(x, C0008034, visit))

Q: Do we know any positive microscopy for this patient?

LF: delta(positive(kx.has_concept(x, C0026018, visit)))

Q: What is his mental status?

LF: latest(kx.has_concept(x, C0278060, status))

Q: What was the pre-op echocardiogram result?

LF: latest(kx.has_concept(x, C0013516, visit) and time_within(x, preoperative))

Q: How many blood products have been administered in the past 25 hours?

LF: sum(kx.has_concept(x, C0456388, visit) and time_within(x, ‘past 25 hours’))

Q: Did the patient temperature exceed 38C in last 48 hours?

LF: delta(kx.has_concept(x, C0005903, visit) and greater_than(x, ‘38 C’) and time_within(x, ‘last 48 hours’))

(b) Descriptive statistics of the datasets. #: count.

Metric Corpus

FHIRDATA ICUDATA

# of queries 966 400

# of unique predicates 20 30

Mean # of predicates per query 3.59 3.33

# of unique words 749 467

Mean # of words per query 7.79 6.04
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not know” as best as possible to foster user trust in the answers.

This means that questions with misspellings, out-of-vocabulary ter-

minology, or unseen structures will intentionally fail (since QA is

interactive, the user still can reformulate the question). This is

accomplished primarily by a carefully maintained lexicon mapping

nonmedical terms to logical functions.35 Additionally, the user is

presented with a visual interpretation of the LF to validate the ques-

tion was understood correctly.

If used as a black box, our proposed system will return an exact

answer and its justification for a given natural language question

(see Figure 3). If a question is unanswerable using the EHR data or

the system is unable to understand it, no answer is returned

(favoring precision over recall). Instead, an explanation regarding

this inability is returned to help the user understand what went

wrong (eg, what words were not understood) instead of returning a

wrong or meaningless answer. A question is passed through the 3

main components of the system—concept normalization, semantic

parsing, and time frame classification—all of which play an impor-

tant role in constructing a LF. The predicted LF is further passed to

a query mapping module that translates it to FHIR queries and

fetches required information from the EHR in the form of FHIR

resources. The returned resources are further processed by this mod-

ule to build the answer in a human-comprehensible format. The sys-

tem also returns a graphical representation of the predicted LF that

Figure 1. System overview.
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serves as a justification for the answer. This visualization helps the

user verify whether the system properly understood their query.

Concept normalization
This component is responsible for extracting different types of concepts

from a question. This separates the task of semantic parsing from con-

cept normalization and assists the semantic parser by providing specific

arguments to fill in a predicted logical tree (a LF with placeholders for

the arguments).35 Specifically, we extract patient references (eg, he,

she), temporal references (eg, today), location references (eg, BICU),

measurements (eg, 30C), and other hospital events (eg, admission, pre-

operative) using a simple rule-based system. The medical concepts (eg,

diabetes) in questions are extracted with MetaMap,51 a tool to extract

and map biomedical concepts to UMLS CUIs.52 We experiment using

gold concepts directly, picking the top-ranked/longest concept from

MetaMap, filtering candidates using EHR concepts before passing to

the next step (semantic parsing), and picking the longest concept from

EHR-filtered concepts. In the case where all EHR-filtered concepts are

passed, the concept prediction from candidates is postponed until after

the semantic parsing is completed.

Semantic parsing
We take a hybrid approach to convert questions into their correspond-

ing logical trees using a combination of rule-based and machine learn-

ing techniques.35 Candidate logical trees are generated using a

dependency tree-based lexicon and generation/filtering rules, then a sup-

port vector machine (SVM) classifier chooses a single tree. To generate

the logical trees, a lexicon maps natural language phrases to k-calculus

predicates (eg, “when” ! time(), “today” ! time_within()). For

details, see Supplementary Section S2 or Roberts and Patra.35 We

explored other neural models for the task, however, interestingly, they

perform worse than the employed lexicon-based approach.53

Implicit time frame detection
The semantic parser results in a logical tree that needs to be filled

with a time frame before it can be executed against a FHIR server.

Thus, we built a separate SVM to predict the implicit time frame for

a given question using simple n-gram features.

Query module
EHRs interfaced using a FHIR server expose a set of RESTful (REp-

resentational State Transfer style) APIs (Application Programming

Interfaces). We refer to these API calls as FHIR queries. These

queries return data in the form of FHIR resources (eg, Encounter,

Observation). The query module is responsible for mapping the pre-

dicted LF from earlier steps to its corresponding FHIR queries and

executing them against a FHIR server to access EHR data (see flow-

chart in Figure 2). This module also processes the responses from

the FHIR server and returns an answer.

Given the complex information needs of a clinical question, it is

often not possible that a single FHIR query can extract all the required

information. Thus, a series of FHIR queries is constructed for a given

LF based on the different logical predicates and their parameters. First,

the UMLS semantic type of the medical concepts passed to the has_

concept() predicate is used to determine the different types of FHIR

resources to be extracted. For example, for semantic type “Laboratory

or Test Result,” Observation resources are fetched. Due to the inherent

ambiguity in storing information using the FHIR standard,28 the

semantic types are oftentimes mapped to multiple FHIR resources. For

example, for the semantic type “Finding,” both Observation and

Condition resources are fetched. A complete list of such mappings is

provided in Supplementary Table S1. Second, the CUI is mapped to

synonymous medical codes from different vocabularies (eg, LOINC,

SNOMED CT) using UMLS. This is necessary as different types of

information are stored using different vocabularies.

Further, the implicit time frame is used to restrict the temporal

search space for fetching the FHIR resources. This is achieved using the

Encounter resources (used to record patient encounters) and the status

or time of resources. For example, for the implicit time frame visit, we

restrict the search to FHIR resources associated with the current patient

Figure 2. Flowchart showing the steps in the query module component of

quEHRy. The example question used in the flowchart is “When was the last

time his hemoglobin A1c dropped below 6%?”.

Journal of the American Medical Informatics Association, 2023, Vol. 30, No. 6 1095

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad050#supplementary-data
https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocad050#supplementary-data


Encounter resource. The descriptions for the other time frames are

available in Supplementary Table S2.

After fetching a set of FHIR resources using the concept predicates,

the functions derived from the nonconcept predicates are applied over

this set to construct an answer. Different nonconcept predicates accept

single or multiple resources as input and call for different sets of opera-

tions to be performed. For example, the latest() predicate returns the

most recent resource from the set of resources (using time-related infor-

mation from the FHIR resources). Another example of a nonconcept

predicate is time() that extracts the timestamp from a given resource.

Note that the structure of all the FHIR resources is different and thus the

same type of information are often stored as different attributes. For

example, time in the Observation resource is stored as effectiveDateTime

or effectivePeriod (depending upon its type) while for Condition it is

stored as onsetDateTime and/or abatementDateTime (based on its reso-

lution status). Other than the aforementioned example of nonconcept

predicates, there are more that operate on different (and oftentimes more

than one) parts of the resources such as location() that operate on body-

Site in Condition and Procedure. Our source code includes all such

attribute mappings. An end-to-end example is included in Supplemen-

tary Section S5.

Interface
To emphasize our vision for quEHRy and emulate its use in the real

world, we also implemented a chat-like interface (Figure 3). This is

part of a pilot Graphical User Interface.

Evaluation
We evaluate the 4 primary components (concept normalization,

semantic parsing, implicit time frame detection, and query module)

Figure 3. quEHRy interface where a user inputs their questions and the system responds with answers from the EHR.
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and end-to-end performance to assess each component’s impact on

the overall pipeline.

For concept normalization, we calculate accuracy by exact boundary

matching, marking the question as correct when all the concepts are pre-

dicted accurately. For medical concepts, the predicted CUI is further

matched with the ground truth. For time frame detection, we similarly

mark the question as correct when all time frames are predicted

correctly.

For semantic parsing, we calculate coverage (recall) and accuracy

for the intermediate logical trees and the final LF (including CUIs

and time frames). We perform leave-one-out cross-validation for all

the steps to maximize data use.

The answers produced by the query module are compared

against the ground truth answers to calculate accuracy. Since

quEHRy returns a single answer, ranking-based metrics (eg, MRR,

NDGC) are not appropriate. We, moreover, calculate precision of

the overall system by determining false positives, ie, when the system

returns an incorrect answer instead of refraining from giving an

answer. We also calculate the accuracy of fetching the correct FHIR

resources. Further, we calculate its coverage, ie, the proportion of

LFs that can be successfully handled by the query module.

RESULTS

The results of the system components are shown in Tables 2 and 3.

Using gold concepts, the precision (the most important measure

according to our QA user model philosophy) in providing an exact

answer is 98.33% and 90.91% for FHIRDATA and ICUDATA, respec-

tively. Interestingly, the precision remains at excellent levels

(94.03% and 87.79%) even after employing MetaMap to extract

the concepts. The recall of MetaMap for concept boundaries

(83.85% and 93.0%) is better than CUIs (41.51% and 90.25%).

For FHIRDATA, concept prediction accuracy drops significantly

when exact CUIs are matched (40.06%) as opposed to concept

boundaries (63.66%), both of which are low-to-moderate. Note:

while not shown here, we additionally experimented with cTAKES54

Table 2. Coverage and prediction results of different components of the QA pipeline on FHIRDATA

Component Using gold

concept

Top MetaMap

score

Longest

concept

Filter using

EHR concepts

Longest after filter

using EHR concepts

Result: % (#) [total¼ 966]

MetaMap generated concepts include gold Boundary

(recall)

– 83.85% (810)

MetaMap generated concepts include gold CUI

(recall)

– 41.51% (401)

Predicted concepts match gold Boundary (accuracy) – 54.04% (522) 49.59% (479) 49.38% (477) 63.66% (615)

Predicted concepts match gold CUI (accuracy) – 23.50% (227) 20.50% (198) 39.13% (378) 40.06% (387)

Generated logical trees include gold (recall) 100.00% (966) 83.64% (808) 78.88% (762) 99.17% (958) 87.06% (841)

Predicted logical tree matches gold (accuracy) 97.41% (941) 81.57% (788) 39.03% (377) 96.27% (930) 84.89% (820)

Predicted time frame matches gold (accuracy) 88.30% (853)

Generated logical forms include gold (recall) 100.00% (966) 45.45% (439) 47.10% (455) 42.34% (409) 54.45% (526)

Predicted logical form matches gold (accuracy) 86.23% (833) 19.25% (186) 9.21% (89) 33.54% (324) 34.16% (330)

Predicted FHIR response matches gold (accuracy) 97.41% (941) 22.77% (220) 10.14% (98) 38.51% (372) 39.13% (378)

Predicted answer matches gold (accuracy) 97.41% (941) 22.98% (222) 10.14% (98) 38.61% (373) 39.34% (380)

Predicted answer matches gold (precision)

[# correct responses/all responses]

98.33% [941/957] 94.42% [220/233] 50.52% [98/194] 94.67% [373/394] 94.03% [378/402]

Table 3. Coverage and prediction results of different components of the QA pipeline on ICUDATA

Component Using gold

concept

Top MetaMap

score

Longest

concept

Filter using EHR

concepts

Longest after filter

using EHR concepts

Result: % (#) [total¼ 400]

MetaMap generated concepts include gold Boundary

(recall)

– 93.00% (372)

MetaMap generated concepts include gold CUI

(recall)

– 90.25% (361)

Predicted concepts match gold Boundary (accuracy) – 66.50% (266) 60.75% (243) 67.00% (268) 86.50% (346)

Predicted concepts match gold CUI (accuracy) – 65.75% (263) 58.00% (232) 76.50% (306) 90.25% (361)

Generated logical trees include gold (recall) 100.00% (400) 89.00% (356) 87.75% (351) 98.50% (394) 97.00% (388)

Predicted logical tree matches gold (accuracy) 87.25% (349) 79.00% (316) 78.75% (315) 87.00% (348) 86.00% (344)

Predicted time frame matches gold (accuracy) 85.00% (340)

Generated logical forms include gold (recall) 100.00% (400) 85.00% (340) 83.75% (335) 92.50% (370) 92.50% (370)

Predicted logical form matches gold (accuracy) 74.75% (299) 48.75% (195) 43.75% (175) 56.50% (226) 67.50% (270)

Predicted FHIR response matches gold (accuracy) 87.75% (351) 55.50% (222) 50.00% (200) 63.50% (254) 73.25% (293)

Predicted answer matches gold (accuracy) 87.75% (351) 57.25% (229) 52.00% (208) 66.75% (267) 75.75% (303)

Predicted answer matches gold (precision)

[# correct responses/all responses]

90.91% [350/385] 88.76% [229/258] 91.19% [207/227] 81.85% [266/325] 87.79% [302/344]
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instead of MetaMap (as it generally has higher performance in many

clinical settings), but cTAKES only generated the correct concepts

for 32% of the questions in ICUDATA (as opposed to the 93% recall

for MetaMap).

The errors from concept normalization step seep into subsequent

layers of quEHRy, especially the query module. Logical tree recall

(100% using gold concepts, 87.06% and 97.0% otherwise) high-

lights the power of the employed lexicon whereas their prediction

performance (84.89% and 86.0%), specifically the difference of pre-

diction accuracy from recall, indicates the efficacy of the semantic

parsing. Time frame detection is separate from concept normaliza-

tion and semantic parsing, and thus has the same accuracy (88.3%

and 85.0%) across the different variations. LF coverage (100.0%

using gold concepts, 54.45% and 92.5% otherwise) is essentially the

amalgamation of MetaMap and logical tree recall. The query mod-

ule depends on the underlying CUIs in a LF to generate correct

FHIR responses and answers, thus a performance drop in CUI pre-

diction (gold ! 40.06% and gold ! 90.25%) affects the module’s

accuracy (97.41%! 39.34% and 87.75%! 75.75%).

A correctly predicted LF plays the most important role in the

whole pipeline. To understand the impact of errors made during the

prediction of various LF components, we use UpSet plots (Figure 4).

This chart helps identify which components contribute to the per-

formance (or error) of overall LF prediction.

We also conduct an error analysis of the incorrectly predicted

concepts (Table 4). For FHIRDATA, a majority of the incorrectly pre-

dicted concepts are broader than the gold concepts, eg, for the same

concept boundary “diabetes” the gold concept was “Diabetes

Figure 4. LF prediction errors for the different components of the system

pipeline.

Table 4. Error analysis of incorrectly predicted CUIs by the best per-

forming variant that selects the longest concept after filtering using

EHR concepts

(a) FHIRDATA

Boundary

match

Semantic

type match

Example Count

� � Ques: What was the dose for

amoxicillin?

212

Gold: Amoxicillin 200 MG Oral

Tablet—C1298551 [Clinical Drug]

Pred: Amoxicillin—C0002645

[Antibiotic]

� � Ques: When was the onset of her

diabetes?

44

Gold: Diabetes Mellitus,

Non-Insulin-Dependent—C0011860

[Disease or Syndrome]

Pred: Diabetes—C0011847 [Disease

or Syndrome]

� � Ques: How many times has he

followed up on his asthma?

311

Gold: Asthma follow-up—C1273970

[Health Care Activity]

Pred: Asthma—C0004096 [Disease

or Syndrome]

� � Ques: Was he ever admitted to an ER? 12

Gold: Emergency room admission—

C0583237 [Health Care Activity]

Pred: Admitted to—C4482331

[Health Care Activity]

(b) ICUDATA

Boundary

match

Semantic

type match

Example Count

� � Ques: When was the drainage applied? 8

Gold: Drainage procedure—C0013103

[Therapeutic or Preventive Procedure]

Pred: Body Fluid Discharge—C0012621

[Body Substance]

� � Ques: How old is the line? 4

Gold: Intravenous Catheters—

C0745442 [Medical Device]

Pred: Intravascular line—C0700221

[Medical Device]

� � Ques: Does she have a diaphragmatic

tear?

25

Gold: Rupture of diaphragm—

C0238088 [Injury or Poisoning]

Pred: Respiratory Diaphragm—

C0011980 [Body Part, Organ, or

Organ Component]

� � – 0

Note: Gold concept boundaries are bolded while the predicted boundaries

are underlined.

Ques: question; Gold/Pred: gold/predicted concept in the form of Display

Name—CUI [Semantic Type].

1098 Journal of the American Medical Informatics Association, 2023, Vol. 30, No. 6



Mellitus, Non-Insulin-Dependent—C0011860” while the predicted

concept was “Diabetes—C0011847.” See Supplementary Table S5

for the complete output of MetaMap. We experimented with simple

methods using UMLS to automatically expand these broad concepts

to include narrower concepts in the FHIR queries, but this approach

greatly damaged precision for only a moderate gain in recall. We

thus leave this specific problem to future work.

For ICUDATA, most predicted concepts are neither too broad nor

too narrow than the gold concepts. Since ICUDATA was not built off

of an EHR server, the gold-annotated concepts are not always spe-

cific, in fact, the concepts were manually normalized by searching

UMLS and thus likely to be subjective. For example, for the question

“Was she hypertensive?,” the gold concept boundary is hypertensive

with CUI C0520539 (Hypertensive episode, semantic type disease)

while a predicted concept boundary was hypertensive with CUI

C0857121 (Hypertensive [finding], semantic type finding). Here,

the concept boundary is predicted correctly but the predicted CUI is

different. Any performance drop because of such mismatches is an

artifact of the subjective nature of manual concept normalization

annotations. For example, if the annotator instead annotated the

same information of hypertension as a finding (instead of disease),

this prediction would have been correct. This highlights the vulner-

ability of such systems to the different ways in which the same medi-

cal information can be represented. Thus, we annotated an

Figure 5. The flow of errors through quEHRy for both of the datasets. The length of the bars corresponding to the different components represents a cumulative

measure of correct predictions or generations (eg, at any correct bar in the graph, the proportional number of questions had correct responses for all the previous

steps).
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additional set of medical concepts for each question in ICUDATA to

compensate for such annotation bias. Specifically, MetaMap was

used to generate top 5 candidate concept CUIs for each concept

boundary in the dataset and an annotator marked which among

these are valid. We found that the CUI coverage improved signifi-

cantly after this relaxation, where we marked a predicted concept as

correct if it belonged to the set of gold concepts for a question (as

opposed to matching it with just a gold concept). We take these

additional concepts into account during our evaluation for

ICUDATA.

Finally, the flow of errors through quEHRy is shown in Figure 5.

Note that for FHIRDATA, the system gracefully handles a majority of

the questions in the “Incorrect” flow by responding with “No

Answer.” For ICUDATA, almost half of the “Incorrect” flow ques-

tions move toward “Correct” (eg, a correct answer is returned for

an incorrect yet plausible time frame) or “No Answer.”

DISCUSSION

We designed an end-to-end QA system that takes a natural language

question as input and precisely returns an exact answer from struc-

tured EHR data along with a visualization depicting the system’s

interpretation of the question. To achieve this, we developed an

EHR QA-tailored time frame classifier and also a query module that

enables us to query the EHRs using the predicted LFs—by convert-

ing them to FHIR queries for fetching information from EHRs.

Identification of medical concepts in the questions contributed to

the majority of errors in the system’s performance. We annotated

additional CUIs for ICUDATA, however, the medical concept nor-

malization errors in FHIRDATA surface a deeper issue with using

application-agnostic tools. The issue reflects how the information

stored in EHRs are “specific” while the concepts extracted from

questions are “broad.” While one may argue that the questions do

not contain sufficient information in order to map their underlying

concepts to the specific concepts actually present in EHRs, it is usu-

ally not the case with naturally asked questions (that tend to be

broad). Thus, there is instead a need to build a QA-specific concept

normalizer that understands the context (with respect to the variety

of concepts used in an EHR) while predicting a concept. As this is

not the sole focus of this work and is a well-studied research area,55

we leave this interesting problem to future research.

The coverage (and thereby prediction) of logical trees relies heav-

ily on the extracted concept boundaries. For the best performing

variant for automatically selecting a concept (filter using EHR con-

cepts and choose longest), among the questions where the gold logi-

cal tree was not generated, most were with an incorrect concept

boundary prediction (124 out of 125 for FHIRDATA, 8 out of 12 for

ICUDATA). For example, for “What is the dose of metoprolol?”, the

gold boundary is “metoprolol” but the predicted concept boundary

is “dose of metoprolol.” Thus, while the gold logical tree for this

question is dose(latest(kx.has_concept(x))) (corresponding to the

concept-substituted question “What is the dose of [concept]?”), the

semantic parser incorrectly predicted latest(kx.has_concept(x)), cor-

responding to the concept-substituted question “What is the

[concept]?”.

QA work involving structured data in the general domain falls

broadly into 2 categories based on the underlying data structure,

namely, graph56,57 and table.58 EHRs, on the other hand, are rarely

in the form of standardized graph or table structures. However, sev-

eral studies explored methods with EHR data formatted as

graphs31,59 or tables,30,60,61 perhaps inspired by the public

availability of EHR data in these formats. Differently, in this work,

we tackle the problem of QA from EHRs using a data model in use

in real-life EHRs, ie, the FHIR standard. Ours is also the first work

to explore an end-to-end QA solution from FHIR servers.

There are several limitations to this work. The size of the eval-

uated datasets is relatively small (with 966 and 400 questions) and a

larger dataset may better estimate the system’s performance. The

proposed technique relies on a lexicon, which needs to be hand-

crafted to maintain the quality of the overall system. This intention-

ally limits the ability of such systems to generalize to the kinds of

questions that were not covered by a lexicon. However, a lexicon

provides a robust mechanism that enables a QA system to “know

what it does not know” (improves both reliability and interpretabil-

ity). Additionally, the philosophical choice of returning a single,

exact answer or nothing at all is admittedly an assumption, which

will require user testing to validate. Finally, since our focus here is

structured data and factoid questions, the system is not designed for

more open-ended questions that are more likely to be answerable

using unstructured EHR data.

Future work can explore the techniques to automatically harvest

lexicon from existing datasets,62,63 however, this will first require

building a sizable EHR QA dataset. Further, though our query mod-

ule is exhaustive enough to capture most logical predicates, its capa-

bility depends on the variety of logical predicates that are

successfully handled or, in other words, present in our datasets. To

expand the variety of questions, one may need to extend the lexicon

and/or the query module (to define mappings for new logical predi-

cates). That said, expanding the current lexicon and query module is

simple and merely requires adding a few mappings from phrases to

logical predicates and from logical predicates to FHIR resources,

respectively. More generally, future work will also explore the

usability of this system when deployed in a clinical setting, as well as

the integration of QA approaches for unstructured notes to comple-

ment this study’s focus on structured information.

CONCLUSION

We constructed an end-to-end QA system, quEHRy, to allow users

to query EHRs using natural language questions. It consists of multi-

ple components, yet it is a high-precision and interpretable system

that fits clinical use-cases. To further improve the performance and

coverage of the proposed system, a future direction of research is to

focus on building QA-specific concept normalization systems.
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