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Abstract.—In molecular phylogenetics, partition models and mixture models provide different approaches to 
accommodating heterogeneity in genomic sequencing data. Both types of models generally give a superior fit to data 
than models that assume the process of sequence evolution is homogeneous across sites and lineages. The Akaike 
Information Criterion (AIC), an estimator of Kullback–Leibler divergence, and the Bayesian Information Criterion (BIC) 
are popular tools to select models in phylogenetics. Recent work suggests that AIC should not be used for comparing 
mixture and partition models. In this work, we clarify that this difficulty is not fully explained by AIC misestimating the 
Kullback–Leibler divergence. We also investigate the performance of the AIC and BIC at comparing amongst mixture 
models and amongst partition models. We find that under nonstandard conditions (i.e. when some edges have small 
expected number of changes), AIC underestimates the expected Kullback–Leibler divergence. Under such conditions, 
AIC preferred the complex mixture models and BIC preferred the simpler mixture models. The mixture models selected 
by AIC had a better performance in estimating the edge length, while the simpler models selected by BIC performed 
better in estimating the base frequencies and substitution rate parameters. In contrast, AIC and BIC both prefer simpler 
partition models over more complex partition models under nonstandard conditions, despite the fact that the more 
complex partition model was the generating model. We also investigated how mispartitioning (i.e., grouping sites that 
have not evolved under the same process) affects both the performance of partition models compared with mixture 
models and the model selection process. We found that as the level of mispartitioning increases, the bias of AIC in 
estimating the expected Kullback–Leibler divergence remains the same, and the branch lengths and evolutionary 
parameters estimated by partition models become less accurate. We recommend that researchers are cautious when 
using AIC and BIC to select among partition and mixture models; other alternatives, such as cross-validation and 
bootstrapping, should be explored, but may suffer similar limitations [AIC; BIC; mispartitioning; partitioning; partition 
model; mixture model].

The ongoing development of high-throughput 
DNA sequencing techniques provides us with large 
amounts of data for molecular phylogenetic inference. 
Heterogeneity among homologous sequences in these 
data may be due to lineage- and site-specific differences 
in the evolutionary process. This means that simple 
homogeneous models, which assume equal rates for all 
sites and lineages, may be inadequate and lead to incor-
rect phylogenetic inference (Kainer and Lanfear 2015).

Two types of models are commonly used to incor-
porate heterogeneity in the evolutionary process when 
analyzing sequencing data: partition models and mix-
ture models. A partition model divides the alignment 
into subsets of sites (blocks). All sites from the same 
block are assumed to have evolved under the same 
evolutionary process, and a different evolutionary 
model, including a substitution model and a tree, 
is fit to each block (Lanfear et al. 2012). Depending 
on the type of the partition models chosen (e.g., an 
edge-unlinked partition model), the preferred model 
of evolution could differ in the edge lengths, or in 
the parameters of the substitution model (Minh et al. 
2020). In contrast, a mixture model does not assign 
sites to different blocks; rather, it fits more than one 
evolutionary model to each site. Each of these evo-
lutionary models is called a class. A weight factor is 
placed on each class such that the weights from all 

classes sum up to one (Lopez et al. 2002). There is evi-
dence to show that both partition models and mixture 
models can provide a better fit to multigene sequence 
alignments than homogeneous models (Lartillot and 
Philippe 2004; Zhou et al. 2007; Le et al. 2008; Darriba 
and Posada 2015; Baca et al. 2017).

When using partition models, the choice of partition 
is sometimes based on a priori information about the 
sequence alignment, for example, by grouping sites 
based on codon position and/or gene boundaries (Pagel 
and Meade 2004). More commonly, choosing the parti-
tion is treated as part of model selection (Lanfear et al. 
2012). The number of possible partitions is typically far 
too large to explore exhaustively, so algorithmic (heuris-
tic) approaches have been developed to choose between 
partitioning schemes. For example, PartitionFinder 
and PartitionFinder2 implement heuristic methods to 
construct preferred partitioning schemes. Users need 
to predefine an initial set of blocks. The partitioning 
scheme is then selected by merging blocks together. The 
decision to merge blocks is typically based on criteria 
such as AIC, AICc, and BIC (Lanfear et al. 2012). For 
data sets with many loci, this may be computationally 
infeasible, in which case blocks can be merged based 
on the similarity of estimated model parameters such 
as base frequencies and rate substitution parameters 
(Lanfear et al. 2014, 2017).
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In recent years, methods have been developed for 
selecting good partitioning schemes, and investigat-
ing the effects of underpartitioning and overpartition-
ing on phylogenetic analyses (Brandley et al. 2005; 
Brown and Lemmon 2007; McGuire et al. 2007; Li et 
al. 2008; Rota and Wahlberg 2012; Leavitt et al. 2013; 
Kainer and Lanfear 2015; Baca et al. 2017; Lanfear 
et al. 2017; Tagliacollo and Lanfear 2018; Kim and Sy 
2020). The effects of underpartitioning and overparti-
tioning were examined under different measures, such 
as tree topologies, edge lengths, edge supports and 
information criterion (IC) scores including AIC and 
BIC. Based on different measures, the results differed. 
One study showed that overpartitioning led to worse 
IC scores than underpartitioning (Kainer and Lanfear 
2015). A few studies showed that the choice of parti-
tioning schemes made no difference to the inferred 
topologies, edge lengths or both (Brown and Lemmon 
2007; Cameron et al. 2012; Kainer and Lanfear 2015). 
However, other studies showed the opposite results: 
the choice of partitioning schemes affects tree topolo-
gies, edge lengths, and edge support (Ho and Lanfear 
2010; Rota and Wahlberg 2012; Leavitt et al. 2013).

Underpartitioning and overpartitioning are not the 
only issues when partitioning data. Mispartitioning, 
in which sites are partitioned to the incorrect block, 
can also lead to inaccurate inferences in both the phy-
logenies and evolutionary models. However, it is not 
guaranteed that sites contained in the same subset 
have evolved under the same evolutionary process in 
the good partitioning scheme chosen by the traditional 
approach or even by the algorithmic approach. This 
is because the latter requires a user predefined parti-
tioning scheme and some sites may have been incor-
rectly partitioned by the predefined scheme. Brown 
and Lemmon (2007) and Crotty and Holland (2022) 
explored the effects of mispartitioning. In their simu-
lations, Brown and Lemmon (2007) used bipartition 
posterior probabilities as a guideline, and found that 
the errors produced by mispartitioning were similar to 
the errors from underpartitioning. Crotty and Holland 
(2022) found that the accuracy of the topologies and 
edge lengths inferred by the partition models decreased 
as the levels of mispartitioning increased. In particular, 
in their first simulation, if the proportion of incorrectly 
partitioned sites were 10% or greater, all the topologies 
estimated by the partition models were different to the 
generating topologies.

Until recently, most implementations of mixture 
models have been in a Bayesian framework (Pagel and 
Meade 2004; Whelan and Halanych 2017), and there 
are some protein mixture models within a maximum 
likelihood (ML) framework implemented in IQ-TREE2 
(Minh et al. 2020). However, these models have focused 
on mixtures of substitution processes rather than mix-
tures of edge weights. Jayaswal et al. (2014) explored 
models that allowed for heterogeneity across both sites 
and across lineages. In contrast to most other software, 
they also allowed for compositional heterogeneity; how-
ever, they did not have a software implementation that 

allowed for optimization of the tree topology. Recently, 
the GHOST mixture model (General Heterogeneous 
evolution On a Single Topology) (Crotty et al. 2020) 
has been implemented in a likelihood framework in 
IQ-TREE2 (Minh et al. 2020), this allows users to con-
currently search model space and tree space, with more 
than one model fitted to each set of sites (the models are 
restricted to being stationary and reversible).

Some studies have investigated the performance 
of partition models and mixture models. In Whelan 
and Halanych (2017), simulations were performed to 
assess the performance of partition models and CAT 
mixture models. The CAT model is a Bayesian mixture 
model using a Dirichlet process prior to allow for mul-
tiple classes of equilibrium frequencies (Lartillot and 
Philippe 2004). The results showed that the CAT mix-
ture models had poorer performance and higher com-
putational time than the partition models. Therefore, 
the authors recommended that partition models should 
be considered first when dealing with heterogeneous 
data, and that caution should be taken when using the 
mixture models. However, results in Crotty et al. (2020) 
suggest that GHOST mixture models are able to detect 
and recover a subtle evolutionary signal from empir-
ical data. Crotty et al. (2020) analyzed a data set that 
contained some electric and nonelectric fish and found 
that the GHOST mixture models recovered a mixture 
component with edge lengths suggesting convergent 
evolution of the electric organ in sodium channel 
genes—because this mixed signal occurred within a 
single gene, models partitioned based on gene bound-
aries would not be able to detect it. Crotty and Holland 
(2022) extended this work further and, focusing solely 
on the AIC optimality criterion, found that mixture 
models performed better than partition models, under 
different levels of mispartitioning settings, in terms of 
the accuracy of estimated topologies and edge length.

Users of both mixture models and partition mod-
els require some way of deciding which, amongst the 
large variety of possible models, provides the best fit 
to a particular data set. In both of these cases (partition 
vs. mixture), the evolutionary processes are assumed 
to be reversible (and therefore also stationary) over 
each edge. The most commonly used likelihood-based 
model selection tool in a phylogenetic context (Posada 
and Buckley 2004) include the AIC (Akaike 1973 ) and 
BIC (Schwarz 1978).

AIC incorporates the Kullback–Leibler divergence 
(KLD) (Akaike 1973), which measures the distances 
between the true model that generated the data and 
an approximating model (Kullback and Leibler 1951). 
In reality, we do not know the true model of observed 
data, so we cannot use KLD directly to measure the 
performance of a model. We can, however, estimate the 
relative expected Kullback–Leibler divergence (rEKL) 
from the observed data (Burnham and Anderson 2002). 
AIC does not require knowledge of the underlying true 
model of the observed data; only the ML of the approxi-
mating model, and the complexity of the model defined 
by the effective number of parameters, q.
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BIC compares the modified version of the Bayesian 
posterior probability among candidate models, and 
selects the model with the best log-likelihood (lnL) 
after taking into account the penalty factor (i.e., q ln(n), 
where n is the sample size) (Schwarz 1978). Similarly 
to AIC, BIC also relies on the ML of a candidate model 
but BIC differs from AIC in the penalty term calculation 
(Neath and Cavanaugh 2012).

AIC and BIC are both widely used in model selection, 
and the best-fit models for the observed data chosen by 
AIC and BIC are often different (Ota et al. 2000; Posada 
and Buckley 2004; Dziak et al. 2020). Dziak et al. (2020) 
compared AIC and BIC in respect to the concepts of sen-
sitivity (i.e., “suggesting enough parameters to accu-
rately model the patterns, processes, or relationships in 
the data”) and specificity (i.e., “not suggesting nonexis-
tent patterns, processes, or relationships”). The authors 
showed that AIC emphasizes sensitivity whereas BIC 
emphasizes specificity (Dziak et al. 2020). Moreover, 
compared with the AIC, the BIC tends to choose mod-
els with fewer parameters and is a “consistent” model 
selection criterion (Claeskens and Hjort 2008; Dziak et 
al. 2020). A consistent model selection criterion has a 
probability of choosing the correct model approaching 
one, given that the true model is one of the candidate 
models, as the sample size approaches infinity (Rao and 
Wu 1989). In other words, AIC allows complex mod-
els more often than BIC does, and as the sample size 
approaches infinity, the probability remains positive 
that AIC will select a model with more parameters than 
is necessary.

There is a rich body of literature investigating the use 
of AIC and BIC in selecting simple homogeneous mod-
els in phylogenetics (Posada and Crandall 2001; Posada 
and Buckley 2004; Sullivan and Joyce 2005; Holder et 
al. 2010; Luo et al. 2010; Boettiger et al. 2012; Rau and 
Maugis-Rabusseau 2018). There has been little investi-
gation of the use of AIC and BIC in selecting among 
partition models and among mixture models. AIC often 
chooses complex models over simpler models, while 
BIC inclines to favor the simpler models (Anderson and 
Burnham 2004; Boettiger et al. 2012; Jhwueng et al. 2014; 
Dziak et al. 2020). In addition, when the parameters are 
near the boundaries of the parameter space, both AIC 
and BIC may perform poorly in model selection (Self 
and Liang 1987; Ota et al. 2000; Jhwueng et al. 2014; 
Susko and Roger 2020). The scenario of the parameters 
being near the boundaries of the parameter space was 
referred to by Jhwueng et al. (2014) as “nonstandard” 
conditions. The authors showed that these nonstandard 
conditions occur when any of the edges in a phylogeny 
have fewer than 5 expected substitutions per alignment 
(Jhwueng et al. 2014). Similarly, Susko and Roger (2020) 
showed that nonstandard conditions also occur when 
sequences are closely related since the edge lengths for 
these sequences are near zero. Under these nonstan-
dard conditions, AIC is a negatively biased estimator 
of the rEKL, and BIC may also be problematic to use 
under such conditions.

In phylogenetics, the nonstandard conditions are not 
rare scenarios and can often occur (Felsenstein 2004). 
Using AIC or BIC under such conditions may lead to 
choosing a poor model that cannot best explain the data. 
This issue is likely to be more prevalent for mixture and 
partition models due to them being more parameter 
rich. In their simulations, Crotty and Holland (2022) 
found that, under standard conditions, AIC always 
preferred partition models over mixture models, when 
the proportion of allocation of mispartition sites was 
under 35%, despite the better performance of mixture 
models in inferring the topologies and edge lengths. 
In this paper, we extended these results from Crotty 
and Holland (2022) and investigated the performance 
of AIC further in nonstandard conditions. Moreover, 
we also evaluated the performance of BIC in selecting 
among partition and mixture models under all condi-
tions and compared the performance of AIC and BIC. 
Crotty and Holland (2022) concluded that the reason 
for the poor performance of AIC could be that partition 
models have an “inflated likelihood” compared with 
mixture models. In our simulations, we examined the 
performance of AIC from another perspective, that is, 
whether AIC estimates the rEKL accurately under stan-
dard and nonstandard conditions. If not, we wanted 
to investigate whether this misestimation is another 
reason to explain preference of AIC for partition mod-
els over mixture models even when they are severely 
mispartitioned.

In this study, we aimed to investigate the use of AIC 
and BIC to compare partition models and mixture 
models in standard and nonstandard conditions and 
we incorporated simulations to address three main 
questions: (1) Is AIC an unbiased estimator of the rEKL 
when applied to either partition models or mixture 
models under either standard or nonstandard condi-
tions, and if so, is there a bias that differs systematically 
for partition models and mixture models? Does it differ 
based on the accuracy of the proposed partition? (2) Are 
models chosen by AIC the same as the ones chosen by 
BIC? (3) Do the models preferred by AIC and BIC under 
various levels of mispartitioning generally lead to accu-
rate phylogenetic inference in terms of tree topologies, 
edge lengths, and substitution model parameters?

Materials and Methods

Simulations

To create heterogeneous data, we simulated two 
multiple sequence alignments (MSAs) under two dif-
ferent simple homogeneous models of DNA evolu-
tion. Each model includes a substitution model and an 
edge-weighted phylogenetic tree (the tree topology was 
fixed). The differences between these two models were 
only in the edge lengths and the model parameters. 
Each MSA contained 8 taxa and 1000 sites. These two 
MSAs were then concatenated together giving an MSA 
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with 2000 sites. This was equivalent to generating the 
concatenated MSA under a two-block unlinked edge 
lengths partition model (P-UEL).

To simulate a situation where the initial choice of 
blocks does not properly account for the heterogeneity 
in the concatenated MSA (i.e., mispartitioning), we ran-
domly selected a proportion of 0%, 5%, 10%, 15%, . . ., 
up to 50% of sites from each block and swapped them. 
That is, the sites drawn from the first block were placed 
in the second block, and the sites drawn from the sec-
ond block were placed in the first block. This process 
was repeated 100 times for each proportion of misparti-
tioned sites giving a total of 1100 MSAs.

Three sets of simulations were created under stan-
dard, mildly nonstandard and extremely nonstandard 
conditions (denoted as standard, mild, and extreme). 
The generating trees for all simulations had the same 
topologies but different edge lengths (Figure 1). We 
used the same tree topology as that in Jhwueng et al. 
(2014). In the standard simulation, all edge lengths were 
randomly drawn from an exponential distribution with 
a mean of 0.06, such that the expected number of substi-
tutions per block for each edge in both trees was greater 
than 5. (Where the expected number of substitutions is 
the product of the edge length and the number of sites 
in the block.) For the mild simulation, all edges in the 
tree have edge lengths of 0.005, that is, the expected 
number of simulated substitutions per block for each 
edge was 5 (as in Jhwueng et al. (2014)). The second 

generating tree in the mild simulation had edge lengths 
of either 0.005 or 0.001. That is, the expected number 
of substitutions per block for each edge was either 5 or 
1. The second tree had the potential to generate a long 
branch attraction (LBA) artifact as the long edges do 
not form a monophyletic group. For the extreme simu-
lation, both generating trees had edge lengths of either 
0.005 or 0.001 and both trees had potential to cause LBA 
problems.

The parameters of the generating substitution mod-
els are the same for all three simulations (Table 1). The 
method of creating the substitution rate parameters and 
base frequencies was the same as in Crotty et al. (2020). 
The G ↔ T rate is fixed at 1, and the other 5 transition 
rates were drawn randomly from a uniform distribution 
in [0.5,5]. To generate random base frequencies that were 
not too extreme, we randomly drew four uniform ran-
dom numbers on [0,1], and normalized them to sum to 
0.6, then we added 0.1 to each value.

We fitted two partition models and two mixture mod-
els to each MSA. These models are a two-block P-UEL 
partition model, a two-block linked edge lengths parti-
tion model (P-LEL), a two-class linked GTR parameters 
GHOST mixture model (M-LGP) and a two-class unlinked 
GTR parameters GHOST mixture model (M-UGP). A 
detailed explanation of these models is shown in the 
Models and Performance Measures section.

The data were generated under Seq-Gen-1.3.4 
(Rambaut and Grass 1997) and model fitting and tree 
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Figure 1. Generating trees used in the simulations. Trees are not to scale. Three pairs of trees {A,B}, {C,D}, and {D,E} are the generating trees 
for standard, mild, and extreme simulations, respectively. The edge lengths for tree C and the longer edge lengths for trees D and E are the same 
with a length of 0.005. The shorter edges of trees D and E are 0.001.

Table 1 Parameters of the generating two-block unlinked edge lengths partition models (P-UEL) for three simulations

Model Rate matrix Base frequencies 

GTR (block 1) Q1 = (1.56, 3.20, 4.02, 1.32, 0.90, 1) π1 = (0.28, 0.34, 0.19, 0.19)
GTR (block 2) Q2 = (1.17, 2.41, 1.79, 2.65, 2.99, 1) π2 = (0.17, 0.30, 0.37, 0.16)
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search were performed in IQ-TREE2 (Minh et al. 2020). 
Tree search was the IQ-TREE2 default tree search that 
combines hill-climbing algorithms and a “stochastic per-
turbation method,” with 100 parsimony trees and BIONJ 
trees as the starting trees (Minh et al. 2020). All results 
were analyzed using the R package phangorn (version 
3.6.2) (Schliep 2011; R Core Team 2019). Custom bash 
scripts are used to extract relevant parts of the results 
from IQ-TREE2 for processing in R. The data, R codes and 
bash scripts, are available in the Supplementary Material 
available on Dryad (doi:10.5061/dryad.1jwstqjwj).

Models and Performance Measures

Partition models and mixture models Pagel and Meade 
(2004) derived an expression for a generalized mixture 
model and showed that both partition and mixture mod-
els are special cases of this generalized mixture model.  
This expression is Equation (5.1) in Gascuel (2005) and 
it assumes that only one specific tree is used for the gen-
eralized mixture model. However, heterogeneities may 
also occur along all edges (Crotty et al. 2020), so we 
modified this equation assuming heterogeneities exist 
across both sites and edges, and the lnL of an alignment 
under a generalized mixture model is

ln (L(D|M1,M2, . . . ,MK , T1, T2, . . . , TK))

= ln

(∏
i

∑
k

αikL(Di|Mk, Tk)

)

=
∑
i

ln

(∑
k

αikL(Di|Mk, Tk)

)
,

(1)

where L (D | M1,M2, . . . ,MK,T1,T2, . . . ,TK) is the likeli-
hood of an alignment under the mixture model, K is the 
total number of classes, Mk and Tk are the substitution 
model and the tree of the kth class, respectively, D is an 
alignment, Di is site i in D, αik is the weight for the kth 
class for site i and 

∑
kαik = 1.

In Equation 1, if the weight of each class is held constant 
across all sites, then we obtain the lnL function of an align-
ment for a mixture model (Gascuel 2005). Alternatively, 
if the weight of one particular class is set to 1, and the 
weights of the rest of the classes are set to 0 for some sites, 
then we get the lnL function for a partition model. In other 
words, the structure of a partition model is to fit one evo-
lutionary model to a subset of sites, and different subsets 
of sites are presumed to have evolved under different evo-
lutionary processes. This partition structure is assumed to 
be known, and the equation of the partition model can be 
derived from Equation 1 as follows.

ln (L(D|M1,M2, . . . ,MK , T1, T2, . . . , TK))

=
K∑

k=1

∑
i∈Sk

ln (wikL(Di|Mk, Tk)) ,
(2)

where K is the total number of partitions, and if site i is 
in the set Sk = {i: wik = 1}, otherwise wik = 0.

The four models we used in the simulations were 
P-LEL, P-UEL, M-UGP, and M-LGP. The first two mod-
els are both two-block partition models and the last 
two models are both two-class GHOST mixture mod-
els. In a P-LEL model, all blocks of sites share the same 
set of edge lengths but have their own substitution rate 
parameters. The partitioning schemes used for both fit-
ted partition models were the same, treating the first 
1000 sites as a block and the second 1000 sites as another. 
For the groups of MSAs with different proportions of 
mispartitioned sites, this was equivalent to fitting the 
partition models with an incorrect partitioning scheme.

In the two fitted GHOST mixture models, each class 
always has its own set of edge lengths, but may or 
may not share the same GTR substitution model. In an 
M-LGP model, each class shares the same GTR substitu-
tional model, while in an M-UGP model, each class has 
its own GTR substitutional model.

Using the same notation as in Equations 1 and 2, we 
can derive the lnL for these four partition and mixture 
models, and these lnL expressions are special cases of 
Equation 1:

ln LP−LEL =ln (P(D|M1,M2,T))

=
1000∑
i=1

ln (L(Di|M1,T)) +
2000∑

i=1001

ln (L(Di|M2,T))
(3)

ln LP−UEL =ln (P(D|M1,M2,T1,T2))

=
1000∑
i=1

ln (L(Di|M1,T1)) +
2000∑

i=1001

ln (L(Di|M2,T2))

(4)

ln LM−UGP =ln (P(D|M1,M2,T1,T2))

=
2000∑
i=1

ln (α1L(Di|M1,T1) + α2L(Di|M2,T2))

(5)

ln LM−LGP =ln (P(D|M,T1,T2))

=
2000∑
i=1

ln (α1L(Di|M,T1) + α2L(Di|M,T2))
(6)

The details of the fitted models and the number of the 
free parameters are shown in Tables 2 and 3.

Relative expected Kullback–Leibler divergence, AIC, bias of 
AIC, and BICrEKL is the measure we wanted to estimate 
in this study and is derived from the KL divergence 
between the true distribution and an approximating 
model (Burnham and Anderson 2002).

Let X  and Y denote two independent alignments both 
generated by the same model, i.e., drawn from the 
same multinomial distribution over site patterns, then 
the KL divergence between the generating model and 

http://dx.doi.org/10.5061/dryad.1jwstqjwj
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a candidate model using X  for estimation is (Burnham 
and Anderson 2002):

KL(X) =
∑
Y∈Ω

p(Y)ln

Ç
p(Y)

p̂(Y|θ̂X))

å
,

(7)

where Ω is the space of all possible alignments, θ̂X is 
the ML estimate (MLE) of the model parameters, and 
ln [ p̂(Y|θ̂X) ] is the lnL of Y given the MLE of X.

Equation 7 is the KL divergence between the truth and 
a candidate model and it is difficult to compute in real-
ity since the truth is unknown. Instead, we can obtain 
the expectation of Equation 7 by taking an average 
over all values of X (Burnham and Anderson 2002). The 
expected KL divergence (EKL) is

EKL =
∑
X∈Ω

p∗(X)KL(X)

=
∑
X∈Ω

p∗(X)
∑
Y ∈Ω

p∗(Y )(lnp∗(Y )− lnp̂(Y |θ̂X))

=
∑
X∈Ω

p∗(X)
∑
Y ∈Ω

p∗(Y )lnp∗(Y )

−
∑
X∈Ω

p∗(X)
∑
Y ∈Ω

p∗(Y )lnp̂(Y |θ̂X),
(8)

where p*(X) and p*(Y) are the true probabilities of 
alignments X and Y, and p̂

Ä
Y | θ̂X

ä
 is probability of 

Y given the MLE of X. The first term in Equation 7 
does not depend on the candidate model and can be 

ignored. The second term in Equation 8 multiplied by 
2 is the rEKL used in this study. This is the measure 
that we wanted to estimate and compare to AIC in 
the simulations.

rEKL = −2
∑
X∈Ω

p∗(X)
∑
Y∈Ω

p∗(Y)lnp̂(Y|θ̂X).
(9)

The term 
∑

Y∈Ωp
∗(Y) ln p̂(Y | θ̂X) in Equation 9 can be 

re-expressed as a sum over all possible site patterns 
rather than a sum over alignments, as discussed in 
Jhwueng et al. (2014):

rEKL = −2
∑
X∈Ω

p∗(X)
4N∑
h=1

np∗(h) ln p̂(h|θ̂X),
(10a)

= −2
4N∑
h=1

np∗(h)
∑
X∈Ω

p∗(X)ln p̂(h|θ̂X),
(10b)

where p*(h) is the true probability of the site pattern h, 
p̂(h | θ̂X) is the estimated probability of the site pattern 
h under the MLE of the candidate model, and N and 
n are the total number of taxa and the total number of 
sites in an alignment, respectively. It is worth noting 
that Susko and Roger (2020) used the expected predic-
tive log-likelihood (EPLnL) as an equivalent target of 
AIC approximation, and EPLnL = −(1/2) (rEKL).

As in Jhwueng et al. (2014), equation 10b can be esti-
mated using simulated data sets:

Table 2 Details of the fitted models

Model name Full name Edges Substitution model Number of parameters 

GTR+GTR

P-LEL 2-block Linked Edge Lengths
partition model linked unlinked 30

P-UEL 2-block Unlinked Edge Lengths
partition model unlinked unlinked 42

M-UGP 2-class Unlinked GTR Parameters
GHOST mixture model unlinked unlinked 43

M-LGP 2-class Linked GTR Parameters
GHOST mixture model unlinked linked 35

The last column shows the number of parameters needed to estimate the model. The partitioning scheme used for both partition models was 
the same: the first 1000 sites as a block and the second 1000 sites as another block.

Table 3 Numbers of the free parameters for the fitted models

 Substitution model Edge lengths   

Model name GTR1 + GTR2 Tree1 + Tree2 Class weights Total

(or one GTR for M-LGP) (or one tree for P-LEL)

P-LEL 8 + 9 13 NA 30
P-UEL 8 + 8 13 + 13 NA 42
M-UGP 8 + 8 13 + 13 1 43

M-LGP 8 13 + 13 1 35

For the P-LEL model, one GTR model has 8 free parameters, but another GTR model has 9. This is because the P-LEL model shares the same 
edge lengths, and we cannot distinguish the times and the substitutional rates. Therefore, for the P-LEL model, if the rate of G → T  in the sub-
stitution rate parameters of a GTR model is set to one, then the rate of G → T  in the other GTR model need not be set to 1.
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rEKL ≈ −2
4N∑
h=1

np∗(h)

(
1
c

c∑
l=1

lnp̂l(h|θ̂X)

)
,

(11)

where c is the total number of simulated MSAs, and 
p̂l
Ä
h | θ̂X

ä
 is the estimated probability of the site pattern 

h under an approximating model when fitted to the lth 
simulated alignment.

We modified Equation 11 to calculate the rEKL for the 
two-block partition models (Equation 12) and two-class 
mixture models (Equation 13) with different numbers 
of mispartitioned sites. This gives

rEKLP ≈−2
4N∑
h=1

Ñ
2∑

j=1

Ñ
∑
i∈Sj

wijp
∗j(h)

éé
2∑

k=1

(
1

c

c∑
l=1

ln(p̂lk(h))

)

= −2




4N∑
h=1

((∑
i∈S1

p∗1(h) +
∑
i∈S2

p∗2(h)

)
1

c

c∑
l=1

ln(p̂l1(h))

)

+
4N∑
h=1

((∑
i∈S1

p∗1(h) +
∑
i∈S2

p∗2(h)

)
1

c

c∑
l=1

ln(p̂l2(h))

)

 ,

(12)

where h indexes the site patterns, k indexes the parti-
tions to which the sites have been assigned, j indexes 
components of the generating process (the truth), the 
set Sj indexes the true partition structure (Sj = {i: wij = 1},  
otherwise wij = 0), p*J(h) is the true probability of site 
pattern h for the jth partition, and p̂lk (h) is the esti-
mated probability of site pattern h for the kth partition 
when fitted to the simulated alignment l.

rEKLM ≈ −2
4N∑
h=1

(
n∑

i=1

(
2∑

j=1

(αjp
∗j(h))

))(
1

c

c∑
l=1

ln(
2∑

k=1

α̂l
kp̂

lk(h))

)

= −2
4N∑
h=1

(
n
(
α1p

∗1(h) + α2p
∗2(h)

)
(
1

c

c∑
l=1

(ln(α̂l
1p̂

l1(h) + α̂l
2p̂

l2(h)))

))
,

(13)

where p*j(h) is the true probability of site pattern h for 
the jth class, p̂lk (h) is the estimated probability of site 
pattern h for the kth estimated class when fitted to the 
simulated alignment l, αj is the true class weight and 
α̂l
k is the estimated class weight for the simulated align-

ment l, and α1 + α2 = α̂l
1 + α̂l

2 = 1.

The values of AIC, BIC, and the bias in the AIC estimate 
of rEKL are also recorded. The equation of AIC for the 
model of interest is AIC = −2× lnL̂+ 2q, where lnL̂ is 
the ML of the data given the model. The bias of AIC is 
calculated following a similar approach to that given in 
Jhwueng et al. (2014). Bias was defined as: Bias(AIC) = 
rEKL − E(AIC), where E(AIC) is the mean AIC score for 
a set of simulated alignments.

We used a different version of BIC for partition mod-
els. The BIC for mixture models is the same as the 
conventional one: BIC = −2× lnL̂+ qln (n). For the 
partition models, the BIC derived in Susko and Roger 
(2020):

BIC = −2× lnL̂+

(
K∑

k=1

qkln(nk)

)
+ qcln(n),

(14)

where nk is the number of sites in the kth partition, qk is 
the number of parameters unique to the kth partition, 
qc is the number of parameters common to all parti-
tions, and q =

∑
kqk + qc is the total number of the free 

parameters.

Branch score.—The branch score, developed by 
Kuhner and Felsenstein (1994), is a measure of dis-
tance between two trees that accounts for differences 
in edge length as well as topology. For the P-LEL 
model, we compared the shared set of the inferred 
edge lengths to both of the generating trees, recorded 
the branch scores and took the average of the two 
branch scores. For the P-UEL model, we compared 
the inferred edge lengths from the first and second 
blocks of the MSAs to the first and the second gen-
erating trees, respectively, and took the average of 
the two branch scores. For the M-UGP and M-LGP 
mixture models, we calculated the branch scores in 
two ways: comparing the Class 1 edge weights to 
the first generating tree and Class 2 edge weights to 
the second generating tree, and visa versa. Then we 
calculated the weighted average branch scores for 
each option, and we took the minimum of these two 
options.

Estimated base frequencies and substitution rate param-
eters.—We performed element-wise comparisons 
between the estimated base frequencies and the gen-
erating base frequencies, and between the estimated 
substitution rate parameters and the generating sub-
stitution rate parameters. For the partition models, we 
compared the base frequencies and substitution rate 
parameters estimated from the first and second blocks 
of the MSA to the generating base frequencies and 
substitution rate parameters from the first and second 
blocks of MSA, respectively. For the mixture models, 
we compared the estimated base frequencies and sub-
stitution rate parameters from the classes with the two 
sets of generating parameters based on the allocation 
where the edge lengths match best.

Results

Bias of AIC

Under standard conditions, AIC was an unbiased 
estimator of the rEKL. The models with the smallest 
mean AIC also had the smallest rEKL values, that is, 
both the AIC and rEKL favored the same models (Fig. 
2a). For MSAs with 0% to 25% of mispartitioning sites, 
both the rEKL and AIC preferred the P-UEL partition 
models for these groups of MSAs. As the incorrectly 
partitioned sites increased, for MSAs with 30% to 50% 
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of mispartitioning sites, both rEKL and AIC chose the 
M-UPG mixture models most of the time.

Under nonstandard conditions, AIC was a biased esti-
mator of rEKL (Fig. 2b,c), and this result is consistent 
with those in Jhwueng et al. (2014). The mean Bias(AIC) 
is greater for more complex models (i.e., P-UEL and 
M-UGP) under nonstandard conditions (Table 4). The 
differences in the mean Bias(AIC) between a partition 

model and a mixture model are similar under mild and 
extreme simulations. In the mild simulations, the mean 
Bias(AIC) of both partition models is greater than the 
M-LGP mixture model, and is smaller than the M-UPG 
mixture models. In the extreme simulations, the mean 
bias of the M-LGP model is still the smallest, but the 
mean Bias(AIC) of both partition models are not always 
smaller than the M-UGP mixture model (Table 4).
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Figure 2. Mean AIC (left), the rEKL (left), and mean BIC (right) results for three simulations. The label on the x-axis represents the groups 
of MSAs with different proportions of incorrectly partitioned sites. The dots represent the rEKL values and the lines the mean AIC and BIC.
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Bayesian Information Criterion

Under standard simulations, the result is the same as 
the result from AIC. That is, BIC preferred the P-UEL 
partition models from MSAs with 0% to 25% misparti-
tioning sites, and for the rest of the groups, BIC chose 
the M-UGP mixture models (Fig. 2d). Under mild and 
extreme conditions, BIC always chose the simpler 
P-LEL partition models over the more complex parti-
tion models (P-UEL) (Fig. 2e,f). This result is different 
to the result from AIC. That is, under mild and extreme 
simulations, AIC chose the complex P-UEL partition 
model when the MSAs contained none or a small 
amount (up to 15%) of mispartitioning sites, and chose 
the simpler P-LEL partition models for the rest of the 
MSAs (Fig. 2b,c). In summary, under mild and extreme 
conditions, BIC always selected the simpler P-LEL par-
tition models while AIC preferred both partition mod-
els depending on the amount of mispartitioning sites 
in the data.

Performance of Models Chosen by AIC and BIC Under 
Various Levels of Mispartitioning

In the standard and mild simulations, models chosen 
by AIC and BIC all recovered the true topologies very 
well, 100% and nearly 100% of the time for all MSAs, 
respectively (Fig. 3a). In the extreme simulation, the 
proportion of the time the trees inferred by the models 
successfully recovered the generating topologies was 
in the range of [61%, 72%] (Fig. 3a), and these differ-
ences in accuracy between models were not statistically 
significant.

Mispartitioning had no impact on the accuracy of 
the topologies inferred by the partition and the mix-
ture models (Fig. 3a). The proportion of the time that a 
model recovered the generating topology remained the 
same as the incorrectly partitioned sites increased. This 
probably was due to the two generating trees having 
the same topology in the simulations.

Under standard conditions, mixture models had a 
better (lower) branch score than partition models when 
the proportion of incorrectly partitioned sites was 15% 
or greater (Fig. 3b). Under nonstandard conditions, par-
tition models performed better than mixture models 
in estimating the generating edge lengths (Fig. 3c,d). 

Mispartitioning seemed to only affect the inferred 
edge lengths for the P-UEL partition model but not for 
the other partition model. As the mispartitioned sites 
increased, the accuracy of the branch scores decreased 
for the P-UEL partition model.

We created element-wise comparisons to assess the 
accuracy of the estimated base frequencies and substi-
tution rate parameters. The accuracy of each element 
in the estimated base frequencies and substitution 
rate parameters was similar, so we only showed the 
distribution of the inferred πG from the base frequen-
cies and the inferred rCG from the substitution rate 
parameters from block one of the partition model and 
one class from the mixture model (Fig. 4). The com-
bination of the comparison for the mixture model 
(M-UGP) was determined based on the allocation 
of the best mean branch scores. Figure 4 shows the 
median, the 50% and 90% quantiles of the sampling 
distribution for the estimated πG and rCG for block one 
of the partition model and one class from the mixture 
model.

Under standard conditions, based on the 50% quan-
tile of the sampling distribution, one mixture model 
(M-UGP) performed better at estimating the base fre-
quencies than the partition models when the mispar-
titioning level was 20% and above (Fig. 4a). Under 
nonstandard conditions, the 50% quantile of the sam-
pling distribution shows that the mixture models per-
formed equally well at estimating the base frequencies 
as the partition models when the mispartitioning was 
severe (40% and above) (Fig. 4b,c).

In general, the accuracy of the estimated substitution 
rate parameters for the mixture models is similar to the 
ones from the partition models (Fig. 4d–f). Under stan-
dard conditions, based on the 50% quantile of the sam-
pling distribution, one mixture model (M-UGP) had a 
better accuracy at estimating the generating substitu-
tion rate parameters (Fig. 4d). Under nonstandard con-
ditions, the sampling distributions for the two partition 
models and one mixture model (M-UGP) were heavily 
right skewed. The 50% quantiles of the partition models 
and mixture models all captured the generating substi-
tution rate parameters under nonstandard conditions 
(Fig. 4e,f).

In summary, under nonstandard conditions, com-
pared with the two partition models, BIC chose the 

Table 4 Bias (AIC) in estimating the relative expected Kullback–Leibler divergence (rEKL) values for 0% and 50% groups of MSAs for 3 
simulations. Bias(AIC) = rEKL − E(AIC). The Bias(AIC) were the same for the GHOST mixture models across all groups of MSAs, so only one 
value is shown for the mixture models. The Bias(AIC) for the partition models were very similar to each other, so only the Bias(AIC) from 0% 
and 50% groups are shown in the table

Simulation Group Mean bias (AIC)  

P-LEL P-UEL M-UGP M-LGP

Standard 0 % 15.4 11.4 12.4 16.8
50 % 20.5 20.0

Mild 0 % −40.1 −77.8 −86.0 −21.2
50 % −35.5 −61.2

Extreme 0 % −46.8 −101.8 −91.7 −14.3
50 % −40.4 −87.0
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simpler partition models (P-LEL) across all levels of 
mispartitioning. The AIC preferred the simpler parti-
tion models over the more complex partition models 
when there are more than 15% of sites are misparti-
tioned in the MSAs. Between the two mixture models, 
BIC preferred the simpler mixture models across all 
data sets. However, AIC chose the complex mixture 
models over the simpler ones for all the simulated 
data. Under nonstandard conditions, the simpler 
partition models chosen by AIC and BIC performed 
better than the complex partition models in estimat-
ing the edge lengths (Fig. 3c,d). However, the edge 
lengths estimated by the complex mixture models 
chosen by AIC were more accurate than the ones of 
the simple mixture model chosen by BIC.

Discussion

AIC and BIC are two popular tools to use when 
analyzing simple homogeneous models in phyloge-
netics. There is limited work on the performance of 
AIC and BIC in selecting among partition models 
and mixture models. Here we have shown that AIC 
underestimates the rEKL under nonstandard condi-
tions. This result is consistent with Jhwueng et al. 
(2014). In general, under nonstandard conditions, the 
partition models selected by both AIC and BIC were 
the same when the mispartitioning level was 15% or 
above in the MSAs. However, when comparing the 
two mixture models, AIC chose the complex mixture 
models over the simpler ones, while BIC always pre-
ferred the simpler mixture models.
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Figure 3. Proportion of the MSAs with the inferred topology the same as the generating topology and branch scores of the inferred trees 
to the generating tree 1 for three simulations. (a) Proportion of the time the trees inferred by each model recovered the correct generating tree 
topologies for different group of MSAs in mild and extreme simulations. The result is not shown for standard simulation, since the inferred trees 
from four models in this simulation all correctly recovered the generating tree topologies. (b)–(d) The mean branch scores for three simulations. 
Vertical bars indicate ±2 standard errors of the mean branch scores. The 11 bars for the P-UEL models, from left to right, represent the branch 
scores, for 0% to 50% groups of MSAs, respectively. Only one bar is shown for the P-LEL and the mixture models since mispartitioning has 
little effect (less than 1% difference in the mean branch scores) on the performance of these models in estimating the generating edge lengths.
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The inconsistent bias of AIC in estimating the rEKL 
among models, under different nonstandard condi-
tions, suggests an incorrect calculation of the effective 
number of parameters. Under nonstandard conditions, 
in which the parameters are near the boundary of the 
parameter space, the effective number of parame-
ters should not be calculated using such an approach 
(Moody 1992; Spiegelhalter et al. 2002). In a linear 
model setting, Burnham and Anderson (2002) derived 
an equation (Equation 7.53) to calculate the effective 
number of parameters for models with singularities and 
boundary problems. This effective number of param-
eters is difficult to obtain by using this equation in a 
phylogenetic setting, since it requires the calculation 

of the covariance of the random observations, which 
is challenging to compute for sequence alignments. In 
addition, the larger the number of parameters a model 
has, the more difficult the estimation is. This may also 
contribute to the inconsistency of the bias of AIC in esti-
mating rEKL among models.

This study verified the results from Crotty and 
Holland (2022) that partition models and mixture 
models are not comparable using AIC, not only under 
standard conditions but also under nonstandard con-
ditions. This result cannot be explained by the bias 
of AIC in estimating the rEKL. The difference in the 
likelihood functions of a partition model and a mix-
ture model could be a possible reason for the AIC and 
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Figure 4. Estimated base frequency πG (left) and evolutionary rate rCG (right) of block one for three simulations. Each vertical bar indicates 
the (25th, 75th) percentiles (black) and the (5th, 95th) percentiles (grey) of the sampling distribution. The dot on each vertical bar shows the 
median estimated πG or rCG. The horizontal solid black lines are the generating πG or rCG from block one of the sequences. The estimated base 
frequencies of the two partition models were the same. The 11 bars for partition models, from left to right, represent the estimated πG or rCG, for 
0% to 50% groups of MSAs, respectively. Only one bar is shown for each mixture model since mispartitioning does not affect the performance 
of mixture models in estimating the generating parameters.
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BIC choosing partition models over mixture models. 
A partition model fits the best model to each block of 
sites, and the log-likelihood is obtained by summing 
up all the log-likelihood from each individual model 
from each block (Lanfear et al. 2017). A mixture model 
fits multiple models to each site, and the log-likelihood 
is obtained by summing all the weighted averages of 
the log-likelihood from these models across all sites 
(Pagel and Meade 2004). This may lead to a partition 
model having a higher (better) maximum log-likeli-
hood than a mixture model, in some situations as dis-
cussed in Crotty and Holland (2022). Similar to AIC, 
BIC, and rEKL also have the same issue that makes 
comparing between mixture and partition models 
infeasible.

Our simulations showed that, under nonstandard 
conditions, AIC and BIC chose the same simpler par-
tition models (P-LEL) when more than 15% of sites are 
mispartitioned. This result is interesting in terms of 
the bias variance trade-off. BIC favors an underfitting 
model which has a high bias and a low variance (spec-
ificity) and AIC prefers an overfitting model which has 
a low bias and a high variance (sensitivity) (Altman 
and Bland 1994; Hastie et al. 2009; Dziak et al. 2020). 
However, in our simulations under nonstandard con-
ditions, both AIC and BIC chose the same model. This 
could be because the sample size may not be large 
enough (n = 2000). The simpler partition models may 
be the best optimized solutions for both AIC and BIC 
despite the fact that AIC and BIC choose models that 
give different aspects in terms of the bias variance 
trade-off. In these circumstances, AIC and BIC may not 
fail, a simpler partition model may just explain the true 
process that generated the MSAs better than the other 
models for a smaller n. With a larger n, the choice of 
AIC and BIC may differ. This result also implies that, 
under nonstandard conditions, AIC and BIC may favor 
partition models with an underpartitioned scheme over 
partition models with an overpartitioned scheme.

There is a slight difference in the results between BIC 
and AIC under nonstandard conditions when there 
was none (i.e., 0%) or some small amounts (i.e., up 
to 15%) of mispartitioning sites in the MSAs. That is, 
BIC always preferred the simpler partition model (i.e., 
P-LEL model), while AIC selected the generating model 
(P-UEL). This result is consistent with the assertion 
made in Dziak et al. (2020): BIC often chooses a simpler 
model while AIC a more complex model. Interestingly, 
rEKL also selected the simpler partition models in this 
situation. It is worth noting that, for the 0% MSAs, 
the P-UEL partition model was the generating model, 
and AIC chose this model but rEKL and BIC preferred 
the P-LEL model. The result from rEKL indicates that  
the simpler P-LEL model has the smallest KLD from the 
true model, and this model may explain the variation of 
the data better than the generating model, even under 
the incorrect simplifying assumptions. In this case, per-
haps none of the choices was wrong, the inconsistency 
of the results reflects different aspects of the model per-
formance that AIC and BIC focus on.

Furthermore, our simulations showed that when deal-
ing with heterogeneous data, both partition models and 
mixture models performed well in estimating different 
aspects of phylogenetic inference, and the computational 
time for fitting the GHOST mixture models to the data is 
similar to the time for the partition models in IQ-TREE2. 
This result is consistent with Crotty et al. (2020), but incon-
sistent with Whelan and Halanych (2017).

Overall, AIC and BIC may not be appropriate to use 
in selecting among partition models and mixture mod-
els under nonstandard conditions. Nonstandard condi-
tions can occur in many situations: for example, when 
an MSA has some closely related species, or when parti-
tioning data into small subsets, nonstandard conditions 
may occur. As Susko and Roger (2020) pointed out, if 
an MSA contains some closely related species, the tree 
inferred from the MSA contains some edges with a near 
zero edge length.

Caution should be taken if using AIC and BIC to 
select among partition models and mixture models 
when dealing with these types of MSAs. We recom-
mend that when fitting a partition model and a mix-
ture model to the data, the inferred phylogenetic trees 
should be inspected prior to final model selection. 
Furthermore, when partitioning data into a large num-
ber of subsets, such that each subset has a very small 
sequence length, AIC and BIC may become problem-
atic to use. This is because if the sequence length is 
very small, then the expected number of substitutions 
per alignment may be less than 5, creating a nonstan-
dard condition. We recommend that when fitting a 
partition model to the data, the sequence length of the 
partitions should be examined. We also recommend 
that alternative estimators of the rEKL are worth 
investigating and considering in selecting between 
partition models and mixture models. These estima-
tors include cross-validation scores proposed in Susko 
and Roger (2020), and bootstrapping scores derived in 
Jhwueng et al. (2014). However, it is possible that these 
approaches will also not provide a “magic bullet” by 
which mixture models and partition models can be 
fairly compared.
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