Skip to main content
. 2023 May 5;12:e85714. doi: 10.7554/eLife.85714

Figure 8. Osteoblast-directed Pfkfb3 overexpression corrects bone loss in Type 2 diabetes (T2D).

(A) A schematic for experimental design. Representative µCT images (B) and quantification (C) of trabecular bone in the distal femur. (D) Representative µCT images and quantification of cortical bone in femur. Ctrl NORMAL, n = 8; Pfkfb3OE NORMAL, n = 8; Ctrl T2D, n = 11; Pfkfb3OE T2D, n = 9. (E) Representative images and quantification of double labeling in trabecular bone of the proximal tibia. Ctrl T2D, n = 4; Pfkfb3OE T2D, n = 5. (F) Serum markers for bone formation (P1NP) and resorption (CTX-1). Ctrl T2D, n = 12; Pfkfb3OE T2D, n = 9. (G) qPCR analyses of glycolysis-related genes in bone. Ctrl T2D, n = 7; Pfkfb3OE T2D n = 4. Data presented as mean ± SD. *p<0.05, Two-way ANOVA followed by Fisher’s LSD test (C, D) or Student’s t-test (all others).

Figure 8.

Figure 8—figure supplement 1. Pfkfb3 overexpression improves bone mass in Type 2 diabetes (T2D mice).

Figure 8—figure supplement 1.

(A, B) Trabecular (A) and cortical (B) bone parameters of Pfkfb3OE versus Ctrl mice in T2D or NORMAL groups. Ctrl NORMAL, n = 8; Pfkfb3OE NORMAL, n = 8; Ctrl T2D, n = 11; Pfkfb3OE T2D, n = 9. (C) Quantification of mineral apposition rate (MAR) by double labeling in T2D mice with or without Pfkfb3OE. Ctrl T2D, n = 4; Pfkfb3OE T2D, n = 5. Data are represented as mean ± SD. *p<0.05, two-way ANOVA followed by Fisher’s LSD test (A, B) or by Student’s t-test (C).