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Abstract
Purpose  Geographic atrophy (GA) is a late-stage form of age-related macular degeneration (AMD) characterized by the 
expansion of atrophic lesions in the outer retina. There are currently no approved pharmacological treatments to prevent or 
slow the progression of GA. This review describes the progression and assessment of GA, predictive imaging features, and 
complement-targeting investigational drugs for GA.
Methods  A literature search on GA was conducted.
Results  Expansion of atrophic lesions in patients with GA is associated with a decline in several measures of visual function. 
GA lesion size has been moderately associated with measures obtained through microperimetry, whereas GA lesion size in 
the 1-mm diameter area centered on the fovea has been associated with visual acuity. Optical coherence tomography (OCT) 
can provide 3-dimensional quantitative assessment of atrophy and is useful for identifying early atrophy in GA. Features 
that have been found to predict the development of GA include certain drusen characteristics and pigmentary abnormalities. 
Specific OCT features, including hyper-reflective foci and OCT-reflective drusen substructures, have been associated with 
AMD disease progression. Lesion characteristics, including focality, regularity of shape, location, and perilesional fundus 
autofluorescence patterns, have been identified as predictors of faster GA lesion growth. Certain investigational complement-
targeting drugs have shown efficacy in slowing the progression of GA.
Conclusion  GA is a progressive disease associated with irreversible vision loss. Therefore, the lack of treatment options pre-
sents a significant unmet need. OCT and drugs under investigation for GA are promising future tools for disease management.

Key messages

Geographic atrophy is a progressive disease associated with irreversible vision loss.

Optical coherence tomography can be used to identify early geographic atrophy. 

Several imaging features have been identified as predictors of disease progression.

Complement-targeting investigational drugs are promising future treatments.
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Introduction

Geographic atrophy (GA) is a late-stage form of age-related 
macular degeneration (AMD) characterized by progres-
sive degenerative lesions affecting photoreceptors, retinal 

pigment epithelium (RPE), and choriocapillaris primarily in 
the macula [1–5]. Although patients with AMD may benefit 
from supplements consisting of high-dose antioxidant vita-
mins (C, E, and beta-carotene) and zinc, which have been 
found to decrease the risk of progression to advanced AMD 
[6], there are currently no approved pharmacological treat-
ments to prevent or slow the progression of GA [7]. Thus, 
management largely consists of monitoring disease progres-
sion [1]. Nevertheless, early identification of patients with 
AMD is important because patients may ultimately benefit 
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from drugs that are currently under investigation for GA. 
This report provides an overview of the progression and 
assessment of GA, predictive imaging features, and treat-
ments currently on the horizon.

Disease progression and visual function

Early and intermediate age‑related macular 
degeneration

Features of AMD observed prior to the development of GA 
include the presence of medium or large drusen, which are 
deposits between Bruch membrane and the RPE, as well as 
AMD pigmentary abnormalities, which have been defined 
as hyper- or hypopigmentation (within 2-disc diameters 
of the center of the macula) associated with medium (63 
to 125 µm) or large (> 125 µm) drusen and without other 
reasons for the abnormalities [8]. AMD has been classified 
into early, intermediate, and late stages [8]. Early AMD is 
defined by the presence of medium-size drusen without 
pigmentary abnormalities, whereas intermediate AMD is 
defined by the presence of large drusen and/or AMD pig-
mentary abnormalities [8]. Early stages of AMD have been 
reported to usually be asymptomatic [8]. Individuals with 
early or intermediate AMD may progress to late AMD, 
which includes neovascular AMD or GA [8].

Geographic atrophy

GA is characterized by well-demarcated atrophic lesions in 
the outer retina that expand over time [1, 4, 9, 10]. Lesions 
often begin in parafoveal regions and expand to the fovea 
later in the disease [10–12]. However, there is variability 
across eyes. In a study of patients with bilateral drusen 
who were examined annually, the location of incident GA 
was parafoveal (250–1500 µm) in 61.4%, ≤ 250 µm from 
the foveal center in 17.5%, and subfoveal in 20.2% [12]. 
Lesion growth rate varies across studies and individuals and 
is affected by baseline lesion size (in mm2) [13, 14]. In a 
recent meta-analysis, the pooled mean GA growth rate was 
shown to be 1.66 mm2/year or 0.33 mm/year, and regard-
less of how GA growth rate was calculated (non-square 
root transformed, mm2; or square root transformed, mm), a 
significant association was observed with baseline GA area 
(mm2) [13]. Since baseline GA area is 1 of the factors that 
affect GA growth, square root transformation methods can 
be used in clinical trials to minimize the impact of baseline 
GA size [13]. For eyes with GA with foveal sparing, GA 
progression toward the periphery has been found to be faster 
than progression toward the fovea [15].

As GA progresses, visual function declines [3, 9, 16, 
17]. In a retrospective analysis of the Age-Related Eye 

Disease Study, the median time to loss of 15 letters was 
5.6 years for eyes with non-central GA at baseline (base-
line visual acuity: 74.5 letters) and 6.3 years for eyes with 
central GA at baseline (baseline visual acuity: 52.8 let-
ters) [3]. In addition, some reports have suggested that 
patients with GA may have deficits in visual-function 
measures that rely on the fovea even when visual acuity 
is still relatively preserved (20/50 or better), including 
low luminance visual acuity, foveal dark-adapted sensi-
tivity, and contrast sensitivity [11]. Furthermore, due to 
absolute scotomas associated with the GA lesion, patients 
with GA may have deficits in tasks that require a wide 
visual field [11, 18].

In the large Chroma and Spectri studies, various meas-
ures of visual function were found to worsen over 48 weeks 
in patients with GA, including best corrected visual acu-
ity, low luminance visual acuity, monocular and binocular 
maximum reading speed, macular sensitivity, and absolute 
number of scotomatous points (as measured by mesopic 
microperimetry), and patient-reported outcomes of visual 
function (25-item National Eye Institute Visual Function 
Questionnaire and the Functional Reading Independence 
Index) [16]; however, correlations between GA lesion area 
and measures of visual function were found to be weak, 
especially for best corrected visual acuity [16]. The only 
visual-function measures that showed moderate correla-
tions (0.4 ≤ Spearman correlation coefficient ≤ 0.59) with 
GA lesion area at baseline or week 48 were the number of 
absolute scotomatous points and mean macular sensitivity 
as measured by microperimetry [16]. Other studies have 
demonstrated that the relationship between GA lesion area 
and visual acuity is stronger when the area of analysis is 
limited to the 1-mm diameter area centered around the 
fovea than when the total GA lesion area is considered 
[3, 17]. Although the association between GA lesion size 
and visual function remains unclear, low-luminance deficit 
has been shown to be a predictor of future vision loss in 
patients with GA and good vision (≥ 20/50), which may 
allow for the identification of patients with a high risk of 
losing vision [19].

Although previously considered as distinct entities, GA 
and choroidal neovascularization (CNV) are not mutually 
exclusive. Eyes with bilateral GA or an eye with GA and 
fellow eye CNV have a significant risk of developing CNV 
in the eye with GA [20, 21]. Sunness et al noted that the 
2-year and 4-year rate of patients developing CNV in an 
eye with GA was 6% and 17%, respectively [21]. When 
broken down by fellow eye, the 2-year rate was 18% and 
the 4-year rate was 34% when fellow eye had CNV, and 
2% and 11% in eyes with bilateral GA [21]. Furthermore, 
progression to advanced AMD (GA or CNV) in eyes with 
early or intermediate AMD is increased when there is GA 
or CNV in the fellow eye [20].
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Assessment of geographic atrophy 
progression

Several imaging modalities can be used to monitor the 
progression of GA, in particular color fundus photogra-
phy (CFP), fundus autofluorescence (FAF), and optical 
coherence tomography (OCT) [22, 23]. CFP is the his-
torical standard for imaging GA; however, it is limited in 
the contrast that it provides [22, 24]. GA on CFP appears 
as sharply demarcated areas of hypopigmentation [22]. 
FAF provides higher contrast than CFP [22]. Due to the 
loss of RPE cells and lipofuscin with GA, atrophy on 
FAF presents as regions of hypoautofluorescence [1, 22]. 
However, assessment of the foveal region is difficult as 
the macular pigment blocks blue light, making the signal 
intensity reduced, especially when the atrophic region is 
close to the fovea and therefore additional imaging modali-
ties are needed [22]. Spectral domain OCT (SD-OCT) has 
notable advantages for visualizing GA in that it allows for 
cross-sectional and en-face images and for 3-dimensional 
quantitative assessment of atrophy of specific retinal lay-
ers [22, 25]. Swept-source OCT has further advantages in 
that it allows for wider imaging areas and greater detail of 
the choroid [22].

OCT can be used to identify early atrophy in AMD, as 
was noted by the Classification of Atrophy Meeting (CAM) 
group [25]. Identification of early atrophy is important 
for determining whether investigational therapeutics can 
reduce GA progression at early stages [25, 26]. The CAM 
group proposed 4 categories of GA based on OCT criteria, 
which describe whether the atrophy is incomplete or com-
plete and whether it occurs in the presence of RPE atro-
phy: (1) complete RPE and outer retinal atrophy (cRORA); 
(2) incomplete RPE and outer retinal atrophy (iRORA); 
(3) complete outer retinal atrophy (cORA); and (4) incom-
plete outer retinal atrophy (iORA) [25]. According to this 
framework, GA and nascent GA are considered subsets 
of cRORA and iRORA, respectively, which occur in the 
absence of choroidal neovascularization [25].

Imaging predictors of disease progression

Several imaging features have been found to predict the 
development of GA, including certain drusen character-
istics and pigmentary abnormalities. These features are 
valuable in identifying patients who may benefit from 
future treatments for GA. In a large study of individu-
als ≥ 49 years of age, characteristics of drusen that were 
strongly associated with the development of GA over a 
15-year period included soft indistinct drusen, drusen 

within 500 µm from the foveal center, and a total drusen 
area > 375 µm in diameter [27]. The presence of reticular 
drusen, RPE depigmentation, and hyperpigmentation were 
also strongly associated with the development of GA [27].

Other imaging features, specifically on OCT, have been 
identified as predictors of disease progression for individu-
als with intermediate AMD. The presence of intraretinal 
hyper-reflective foci was found to correlate with progression 
to either late AMD (cRORA or choroidal neovascularization) 
or cRORA alone over 1 year [28]. The presence of OCT-
reflective drusen substructures, which include low-reflective 
cores, high-reflective cores, conical debris, and split drusen, 
was associated with an increase in GA area over 2 years [29]. 
Furthermore, the presence of heterogeneous internal reflectiv-
ity within drusen (ie, calcified drusen) was associated with 
progression to advanced AMD (neovascular AMD or GA) 
over 1 year [30]. In addition, the appearance of persistent 
hyper-transmission defects with a minimum size of 250 µm 
on en-face swept-source OCT scans was found to increase the 
risk of progression to GA [31].

Recent studies have also examined imaging features on SD-
OCT, specifically, a focus on photoreceptor integrity as photo-
receptor loss is indeed 1 of the characteristics of GA [32, 33]. 
Reiter and colleagues demonstrated a significant association 
between the junctional zone (area surrounding the GA lesion) 
and GA growth after 12 months, suggesting that the junctional 
zone may be a predictor of GA growth [33]. It has also been 
demonstrated by Pfau et al that qualitatively, progressive pho-
toreceptor degeneration outside GA correlated with GA pro-
gression rates [32]. Quantitatively, ellipsoid zone-loss-to-GA 
boundary distance and thickness of the outer nuclear layer, 
outer segment, and inner segment were all associated with 
future progression rates [32]. These studies suggest that by 
utilizing SD-OCT, photoreceptor loss and thinning could be an 
outcome measure beyond GA lesion size progression [32, 33].

For individuals with GA, certain features of the lesion have 
been found to predict faster rates of GA growth. Studies have 
found that multifocal lesions have higher growth rates than 
unifocal lesions and that irregularly shaped lesions have higher 
growth rates than more circular lesions [34, 35]. In addition, 
extrafoveal lesions have been found to have higher growth 
rates than foveal lesions [36]. When perilesional FAF patterns 
have been analyzed, lesions with banded or diffuse FAF pat-
terns have been found to have higher growth rates than lesions 
with no abnormal FAF pattern or focal FAF patterns [37].

Complement‑targeting treatments 
for geographic atrophy

Several studies suggest that the complement system, a com-
ponent of the innate immune system, plays an important role 
in the development of GA. Various complement genes have 
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been linked to AMD in genome-wide association studies 
[38, 39]. The odds of GA were estimated to be 2.5 times 
higher per copy of a common risk allele (Y402H) of the CFH 
gene in individuals of European ancestry [40]. In addition to 
genetic studies, histologic studies have found complement 
proteins in drusen as well as elevated levels of complement 
proteins in the outer retinal tissue of postmortem eyes with 
AMD [41–43]. Furthermore, elevated levels of activated 
complement products in plasma have been found in indi-
viduals with GA [44]. Based on these findings, several drugs 
targeting the complement system are currently in clinical 
investigational phases for GA treatment.

Drugs targeting the complement system with phase 3 effi-
cacy and safety data in GA to date include pegcetacoplan 
and avacincaptad pegol, which are complement C3 and com-
plement C5 inhibitors, respectively [7, 45]. The efficacy and 
safety of pegcetacoplan administered via intravitreal injec-
tions every month or every other month in patients with GA 
were examined in randomized, double-masked, sham-con-
trolled phase 2 (FILLY; NCT02503332) and phase 3 studies 
(OAKS and DERBY; NCT03525600 and NCT03525613) 
[45, 46]. In the phase 3 studies, OAKS found a significant 
reduction in GA lesion growth (mm2) with pegcetacoplan 
monthly (22% reduction) and pegcetacoplan every other 
month (16% reduction) compared with sham at month 12, 
whereas DERBY failed to find a significant reduction [46]. 
A combined analysis of OAKS and DERBY found a reduc-
tion in growth with pegcetacoplan monthly (17% reduction) 
and pegcetacoplan every other month (14% reduction) at 
month 12 [46]. Topline safety results showed rates of seri-
ous ocular treatment-emergent adverse events of 1.4% for 
pegcetacoplan monthly, 1.9% for pegcetacoplan every other 
month, and 0.0% for sham in OAKS; and 0.5% for pegc-
etacoplan monthly, 0.0% for pegcetacoplan every other 
month, and 1.0% for sham in DERBY [47]. In the OAKS 
and DERBY studies, exudative AMD rates determined by 
the investigators were 5.2%, 4.7%, and 1.4% for pegcetaco-
plan monthly, every other month, and sham in OAKS, and 
6.8%, 3.4%, and 3.4% in DERBY [47, 48]. The efficacy and 
safety of avacincaptad pegol 2 mg and 4 mg administered 
through monthly intravitreal injections in patients with GA 
were examined in a randomized, double-masked, and sham-
controlled phase 2/3 study (GATHER1; NCT02686658) [7]. 
GATHER1 found a significant reduction in GA growth rate 
(mm) with both avacincaptad pegol 2 mg (27% reduction) 
and avacincaptad pegol 4 mg (28% reduction) compared 
with sham at month 12 [7]. There were no reported serious 
ocular adverse events in avacincaptad pegol groups or sham 
groups at 12 months [7]. The most common ocular adverse 
events related to the injection procedure were conjunctival 
hemorrhage, conjunctival hyperemia, punctate keratitis, and 
increased intraocular pressure [7]. CNV rates reported by 
investigators were 9.0%, 9.6%, and 2.7% in the avacincaptad 

pegol 2 mg and 4 mg and sham groups, respectively [7, 48]. 
There is an ongoing phase 3, randomized, double-masked, 
sham-controlled, 24-month, trial that is evaluating monthly 
and every-other-month intravitreal injections of avacincap-
tad pegol 2 mg compared with sham in patients with GA 
(GATHER2; NCT04435366). Recently, the data for the 
first 12 months, for which patients received monthly avacin-
captad pegol 2 mg or sham, became available. GATHER2 
met its primary objectives with a significant reduction in 
observed GA growth rate (mm2) with avacincaptad pegol 
2 mg (17.7% reduction) compared with sham at month 
12 [49]. GATHER2 had a consistent safety profile with 
GATHER1 with the most frequently reported ocular adverse 
events were related to the injection procedure. Following a 
comprehensive surveillance of CNV, the reported incidence 
of CNV in the study eye at 12 months was 6.7% for avacin-
captad pegol 2 mg compared with 4.1% for sham [50]. Post 
hoc analyses of the FILLY study have demonstrated that 
pegcetacoplan lowered the rate of iRORA progression to 
cRORA as well as reduced photoreceptor loss and thin-
ning compared with sham [51, 52]. Similarly, a post hoc 
analysis of GATHER1 has demonstrated that avacincaptad 
pegol reduced the progression of drusen to iRORA/cRORA 
and the progression from iRORA to cRORA compared 
with sham, and a reduction in the growth of ellipsoid zone 
degradation [53]. Future analyses of the phase 3 studies for 
both pegcetacoplan and avacincaptad pegol, as well as other 
investigational drugs, will provide a further understanding 
of the complement system in GA and potential treatments 
for the management of GA.

Conclusion

GA is a progressive disease associated with irreversible 
vision loss. Therefore, the lack of treatment options pre-
sents a significant unmet need. OCT has been identified as 
a useful tool for characterizing early atrophy. Furthermore, 
several imaging features have been identified as predictors of 
disease progression. Pharmacological agents currently under 
investigation for GA are being examined for their ability 
to slow the growth of GA and potentially preserve visual 
function. Given the irreversible nature of the disease, it is 
also important to understand whether these drugs can reduce 
the rates of onset of GA in patients at earlier stages. These 
investigational drugs are promising future tools for the man-
agement of patients with GA.
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