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Abstract

Background: Chemicals used or emitted by unconventional oil and gas development (UOGD) 

include reproductive/developmental toxicants. Associations between UOGD and certain birth 

defects were reported in a few studies, with none conducted in Ohio, which experienced a 

thirty-fold increase in natural gas production between 2010 and 2020.

Methods: We conducted a registry-based cohort study of 965,236 live births in Ohio from 

2010–2017. Birth defects were identified in 4,653 individuals using state birth records and a state 

surveillance system. We assigned UOGD exposure based on maternal residential proximity at birth 

to active UOG wells and a metric specific to the drinking-water exposure pathway that identified 

UOG wells hydrologically connected to a residence (“upgradient UOG wells”). We estimated 

odds ratios (ORs) and 95% confidence intervals (CIs) for all structural birth defects combined 

and specific birth defect types using binary exposure metrics (presence/absence of any UOG 
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well and presence/absence of an upgradient UOG well within 10 km), adjusting for confounders. 

Additionally, we conducted analyses stratified by urbanicity, infant sex, and social vulnerability.

Results: The odds of any structural defect were 1.13 times higher in children born to mothers 

living within 10 km of UOGD than those born to unexposed mothers (95%CI: 0.98–1.30). Odds 

were elevated for neural tube defects (OR: 1.57, 95%CI: 1.12–2.19), limb reduction defects (OR: 

1.99, 95%CI: 1.18–3.35), and spina bifida (OR 1.93; 95%CI 1.25–2.98). Hypospadias (males 

only) was inversely related to UOGD exposure (OR: 0.62, 95%CI: 0.43–0.91). Odds of any 

structural defect were greater in magnitude but less precise in analyses using the hydrological-

specific metric (OR: 1.30; 95%CI: 0.85–1.90), in areas with high social vulnerability (OR: 1.27, 

95%CI: 0.99–1.60), and among female offspring (OR: 1.28, 95%CI: 1.06–1.53).

Conclusions: Our results suggest a positive association between UOGD and certain birth 

defects, and findings for neural tube defects corroborate results from prior studies.
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1. Introduction

Unconventional oil and gas development (UOGD) refers to the extraction of oil and gas 

from previously inaccessible reservoirs through the use of directional drilling and high-

volume hydraulic fracturing.1, 2 High-volume hydraulic fracturing uses the injection of large 

quantities of fluids to liberate oil and natural gas from low permeability rock, such as 

shale.1, 2 Widespread application of these techniques transformed the United States (U.S.) 

from a net importer to net exporter of natural gas.3–5 The state of Ohio, which is situated 

above the Marcellus and Utica Shales and ranks seventh in the nation with regard to natural 

gas production, experienced a thirty-fold increase in the volume of natural gas produced 

between 2010 and 2020.6, 7

In addition to the U.S. “shale boom,” widespread exploration and/or development of UOG 

reserves is occurring in numerous countries and on every continent except Antarctica.8–15 
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Proponents of UOGD support natural gas as a “transition fuel” that will enable a shift 

from coal to renewable energy, create jobs, and decrease reliance on foreign countries for 

energy needs.5, 16–18 Others contend that economic benefits have been overstated19,20, 21 

investments in new natural gas infrastructure will prolong the production of greenhouse 

gas emitting fossil fuel resources22, 23 and that energy independence would be more safely 

and reliably achieved through more expeditious adoption of renewable energy sources.24–26 

Finally, there is growing evidence of the negative health implications associated with 

living in proximity to UOGD, particularly with regard to children’s health, including birth 

defects.5, 27–30

Annually, an estimated 5 million babies are born with a birth defect worldwide.31 Birth 

defects, also known as congenital anomalies, are defined as a change to an organ or body 

part that can negatively impact a baby’s survival, health status, and/or ability to thrive 

developmentally.32 Approximately 3% of infants in the U.S. are born with a defect, and 

birth defects are the leading cause of infant mortality in the U.S.32 Globally, birth defects 

result in an estimated 400,000 deaths in children under five years.31 Children born with 

a defect may experience a lifelong disability and have specialized healthcare and social 

needs.31, 33, 34 The etiology of birth defects is multifactorial and as many as 60% of birth 

defects have an unknown cause.35–38 Established risk factors include genetics, maternal age, 

alcohol use, and medication use; however, certain involuntary and modifiable environmental 

exposures are also potential risk factors (e.g., radiation, air pollution, chemical toxicants), 

likely in combination with genetic determinants of vulnerability, but evidence remains 

limited.34, 39–41

UOGD can release air pollutants, water contaminants, and other stressors that could result 

in an increased risk of adverse birth outcomes for those living in proximity to these sites.29 

Hydraulic fracturing fluids and UOGD wastewater contain numerous known and suspected 

reproductive and developmental toxicants including metals (e.g., arsenic, cadmium, lead and 

mercury), polycyclic aromatic hydrocarbons, and volatile organic compounds (e.g. benzene 

and toluene).36, 42–45 Although management of these wastewaters is intended to reduce 

human exposure, surface spills, leaks, or containment failure could lead to migration of 

chemicals into groundwater or surface water.46–48 Increased vehicle emissions and diesel 

equipment emissions near well sites may also expose pregnant women to environmental 

teratogens such as fine particulate matter, nitrous oxides, and other airborne pollutants.49–53 

UOGD can also lead to increased noise exposure, particularly at night,54 which can 

activate the sympathetic nervous system and potentially contribute to sleep disturbance, 

cardiovascular disease, and adverse birth outcomes, although evidence for birth defects 

specifically is limited.55, 56 UOGD has also been associated with increased psychosocial 

stress in proximal communities,49, 57, 58 another potential risk factor for birth defects.59–63 

Hypothesized mechanistic pathways connecting UOGD hazards with birth defects include 

oxidative stress,36, 64, 65 fetal hypoxia,66 insulin resistance,60 inflammation,67 and endocrine 

disruption.68

To our knowledge, eight studies have evaluated associations between UOGD exposure and 

risk of structural birth defects. All studies reported evidence of a relationship, although the 

direction and statistical significance of associations vary by birth defect and study (Table 
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1).69–75 Studies have been conducted in Colorado, Texas, Pennsylvania, Oklahoma, and 

Alberta, Canada. The most common associations reported were with congenital heart and 

neural tube defects. These studies primarily applied aggregate UOG proximity metrics, 

while McKenzie et al. 2019 applied an intensity-adjusted inverse distance-weighted metric 

that reflected additional detail about air pollution-emitting activities at the UOG well site.74 

A study conducted in Texas by Willis et al. 2023 used a variety of metrics specific to the 

volume of oil, gas, and waste water produced within 5 km of maternal address.19 To help 

clarify the relationship between UOGD exposure and risk of a range of structural birth 

defects in a less studied region, we conducted a registry- and population-based study in 

the state of Ohio and applied a new UOGD metric specific to the drinking water exposure 

pathway. The study protocol was approved by the Institutional Review Board of Yale 

University (HIC #2000021809) and by the Ohio Department of Health.

2. Methods

2.1 Study Population

The source study population included all live singleton births in Ohio from 2010–2017, 

obtained from birth records from the Ohio Department of Health (n=1,029,682) (Figure 1). 

We geocoded the maternal addresses at birth using SAS 9.4 PROC GEOCODE. Addresses 

unable to be geocoded to street level were excluded (n=60,070; 5.8%). In addition, 

records were excluded if they were missing infant sex (n=11; 0.0011%), had unknown or 

implausible values for term birth weight (<500 g or >5500 g) or gestational age (<18 weeks 

or >47 weeks) (n=4329; 0.42%), or had geocoded birth addresses outside of Ohio (n=35; 

0.0025%). Application of exclusion criteria yielded a final cohort of 965,236 births.

2.2 Outcome Assessment

Birth defects can be categorized into “structural birth defects” which primarily affect the 

structure of body parts, and “functional birth defects,”31, 76 which primarily affect the 

development and function of whole-body systems. In this study, we focus on structural birth 

defects because they are more likely to be accurately identified and diagnosed at birth, while 

functional abnormalities require a longer follow up and more sensitive outcome assessment 

methods to ascertain.77

Information on structural birth defect outcomes was obtained from two sources: (i) 

“congenital anomalies” identified on the Ohio Department of Public Health birth records 

(obtained for 2010–2017), and (ii) the Ohio Connections for Children with Special Needs 

(OCCSN) birth defects surveillance system (available at time of data acquisition for 2012–

2017). The birth records were available for all live births and for more years than the 

surveillance data and therefore the state birth records were used in the primary analyses. 

However, because these are typically based on a visual examination, defects not overtly 

manifested at birth may be missed.78 The OCCSN is a passive surveillance system in which 

all hospitals, physicians, and freestanding birthing centers in Ohio are required to report 

cases of children from birth to 5 years of age with specific birth defects via file upload 

to a secure website.35 The OCCSN data was available for fewer years than the state birth 

records, but provided the data for more specific birth defect subtypes.
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The birth record data included diagnoses for nine types of structural birth defects: 

anencephaly, meningomyocele/spina bifida, cyanotic congenital heart disease, gastroschisis, 

omphalocele, diaphragmatic hernia, limb reduction defects, cleft lip with or without cleft 

palate, and cleft palate alone. The surveillance data included another ten diagnoses, seven 

of which fall within the category of “cyanotic congenital heart disease”—common truncus, 

transposition of the great arteries, tetralogy of Fallot, pulmonary valve atresia, tricuspid 

valve atresia and stenosis, hypoplastic left heart syndrome, and total anomalous pulmonary 

venous connection—as well as aortic valve stenosis and coarctation of the aorta, which 

are only cyanotic if critical, and encephalocele. Individuals with multiple diagnoses were 

selected as cases for each diagnosis present and considered a single case for the aggregate 

“any structural birth defect” outcome.

2.3 Exposure Assessment

We retrieved oil and gas well location and production datasets from the Ohio Department of 

Natural Resources Division of Oil and Gas Resources Risk Based Data Management System 

to identify all active wells, defined as having been drilled or producing as confirmed by 

having a reported spud date or production report.79, 80 The data were cleaned and quality 

checked to address missing data, remove duplicates, and harmonize variables that changed 

over time. For example, for wells reporting gas, oil, or brine production from Marcellus and 

Utica formations but a missing spud date, we assigned a spud date equal to the first day of 

the earliest producing production reporting period minus 251 days (the median number of 

days between the spud date and the first reported production period). Wells with a missing 

spud date and no production reporting periods were considered inactive and excluded. The 

final Ohio UOGD well dataset included 2,290 ever active Marcellus and Utica coalbed 

methane, gas, and oil wells, with spud dates between January 21, 2008, and December 31, 

2017.

We applied three UOG proximity-based metrics used in prior studies: (i) a binary metric 

for presence or absence of any active UOG wells within the buffer distance, (ii) an inverse-

distance-square-weighted (ID2W) metric capturing the density of active UOG wells within 

the buffer, which was categorized into tertiles, and (iii) a hydrological metric that is specific 

to the drinking water exposure pathway (IDups). Due to the low prevalence in UOGD 

exposure, we were unable to apply our exposure metrics with more than three categories or 

use them continuously. The ID2W metric uses the following formula:

ID2W well count = ∑
i = 1

n 1
di

2 [1]

where d is the distance between the ith UOG well and a residence, and n the number 

of active UOG wells. This metric accounts for all UOG wells within a buffer zone while 

weighting closer wells more heavily than distant wells. Variations of the inverse-distance-

weighted metric have been used in several previous health studies (Table 1).29

The details and programming code for the IDups metric was previously presented; this metric 

considers only the closest active UOG well that could be hydrologically connected to a 
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residence.81–83 This exposure metric assumes that UOG wells that are located upgradient of 

a residence contribute more to exposure than downgradient wells.

The IDups metric is expressed as

IDups = 1
u [2]

where u is the distance to the nearest topographically upgradient UOG well, as determined 

by the D-infinity algorithm in TauDEM.84 IDups was found to be a highly informative 

predictor in physics-informed models of groundwater vulnerability in regions of hill-and-

valley topography where groundwater tends to flow in the downhill direction, parallel to the 

local topographic gradient. The IDups metric was applied in one previous exposure study 

and one previous epidemiologic analysis of children’s health.85, 86 In using the IDups metric, 

we implicitly assume that consumption or contact with groundwater from domestic wells 

is an important exposure source.83 In Ohio, more than 40% of the population is served by 

groundwater87, and approximately 15–20% of residences utilize a domestic well as a source 

of drinking water;88, 89 this percentage is likely higher in the rural northeast of the state, 

where UOGD is most prevalent.

Buffer distances of 2, 5, and 10 km were used based on plausible dispersion of air and 

water pollutants and to facilitate comparisons to prior literature. With respect to exposure 

timing, we examined two etiologically important exposure windows for our UOGD exposure 

metrics: (i) the year prior to birth, called the “primary window,” and (ii) the first trimester 

only, as this is a particularly vulnerable time in fetal development with regard to teratogen 

exposure.90 The time window corresponding to the first trimester was calculated using the 

date of birth and the obstetric estimate of gestation.

2.4 Covariates

A list of candidate individual and community-level factors was compiled a priori 
based on the published literature including known or suspected risk factors for birth 

defects and covariates used in prior studies of UOGD and birth defects. These included 

the following individual-level demographic, socioeconomic, health, and lifestyle factors 

obtained from state birth records: infant sex, birth year, season of birth, maternal age, 

maternal race, maternal ethnicity, maternal educational attainment, maternal marital status, 

maternal smoking status during pregnancy, maternal alcohol use during pregnancy, parity 

(nulliparious, one or more previous live births), primary payer for delivery (Medicaid, 

private insurance), use of federal Women Infants and Children (WIC) program, pre-

pregnancy body mass index (BMI), whether a mother received prenatal care, and maternal 

hypertension or diabetes.

We also obtained community-level variables such as urbanicity/rurality as captured by the 

2010 Rural Urban Commuting Area (RUCA) codes which classify U.S. census tracts into 

10 categories based on population density, urbanization, and daily commuting91 and the 

2014 Social Vulnerability Index (SVI) developed by the U.S. Center for Disease Control 

(CDC), which combines 15 U.S. Census variables into a percentile ranking capturing the 
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likelihood of experiencing disproportionate harm from environmental disasters with a higher 

percentile indicating greater vulnerability.92 The SVI has been associated with preterm birth 

and other health outcomes.93–95 We used agricultural data from the Cropland Data Layer 

of the USDA CropScape tool (USDA 2009–2016) to classify individuals with a maternal 

geocoded residence with any/none cropland within 500 m as a proxy for the potential 

for pesticide exposures.96, 97 In addition, each birth was linked to the mean average daily 

fine particulate matter (PM2.5) concentration in their census tract during the first trimester 

of pregnancy, a previously identified sensitive time window, using data from the U.S. 

Environmental Protection Agency98–100 Both PM2.5 and SVI were modeled as tertiles. We 

considered including SVI as a time-varying factor, but none of the tracts changed tertiles 

across 2010, 2014, and 2018.

2.5 Statistical Analysis

We used logistic regression to estimate odds ratios (ORs) and 95% confidence intervals 

(CIs) for all structural birth defects combined, categories of birth defects (e.g., neural tube 

defects), and individual birth defects (e.g., anencephaly). Our primary analyses used defects 

identified from the state birth records for the years 2010–2017. The exposure metric used 

in our main model was presence or absence of a UOG well within 10 km, informed by 

the overall low exposure prevalence and rarity of birth defects. Our main model included 

the following potential confounding factors as covariates, selected based on the published 

literature, evidence of associations with the exposure or outcome, sufficient variability in 

the distribution of subjects across categories, and to avoid overadjustment and unnecessary 

adjustment:101 year of birth, parity, maternal race, maternal smoking, use of WIC, SVI, and 

ambient PM2.5 concentrations. A directed acyclic graph (Supplemental Figure 1) illustrates 

how we have conceptualized the relationship between covariates included in the models. The 

main model was run separately for each birth outcome data source (state birth records 

and surveillance system) and for several variations on the exposure metrics (different 

time windows, buffer sizes, tertiles of inverse-distance weighted well count, water-pathway 

specific metric). Models for hypospadias were restricted to males only.

In addition, we conducted several sensitivity analyses to test the robustness of our main 

findings to inclusion of other covariates, as some of the relationships depicted in our 

directed acyclic graph could be debated. Additional analyses included (a) main model + 

additional sociodemographic (infant sex, maternal ethnicity, maternal marital status), (b) 

main model + lifestyle factors (maternal alcohol consumption during pregnancy), (c) main 

model + maternal health (hypertension, diabetes, previous risk pregnancy), (d) main model 

+ socioeconomic factors (maternal education, use of WIC), and (e) main model + other 

environmental factors (season of birth percent cropland). In stratified analyses, we ran our 

main model separately for urban (RUCA codes 1–7) and rural census tracts (RUCA codes 8–

10), male and female infants, and three SVI categories (<33rd percentile, 33–66th percentile, 

and >66th percentile). In addition, we considered whether ambient PM2.5 concentrations 

could be on the causal pathway between UOGD and birth defects, although we assumed 

these data would reflect general, regional air pollution and would not be sensitive enough 

to detect intermittent emissions from oil and gas well pads. However, we reran our models 
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with and without PM2.5. All statistical analyses were conducted within the R Statistical 

Environment (http://www.R-project.org/).

3. Results

There were 4,112 individuals in our 2010–2017 cohort with at least one structural defect 

recorded in state birth records and 2,321 identified from surveillance data (2012–2017). 

Population characteristics for the full population and those identified as having birth defects 

from either state birth records or the surveillance system are presented in Table 2. The most 

prevalent birth defect categories based on state birth records were hypospadias (n=943), 

followed by congenital heart defects (n=904), and oral clefts (n=874). These categories were 

also the most prevalent based on the surveillance data (Table 3). Between 2010 and 2017, 

there were 41,152 births to mothers who resided within 10 km of an UOGD well during 

pregnancy (4.3% of the total cohort) (Table 4).

In our main model using outcome data from state birth records only (2010–2017), we 

observed an elevated odds ratio for any structural defect among those living within 10 km of 

a UOGD well (OR 1.13; 95% CI 0.98–1.30) (Table 3). UOGD exposure based on the binary 

metric was positively associated with several categories of birth defects, including neural 

tube defects (OR 1.57; 95% CI 1.12–2.19), spina bifida (OR 1.93; 95% CI 1.25–2.98), 

and limb reduction defects (OR 1.99; 95% CI 1.18–3.35) (Table 3). In contrast, an inverse 

association was observed for hypospadias (OR 0.62; 95% CI 0.43–0.91).

Table 4 presents the magnitude of observed ORs for all structural defects combined for 

variations in the exposure assessment including buffer size (5 km versus 10 km), exposure 

time window (year prior to birth versus first trimester only), and exposure metric (binary, 

inverse distance squared weighted, and IDups) (Table 4). Restricting the buffer distance to 

5 km and limiting the exposure window to the first trimester each yielded ORs of larger 

magnitudes and wider confidence intervals. The ORs across tertiles of the inverse-distance-

squared-weighted metric were similar to those observed with the binary metric. The largest 

magnitude OR was observed for IDups, the water-pathway specific metric (OR: 1.30, 95% 

CI: 0.85–1.97).

In stratified analyses, the OR for structural defects in relation to UOGD exposure 

were higher among individuals living in Census tracts with greatest neighborhood social 

vulnerability (OR: 1.26, 95% CI: 0.99–1.60), compared to the OR for the lowest tertile of 

neighborhood social vulnerability (OR: 1.06, 95% CI: 0.79–1.43) (Figure 1). Sex stratified 

analyses yielded stronger associations between UOGD exposure and structural birth defects 

among female offspring (OR: 1.33, 95% CI: 1.08–1.65), but not males (OR: 1.01, 95% CI: 

0.84–1.21) (Figure 1). ORs did not differ by rural/urban designation (Figure 1). Results 

from sensitivity analyses in which additional covariates were added to the main model 

were consistent with the findings from the main model (Table 5). Excluding ambient PM2.5 

concentrations had negligible impact on the results (Supplemental Table 2).
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4. Discussion

In our study of birth defects in Ohio, we observed elevated ORs of several types of structural 

birth defects in relation to residential proximity to UOGD, with positive associations 

observed for neural tube defects and the specific anomalies of spina bifida and limb 

reduction defects. Hypospadias was inversely associated with potential UOGD exposure. 

These results add to the current limited body of evidence with analyses from a different state 

and application of a new water-specific exposure metric.

The positive associations observed in our analysis are generally consistent with the eight 

existing studies of UOGD and birth defects, with some variations in findings (Table 1). 

Of the four other studies that assessed neural tube defects, two also observed a positive 

association with UOGD exposure in the principal metric.19, 73, 75 We found elevated but 

not statistically significant ORs for congenital heart defects, consistent with findings from 

four of the five prior studies examining this endpoint.73–75 Our study reports results for 

limb reduction defects, which was positively associated with UOGD exposure, and for 

hypospadias, which was inversely associated with the exposure. The unexpected inverse 

association with hypospadias could be due to chance, or could be indicative of the possibility 

that endocrine disruptors can produce effect estimates in different directions.102–104 For 

example, hypospadias is linked to exposure to hormone disruptors,102, 105 and both 

androgenic and anti-androgenic chemicals have been detected in hydraulic fracturing fluid 

and wastewater.68, 106–108 Another reason for the inverse relationship could be there are 

other dominant sources of endocrine disruptors that we did not assess that may have 

confounded for this endpoint. Of the eight birth defect studies previously mentioned, none 

reported results for hypospadias specifically. One reported marginally elevated odds of being 

born with a genitourinary defect in association with maternal residential proximity to oil and 

gas.19

Ours is one of the few health studies on oil and gas conducted in Ohio, and the only 

study regarding unconventional oil and gas and birth defects in this state. It is valuable 

to conduct similar studies in different states, where regulations, geology, demographics, 

and covariates may vary, to facilitate cross-cohort comparisons, triangulate evidence, and 

enhance generalizability of findings.109 For example, Ohio has among the shortest allowable 

setback distances (the allowable distance between a directionally drilled well and a sensitive 

receptor such as a residence, drinking water well), ranging from 50 to 200 feet depending 

on the circumstance.110, 111 State-specific studies can hold more weight for policy makers 

seeking to update state policies.

The low exposure prevalence in conjunction with the rarity of birth defects prevented 

more refined exposures assessments and posed challenges in terms of statistical power, 

common issues in research of rare outcomes.78 Our study included 4,653 cases, which 

is comparable to 2014 and 2019 studies done in Colorado but substantially fewer than a 

2020 study conducted in the larger and more populous state of Texas, which included over 

50,000 cases.73–75 We grouped specific diagnoses with potentially different etiologies into 

broader categories to increase sample size, which may have biased results towards the null. 

Similarly, the IDups metric, which offers more detail and specificity for the drinking water 
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pathway, was only able to be evaluated in a binary fashion and in relation to “any birth 

defects”, our most aggregate outcome. A study with a larger population size could increase 

statistical power and enable more refined exposure assessments. We focused on UOGD, 

which is deep, water-intensive, has had documented well integrity issues, and has been 

linked to numerous increased health risks in children.1, 28, 29, 112 However, Ohio also has 

conventional oil and gas development, which emits several similar pollutants113 and future 

work could expand this analysis to include both conventional and unconventional oil and gas 

wells.

Although outcome misclassification is possible with administrative birth defects datasets, we 

used two data sources and observed similar results, lending confidence to the findings. Ohio 

follows a passive rather than active surveillance system, which means the overall number 

of birth defects are likely underreported.78, 114 Studies in states with active surveillance 

systems or in which researchers themselves abstract hospital records would be expected to 

yield more complete case ascertainment; the 2020 study done by Tang et al. in Texas is an 

example of this.75, 78, 114 On the other hand, the passive surveillance offers an advantage in 

terms of providing a lower likelihood of false positives.

Other possible limitations include the use of maternal address at birth to estimate prenatal 

residential exposure does not account for residential mobility during pregnancy; however, 

this has been shown to have minimal impact on exposure misclassification.115–117 Finally, 

live birth bias could be an issue and may underestimate the effect if UOG exposure increases 

the risk for fetal or neonatal death, especially among those with or susceptible to birth 

defects.118, 119

5. Conclusions

In this Ohio study, we observed associations between residential proximity to UOGD and 

neural tube defects, corroborating prior findings. We presented new findings of relationships 

with the specific anomalies of limb reduction and spina bifida and presented results using a 

newly developed metric specific to the drinking water exposure pathway. These results, in 

conjunction with the broader literature, underscore the need to consider impacts to children’s 

health specifically when developing or improving public health protections around UOGD.
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Highlights:

• Higher odds of neural tube defects in infants born near oil and gas 

development

• Higher odds of limb reduction defects in infants born near oil and gas 

development

• Higher odds of spina bifida in infants born near oil and gas development

• Lower odds of hypospadias in infants born near oil and gas development

• Greater risk in areas with high neighborhood social vulnerability
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Figure 1. 
Stratified analyses of odds of any structural defect in relation to presence of unconventional 

oil and gas well within 10 km of maternal residence at birth (2010–2017).
aOdds Ratios and confidence intervals are for logistic regression including the following 

covariates: year of birth, parity, maternal race, maternal smoking, use of WIC, social 

vulnerability index, and ambient PM2.5 concentration.
bNeighborhoods with “low,” “moderate,” and “high” social vulnerability are defined as those 

census tracts which had a Social Vulnerability Index in the bottom 33%, the middle 33%, 
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or the top 33% compared to other census tracts across the state, as ranked in the Center for 

Disease Control 2014 Social Vulnerability Index dataset
cOdds Ratios and confidence intervals are for logistic regression including the following 

covariates: year of birth, parity, maternal race, maternal smoking, use of WIC, and ambient 

PM2.5 concentration.
dRural” and “urban” are defined in accordance with 2010 Rural-Urban Commuting Area 

(RUCA) codes from the United States Department of Agriculture. Individuals living in a 

census tract with a RUCA code of 1–7 are considered “urban”; individuals living in a census 

tract with a RUCA code of 8–10 are considered “rural.”
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Table 4.

Sensitivity analyses of odds of any structural defect in relation to unconventional oil and gas development 

(2010–2017) using different exposure metrics.

Model description Buffer size Exposure time window Type of exposure metric N exposed 
(cases/total) OR

a
 (95% CI)

 Main model 10 km Year prior to birth Presence of UOG well 216/41152 1.13 (0.98–1.30)

Smaller buffer size 5 km Year prior to birth Presence of UOG well 63/11959 1.12 (0.87–1.44)

Narrow time window 10 km First trimester Presence of UOG well within 
buffer 193/35467 1.14 (0.99–1.32)

Inverse distance squared 
(ref: ID2W=0)

10 km Year prior to birth Inverse distance-squared-
weighted: Tertile 1 66/13717 1.07 (0.83–1.36)

Inverse distance squared 
(ref: ID2W=0)

10 km Year prior to birth Inverse distance-squared-
weighted: Tertile 2 75/13717 1.18 (0.94–1.48)

Inverse distance squared 
(ref: ID2W=0)

10 km Year prior to birth Inverse distance-squared-
weighted: Tertile 3 75/13718 1.14 (0.90–1.43)

Water-specific metric 
(IDups)

10 km Year prior to birth Presence of upgradient UOG 
well 22/3564 1.30 (0.85–1.97)

a
Odds ratios (ORs) adjusted for the following covariates: year of birth, parity, maternal race, maternal smoking, use of WIC, social vulnerability 

index, and ambient PM2.5 concentrations.
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Table 5.

Sensitivity analyses of odds of any structural defect in relation to presence of unconventional oil and gas well 

within 10 km of maternal residence at birth (2010–2017).

Model Variables OR (95% CI)*

Main Model
year of birth, parity, maternal race, maternal smoking, use of WIC, social 
vulnerability index, and ambient PM2.5 concentration

1.13 (0.98–
1.30)

Model A (Main model + additional 
sociodemographic factors)

year of birth, parity, maternal race, maternal smoking, use of WIC, social 
vulnerability index, ambient PM2.5 concentration, infant sex, maternal ethnicity, 
maternal marital status

1.13 (0.98–
1.29)

Model B (Main model + lifestyle 
factors)

year of birth, parity, maternal race, maternal smoking, use of WIC, social 
vulnerability index, and ambient PM2.5 concentration, maternal alcohol 
consumption

1.11 (0.97–
1.28)

Model C (Main model + maternal 
health factors)

year of birth, parity, maternal race, maternal smoking, use of WIC, social 
vulnerability index, and ambient PM2.5 concentration, hypertension, diabetes, 
previous risky pregnancy

1.14 (0.99–
1.30)

Model D (Main model + 
socioeconomic factors)

year of birth, parity, maternal race, maternal smoking, use of WIC, social 
vulnerability index, and ambient PM2.5 concentration, maternal education, 
primary payer for delivery

1.12 (0.97–
1.29)

Model E (Main model + 
environmental factors)

year of birth, parity, maternal race, maternal smoking, use of WIC, social 
vulnerability index, and ambient PM2.5 concentration, season of birth, percent 
cropland

1.12 (0.98–
1.29)
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