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Abstract
Autoantibodies (auto-Abs) neutralizing type I interferons (IFNs) are found in the blood of at least 15% of unvaccinated 
patients with life-threatening COVID-19 pneumonia. We report here the presence of auto-Abs neutralizing type I IFNs in 
the bronchoalveolar lavage (BAL) of 54 of the 415 unvaccinated patients (13%) with life-threatening COVID-19 pneumonia 
tested. The 54 individuals with neutralizing auto-Abs in the BAL included 45 (11%) with auto-Abs against IFN-α2, 37 
(9%) with auto-Abs against IFN-ω, 54 (13%) with auto-Abs against IFN-α2 and/or ω, and five (1%) with auto-Abs against 
IFN-β, including three (0.7%) with auto-Abs neutralizing IFN-α2, IFN-ω, and IFN-β, and two (0.5%) with auto-Abs 
neutralizing IFN-α2 and IFN-β. Auto-Abs against IFN-α2 also neutralize the other 12 subtypes of IFN-α. Paired plasma 
samples were available for 95 patients. All seven patients with paired samples who had detectable auto-Abs in BAL also 
had detectable auto-Abs in plasma, and one patient had auto-Abs detectable only in blood. Auto-Abs neutralizing type I 
IFNs are, therefore, present in the alveolar space of at least 10% of patients with life-threatening COVID-19 pneumonia. 
These findings suggest that these auto-Abs impair type I IFN immunity in the lower respiratory tract, thereby contributing 
to hypoxemic COVID-19 pneumonia.

Keywords  COVID-19 · SARS-CoV-2 · Cytokines · Type I interferons

Introduction

SARS-CoV-2 infection displays immense interindividual 
clinical variability in unvaccinated individuals, ranging 
from silent infection to lethal disease [1, 2]. Silent or mild 
infection is seen in about 80% of individuals, while pneu-
monia strikes about 20% of cases, with half these cases 
displaying hypoxemic pneumonia and one third acute res-
piratory distress syndrome (ARDS) [1–3]. Global mortality 

is about 0.5–1%, across all ages and sexes, with a risk of 
death that doubles every five years of age, from childhood 
onward [4]. Sex, comorbid conditions, and common human 
genetic variants have been identified as risk factors, but have 
a lesser effect than age, with odds ratios typically < 1.5 and 
always < 2 [1, 2]. Inborn errors of type I interferon (IFN) 
immunity or autoantibodies (auto-Abs) against type I IFNs 
account for at least 15–20% of cases of life-threatening 
COVID-19 pneumonia [5–10]. Circulating auto-Abs against 
type I IFNs can neutralize high (10 ng/mL) or low and more 
physiological (100 pg/mL) concentrations of type I IFNs [8]. 
These auto-Abs have been found in at least 15% of patients 
with critical COVID-19 pneumonia [7, 8]. They have also 
been found in ~ 20% of cases of life-threatening COVID-19 
pneumonia in patients over the age of 80 years, and in ~ 20% 
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of patients with fatal COVID-19 across all ages [8]. They 
have been shown to neutralize the 12 different IFN-α sub-
types and/or IFN-ω, and, more rarely, IFN-β [8]. These auto-
Abs are associated with life-threatening pneumonia, with 
ORs increasing with the number and concentration of type 
I IFNs neutralized (OR values ranging from 3 to 67) [8, 
11]. These findings have been confirmed in 29 other stud-
ies [12–40]. These auto-Abs have also been detected in the 
plasma/serum of individuals from the general population 
collected before SARS-CoV-2 infection, in ~ 0.2% (neutraliz-
ing high concentration of type I IFNs) and 1% (neutralizing 
low concentration of type I IFNs) of individuals aged 18 to 
69 years, 1% and 2.3%, respectively, of those aged between 
70 and 80 years, and their frequency reached 3.4% and 6.3%, 
respectively, in individuals over the age of 80 years [8]. Life-
threatening COVID-19 pneumonia in patients with auto-Abs 
against type I IFNs may, therefore, be considered an autoim-
mune condition, with adaptive B-cell immunity disrupting 
innate type I IFN-dependent immunity [41].

Patients with life-threatening COVID-19 pneumonia, 
with or without auto-Abs against type I IFNs, display pul-
monary and systemic inflammation [2]. This suggested a 
two-step model, in which insufficient type I IFN production 
or responses to type I IFNs in the first few days of infection 
allow the virus to spread from the upper to the lower respira-
tory tract, and to various tissues via the bloodstream. This 
viral dissemination triggers the recruitment and activation 
of leukocytes, unleashing excessive inflammation from the 
second week of infection onward [1, 2]. The nasopharyngeal 
mucosa is the port of entry of SARS-CoV-2. In patients with 
mild, upper respiratory tract COVID-19 without pneumo-
nia, the levels of type I and type III (I/III) IFN-dependent 
interferon-stimulated gene (ISG) induction in this mucosa 
are correlated with serum IFN-α2 concentration and nasal 
SARS-CoV-2 load [42]. In patients with critical COVID-19 
pneumonia, the induction of type I/III IFN-dependent ISGs 
in the nasopharyngeal mucosa is weaker in patients with 
auto-Abs against type I IFNs than in those without such anti-
bodies [42]. Following SARS-CoV-2 infection, pre-existing 
auto-Abs against type I IFNs in the blood probably contrib-
ute to viral spread, via the bloodstream, to various tissues [1, 
2]. By contrast, the contribution of auto-Abs against type I 
IFNs to the spread of the virus from the upper to the lower 
respiratory tract remains unclear. Single-cell transcriptomic 
studies of the bronchoalveolar lavage (BAL) of patients with 
critical COVID-19 pneumonia found impaired type-I IFN 
signaling in the T cells and alveolar macrophages relative 
to patients with moderate or severe COVID-19 pneumonia 
[43]. Type I IFN-dependent immunity may, therefore, con-
tribute to alveolar defenses against SARS-CoV-2. Auto-Abs 
against type I IFNs have been detected in tracheal aspirate 
[44]. However, their presence and neutralizing activity in 
the alveolar space have been assessed in only 11 individuals 

and demonstrated in only three of these individuals [21]. In 
this study, we aimed to plug this gap in current knowledge 
by testing for the presence of neutralizing auto-Abs against 
type I IFNs in the BAL fluid of a large cohort of patients 
with life-threatening COVID-19 pneumonia.

Methods

Study Design

We enrolled 415 patients with proven life-threatening 
COVID-19 from three university hospitals in France and 
the Netherlands. We collected BAL from all these patients, 
and plasma from a subset of 95 patients (collected within 
24  h of the BAL sample), for immunoassays to assess 
the presence of IgG auto-Abs against type I IFNs. All 
individuals were recruited according to protocols approved 
by local institutional review boards (IRBs).

Detection of Anti‑Cytokine Auto‑Abs

Gyros was used for the detection of anti-type I IFN auto-Abs, 
as described by Bastard et al. [8]. Cytokines, recombinant 
human (rh)IFN-α2 (Miltenyi Biotec, reference number 
130–108-984) and rhIFN-ω (Merck, reference number 
SRP3061) were first biotinylated with EZ-Link Sulfo-
NHS-LC-Biotin (Thermo Fisher Scientific, catalog number 
A39257), according to the manufacturer’s instructions, 
with a biotin-to-protein molar ratio of 1:12. The detection 
reagent contained a secondary antibody [Alexa Fluor 647 
goat anti-human IgG (Thermo Fisher Scientific, reference 
number A21445)] diluted in Rexxip F (Gyros Protein 
Technologies, reference number P0004825; 1:500 dilution 
of the 2 mg/mL stock to yield a final concentration of 4 μg/
mL). Phosphate-buffered saline, 0.01% Tween 20 (PBS-
T) and Gyros Wash buffer (Gyros Protein Technologies, 
reference number P0020087) were prepared according to 
the manufacturer’s instructions. BAL or plasma samples 
were then diluted 1:100 in 0.01% PBS-T and tested with the 
Bioaffy 1000 CD (Gyros Protein Technologies, reference 
number P0004253) and the Gyrolab xPand (Gyros Protein 
Technologies, reference number P0020520). Cleaning cycles 
were performed in 20% ethanol.

Functional Evaluation of Anti‑Type I IFN Auto‑Abs 
in Luciferase Reporter Assays

The neutralizing activity of anti–IFN-α2 and anti–IFN-ω auto-
Abs was assessed in a reporter luciferase activity, as described 
by Bastard et al. [8]. HEK293T cells were transfected with a 
plasmid containing the firefly luciferase gene under the control 
of the human ISRE promoter in the pGL4.45 backbone and 
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a plasmid constitutively expressing the Renilla luciferase for 
normalization (pRL-SV40). The cells were transfected in the 
presence of the X-tremeGENE9 transfection reagent (Sigma-
Aldrich, reference number 6365779001) for 24  h. Cells 
in Dulbecco’s modified Eagle medium (DMEM; Thermo 
Fisher Scientific) supplemented with 2% fetal calf serum 
and 10% patient plasma or 20% BAL (after inactivation at 
56 °C for 20 min) were stimulated with IFN-α2 (Miltenyi 
Biotec, reference number 130–108-984) or IFN-ω (Merck, 
reference number SRP3061), at 10 ng/mL or 100 pg/mL, or 
rhIFN-β (Peprotech, ref. number 300-02BC) at 10 ng/mL for 
16 h at 37 °C. Each sample was tested once for each cytokine 
and each dose. Finally, the cells were lysed for 20 min at 
room temperature, and luciferase levels were measured with 
the Dual-Luciferase Reporter 1000 Assay System (Promega, 
reference number E1980) according to the manufacturer’s 
protocol. Luminescence intensity was measured with a 
VICTOR-X Multilabel Plate Reader (Perkin Elmer Life 
Sciences, USA). Firefly luciferase activity was normalized 
against Renilla luciferase activity. A similar protocol was 
used to test for auto-Abs against 12 subtypes of IFN-α, except 
that we used cytokines from PBL Assay Science (catalog no. 
11002–1) at a concentration of 1 ng/mL for stimulation.

IgG Purification

We demonstrated that the IFN-α2– or IFN-ω–neutralizing 
activity observed was due to auto-Abs and not another BAL 
factor, by depleting IgG from the BAL with a protein G 
buffer (Pierce Protein G IgG Binding Buffer, 21,011) and 
column (NAb Protein G Spin Columns, 89,953). All buff-
ers were prepared in the laboratory: 0.1 M glycine (pH 2.7) 
and 1.5 M Tris (pH 8). Total BAL was loaded onto the col-
umn. Each sample was tested once. Purified IgG was then 
concentrated [Pierce Protein Concentrators polyethersulfone 
(PES), 50 K molecular weight cut-off (MWCO), 88504]. The 
flow-through fraction (IgG-depleted) was collected without 

eluting IgG and compared with total BAL in the luciferase 
neutralization assay.

Assessment of Urea and Hemoglobin 
Concentrations in the BAL

Urea and hemoglobin concentrations were assessed in 
the BAL with the Urea Assay Kit and the Hemoglobin 
Assay Kit, both from Sigma (MAK006 and MAK115, 
respectively), according to the manufacturer’s guidelines.

Determination of Biomarker Concentrations 
in the BAL

Cytokine and chemokine concentrations were measured with 
a Luminex multiplex assay (R&D Systems) on a BioPlex200 
(BioRad), as previously described [45].

Statistical Analysis

Analyses were performed in R v4.0.5 GUI 1.74 or in 
GraphPad Prism 8.4.3.

Results

Auto‑Abs Neutralizing IFN‑α2 and/
or IFN‑ω in the Plasma of 17% of Patients 
with Life‑Threatening COVID‑19 Pneumonia

We recruited an international cohort of 415 patients 
with life-threatening COVID-19 pneumonia from three 
university hospitals: the La Pitié-Salpêtrière (N = 259, 62%) 
and Lariboisière (N = 32, 8%) hospitals, both part of the 
Assistance Publique-Hôpitaux de Paris (AP-HP) network in 
Paris, France, and Amsterdam University Medical Centers 
(UMC) (N = 124, 30%) in Amsterdam, the Netherlands. All 

Table 1   Clinical characteristics of the patients included in this cohort

Data are reported as N, N (%), or median (interquartile range); *Patients with autoantibodies against type I IFNs (auto-Abs) in bronchoalveolar 
lavage (BAL) were compared with those without such antibodies, in t- or chi-squared tests, with a P-value < 0.05 considered significant

All patients - N=415 Patients without auto-Abs 
in BAL - N=361

Patients with auto-Abs 
in BAL - N=54

P-value* Missing data

Age (years) 60 (50—67) 59 (50—67) 63 (57 – 71) 0.0045 10 (2%)
Male 277 (69%) 241 (68%) 36 (73%) 0.46 13 (3%)
Death 202 (51%) 172 (50%) 30 (60%) 0.19 19 (5%)
Length of ICU stay (days) 28 (16 – 47) 29 (16 – 47) 24 (12 – 48) 0.69 209 (50%)
Duration of invasive ventilation (days) 25 (13 – 42) 26 (14 – 42) 24 (12 – 45) 0.79 216 (52%)
Time from symptom onset to BAL (days) 15 (9 – 21) 15 (9 – 21) 14 (10 – 24) 0.79 330 (80%)
Time from ICU admission to BAL (days) 7 (4—12) 7 (4—13) 6 (4—10) 0.22 214 (52%)
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these patients were hospitalized in an intensive care unit 
with invasive ventilation. They had a median age of 60 years 
[50 – 67 years] and 69% were men. Overall mortality was 

51% (Table 1 and Figure S1A). We tested for auto-Abs 
against IFN-α2 and/or IFN-ω in plasma samples, which were 
available for 95 (mean age 65 years, 72% men) individuals 
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from this cohort. We used Gyros Technology, a high-
throughput automated enzyme-linked immunosorbent assay 
(ELISA)-like assay that we have validated for the detection 
of circulating anti-IFN-α2 or anti-IFN-ω immunoglobulin G 
(IgG) [8]. Eight (8%) and three (3%) patients had high levels 
(> 100) of anti-IFN-α2 and anti-IFN-ω IgG, respectively, 
and one (1%) patient had high levels of IgG against IFN-
α2 and IFN-ω (Fig. 1A). We assessed the ability of these 
auto-Abs to neutralize high (10 ng/mL), or low (100 pg/
mL), more physiological concentrations of type I IFNs in 
a 1:10 dilution of plasma. We used a previously described 
neutralization assay developed in HEK293T cells transfected 
with a luciferase system [8]. Eight of the 95 individuals 

tested (8%) had auto-Abs neutralizing high concentrations 
of IFN-α2 and/or IFN-ω, 16 (17%) had auto-Abs neutralizing 
low concentrations of IFN-α2 and/or IFN-ω, and two (2%) 
had auto-Abs neutralizing high concentrations of IFN-α2, 
IFN-ω, and IFN-β (Fig. 1B and Table 2).

Detection of Anti‑IFN‑α2 and Anti‑IFN‑ω 
IgG Auto‑Abs in the BAL of Patients With 
Life‑Threatening COVID‑19 Pneumonia

We then searched for auto-Abs against type I IFNs in 
BAL. As IgG, but not IgA, anti-GM-CSF auto-Abs had 
already been described in the BAL [46], we used Gyros 
technology to search for IgG auto-Abs against IFN-α 
and IFN-ω in BAL samples from the patients. Taking 
into account the dilution of the lung alveolar epithe-
lial lining fluid (ELF) in the BAL (previously reported 
to be ~ 100-fold [47] and estimated at 94- to 302-fold 
in five BAL samples from our cohort – Table S1), we 
considered auto-Ab levels above background (defined 
as level > 1) to be “positive”. Using this threshold, we 
tested the BAL samples from 254 of the 415 patients of 
the cohort (mean age 59 years, 71% men) and found that 
41 (16%) and 37 (15%) patients had anti-IFN-α2 and 
anti-IFN-ω IgG, respectively, in their BAL (Fig. 1C). 
IgG auto-Abs against both IFN-α2 and IFN-ω were 
found in the BAL of 25 patients (10%). The hemoglobin 
concentrations of the BAL samples tested did not differ 
between BAL with and without anti-type I IFN IgG, and 
were below those in BAL from patients with cytologi-
cally diagnosed alveolar hemorrhage (Figure S1B), sug-
gesting that these auto-Abs were present in the alveolar 
space in the absence of alveolar hemorrhage or bronchial 
hemorrhage related to bronchoscopy. We assessed the 
neutralizing capacity of these auto-Abs in BAL, using 
HEK293T cells in a luciferase neutralization assay in 
which the cells were incubated with medium contain-
ing a “negative” BAL (i.e. no anti-IFN-α2 and no anti-
IFN-ω IgG detected in the BAL or in the corresponding 
plasma by Gyros) diluted 1:5. This “negative” BAL did 
not significantly impair luciferase induction. The neu-
tralizing activity of an anti-human IFN-α2 monoclonal 
IgG was not impaired when incubated with this BAL 
(Figure S1C). We then used this system to assess the 
neutralizing activity of one “positive” BAL (i.e. anti-
IFN-α2 and anti-IFN-ω IgG detected in the BAL and 
in the corresponding plasma by Gyros). This “positive” 
BAL displayed neutralizing activity, completely block-
ing luciferase induction in response to stimulation with 
IFN-α2, but not IFN-β (Figure S1D). By purifying the 
IgG, we were able to show that the neutralizing activity 
was IgG-mediated (Figure S1E).

Fig. 1   Autoantibodies neutralizing type I interferons are present in 
the broncho-alveolar lavage of ~ 10% of patients with life-threatening 
COVID-19. (A) Gyros (high-throughput automated ELISA) results 
for auto-Abs against IFN-α2 and/or IFN-ω in the plasma of patients 
with life-threatening COVID-19 (N = 95). The dotted line indicates 
the threshold for positivity, defined as a type I IFN auto-Ab level 
exceeding 100. (B) Results for the neutralization of IFN-α2, IFN-ω 
(100 pg/mL or 10 ng/mL) or IFN-β (10 ng/mL) in the presence of a 
1:10 dilution of plasma from patients with life-threatening COVID-
19 (N = 95). The relative luciferase activity (RLA) ratio (ISRE dual 
luciferase activity, with normalization against Renilla luciferase activ-
ity) is shown, after stimulation with IFN-α2, IFN-ω, or IFN-β, with 
normalization against the RLA obtained without stimulation in the 
presence of a 1:10 dilution of plasma. The dotted line indicates the 
threshold for neutralization, defined as an RLA ratio of no more than 
3. (C) Gyros results for auto-Abs against IFN-α2 and IFN-ω in the 
plasma of a patient known to have high titers of auto-Abs neutralizing 
IFN-α2 and IFN-ω (“Positive” plasma), in the bronchoalveolar lav-
age (BAL) of patients with life-threatening COVID-19 (N = 254), and 
in PBS supplemented with 0.05% Tween (PBS-T) as a negative con-
trol. The dotted line indicates the threshold for positivity, defined as 
a type I IFN auto-Ab level above 1. (D) Results for the neutralization 
of IFN-α2, IFN-ω (100 pg/mL), or IFN-β (10 ng/mL) in the presence 
of a 1:5 dilution of BAL from patients with life-threatening COVID-
19 (N = 415) and individuals without interstitial lung disease (“Unin-
fected controls” – N = 27). Relative luciferase activity (RLA) ratio 
(ISRE dual luciferase activity, with normalization against Renilla 
luciferase activity) is shown after stimulation with IFN-α2, IFN-ω, 
or IFN-β, with normalization against the RLA without stimulation 
in the presence of a 1:5 dilution of BAL. The dotted line indicates 
the threshold for neutralization, defined as an RLA ratio of no more 
than 3. (E) Plot showing the RLA ratio after stimulation with IFN-
α2 or IFN-ω or IFN-β, in the presence of a 1:10 dilution of plasma 
or a 1:5 dilution of BAL from patients with life-threatening COVID-
19 (N = 95). The dotted lines indicate the threshold for neutralization, 
defined as an RLA ratio of no more than 3. Patients with neutralizing 
auto-Abs in both BAL and plasma are shown in the bottom left cor-
ner, whereas the patients in the bottom right corner had neutralizing 
auto-Abs only in plasma. (F-G) Principal component analysis (PCA) 
(F), and volcano plot representation (G) of the concentrations of 59 
biomarkers in BAL from patients with life-threatening COVID-19 
pneumonia with (N = 11) or without (N = 117) auto-Abs against type 
I IFNs. PCA was performed with the FactoMineR package. Wilcoxon 
tests were performed to compare the concentrations of biomarkers in 
BAL between patients with and without auto-Abs against type I IFNs, 
with a p-value < 0.05 considered significant

◂
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Auto‑Abs Neutralizing IFN‑α2 and/or IFN‑ω 
in the BAL of at Least 10% of Patients 
with Life‑Threatening COVID‑19 Pneumonia

We then assessed the neutralizing capacity of these anti-
IFN-α and anti-IFN-ω IgG auto-Abs present in the BAL 
of patients with life-threatening COVID-19 pneumonia. 
The median time from the onset of COVID-19 symptoms 
to BAL sampling was 15 days (interquartile range, IQR: 
9–21 days), and that from ICU admission to BAL sam-
pling was 7 days (IQR: 4 to 12 days) (Table 1). Given 
the ~ 100-fold dilution of the ELF in the BAL ([47] and 
Table S1), we tested the neutralizing capacity of these anti-
bodies exclusively with low concentrations (100 pg/mL) of 
IFN-α2 or IFN-ω (corresponding to a neutralizing capacity 
of ~ 10 ng/mL by the ELF). We tested 415 individuals and 
found that 45 (11%) and 37 (9%) had auto-Abs neutraliz-
ing IFN-α2 and IFN-ω, respectively, in their BAL (Fig. 1D 
and Table 3); 54 (13%) had auto-Abs neutralizing IFN-α2 
and/or IFN-ω, and 28 (7%) had auto-Abs neutralizing both 
IFN-α2 and IFN-ω. As reported for plasma auto-Abs, the 
auto-Abs neutralizing IFN-α2 in the BAL were also able 
to neutralize the other 12 type I IFN subtypes (Figure S1F) 
[8]. We also tested the BAL for the presence of auto-Abs 

neutralizing IFN-β (10 ng/mL, as no luciferase induction 
was observed with lower concentrations). We identified 
five (1%) patients with auto-Abs neutralizing IFN-β: three 
(0.7%) had auto-Abs neutralizing IFN-α2, IFN-ω, and 
IFN-β, and two (0.5%) had auto-Abs neutralizing IFN-α2 
and IFN-β (Fig. 1D and Table 3). Finally, we assessed the 
correlation between the presence of auto-Abs neutralizing 
type I IFNs in plasma and in BAL. In total, 95 (mean age: 
65 years, 72% men) patients had paired plasma and BAL 
samples. Relative to the other patients of the cohort, these 
95 patients were older, but the proportion of male patients, 
rates of death and auto-Abs against IFN-α2 and/or IFN-ω, 
and the duration of invasive ventilation and of the stay in 
ICU were similar (Table S2). Seven of these patients (7%) 
had auto-Abs neutralizing IFN-α2 in both the plasma and 
the BAL, and one (1%) had auto-Abs neutralizing IFN-α2 
in the plasma but not in the BAL. Four (4%) individuals 
had auto-Abs neutralizing IFN-ω in both BAL and plasma. 
Two (2%) individuals had auto-Abs neutralizing IFN-ω in 
plasma but not BAL. Two (2%) individuals had auto-Abs 
neutralizing IFN-β only in the plasma (Fig. 1E). Thus, 
auto-Abs neutralizing type I IFNs are present in the alveo-
lar space of at least 10% of patients with life-threatening 
COVID-19 pneumonia.

Table 2   Number and proportion 
of patients with auto-Abs 
neutralizing type I IFNs in the 
plasma

Type and concentration of type I IFNs neutralized by plasma diluted 1:10 Number (%) of patients 
with neutralizing activ-
ity

Anti–IFN-α2 and/or anti–IFN-ω auto-Abs (10 ng/mL) 8 (8%)
Anti–IFN-α2 and anti–IFN-ω auto-Abs (10 ng/mL) 6 (6%)
Anti–IFN-α2 auto-Abs (10 ng/mL) 8 (8%)
Anti–IFN-ω auto-Abs (10 ng/mL) 6 (6%)
Anti–IFN-α2 and/or anti–IFN-ω auto-Abs (100 pg/mL) 16 (17%)
Anti–IFN-α2 and anti–IFN-ω auto-Abs (100 pg/mL) 7 (7%)
Anti–IFN-α2 auto-Abs (100 pg/mL) 8 (8%)
Anti–IFN-ω auto-Abs (100 pg/mL) 15 (16%)
Anti–IFN-β auto-Abs (10 ng/mL) 2 (2%)
Anti–IFN-α-2, anti–IFN-ω and anti–IFN-β auto-Abs (10 ng/mL) 2 (2%)

Table 3   Number and proportion 
of patients with auto-Abs 
neutralizing type I IFNs in 
bronchoalveolar lavage

Type and concentration of type I IFNs neutralized by BAL diluted 1:5 Number (%) of patients 
with neutralizing activ-
ity

Anti–IFN-α2 and/or anti–IFN-ω auto-Abs (100 pg/mL) 54 (13%)
Anti–IFN-α2 and anti–IFN-ω auto-Abs (100 pg/mL) 28 (7%)
Anti–IFN-α2 auto-Abs (100 pg/mL) 45 (11%)
Anti–IFN-ω auto-Abs (100 pg/mL) 37 (9%)
Anti–IFN-β auto-Abs (10 ng/mL) 5 (1%)
Anti–IFN-α2 (100 pg/mL), anti–IFN-ω
(100 pg/mL) and anti–IFN-β auto-Abs (10 ng/mL)

3 (1%)
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Similar Outcome and Alveolar Inflammation 
in Patients with Life‑Threatening COVID‑19 
Pneumonia with and Without Auto‑Abs Against 
Type I IFNs in the BAL

Mortality was similar in patients with life-threatening 
COVID-19 pneumonia with and without auto-Abs against 
type I IFNs (Table 1). The presence of auto-Abs against 
type I IFNs was not associated either with the duration of 
invasive ventilation or length of ICU stay (Table 1). It has 
been reported that impaired type I IFN immunity in the first 
few days of SARS-CoV-2 infection, due to auto-Abs against 
type I IFNs or inborn errors of type I IFN immunity, results 
in excessive inflammation from the second week of infection 
onward [1]. We therefore assessed the impact of auto-Abs 
neutralizing IFN-α2 and/or IFN-ω on the expression of 
inflammatory biomarkers in the BAL. We assessed the 
concentration of 59 biomarkers (Table S3) in the BAL of 
11 (mean age: 68 years, 100% men) patients with auto-Abs 
neutralizing IFN-α2 and/or IFN-ω in BAL and 117 (mean 
age: 64 years, 71% men) patients without such auto-Abs. All 
these patients had life-threatening COVID-19 pneumonia. 
Principal component analysis (PCA) revealed no difference 
in clustering between patients with and without auto-
Abs against type I IFNs (Fig. 1F). Moreover, only three 
biomarkers (MIP1α, MIP1β, and TRAIL) were present at 
significantly higher concentrations (with a log2FC of at least 
1 and a p-value < 0.05) in the BAL of patients with auto-
Abs against type I IFNs than in the BAL of patients without 
such antibodies (Fig. 1G). Overall, these results suggest that, 
in patients with life-threatening COVID-19 pneumonia, 
inflammation in the alveolar space is similar, at least for 
the biomarkers evaluated, between those with and without 
auto-Abs against type I IFNs.

Discussion

We report that at least 10% of the patients with life-threat-
ening COVID-19 pneumonia tested have auto-Abs neutral-
izing high concentrations (10 ng/mL) of type I IFNs in 
the lower respiratory tract during SARS-CoV-2 infection. 
The neutralizing activity was mediated by the IgG fraction 
of the BAL, suggesting that it was not IgA-mediated. All 
patients with auto-Abs neutralizing type I IFNs in their 
BAL for whom paired plasma samples were available also 
had these auto-Abs in their plasma, whereas a few (2%) 
patients had auto-Abs detected only in plasma. These 
observations suggest that the IgG auto-Abs against type I 
IFNs circulating in the plasma can reach the alveolar space. 
The ELF was estimated to be diluted ~ 100-fold in the BAL 
samples tested. We may not, therefore, have been able to 

detect auto-Abs neutralizing lower concentrations of type I 
IFNs. The prevalence of auto-Abs neutralizing type I IFNs 
in the lower respiratory tract during SARS-CoV-2 infec-
tion may therefore be greater than 10%, perhaps closer to 
the 15% documented for blood [7, 8]. Like auto-Abs neu-
tralizing type I IFNs in the nasopharyngeal mucosa [42], 
auto-Abs in the BAL probably contribute to the spread of 
the virus to and within the lower respiratory tract. In the 
nasopharyngeal mucosa, these antibodies are associated 
with a decrease in type I/III IFN-dependent ISG induction 
[42]. They may also impair antiviral type I IFN immunity 
in the alveolar space, leading to life-threatening COVID-19 
pneumonia. We know that these auto-Abs are present in the 
plasma before SARS-CoV-2 infection [7, 15]. Moreover, 
immunoglobulins, including IgG, are present in the epi-
thelial lining fluid of healthy individuals [47]. Auto-Abs 
neutralizing type I IFNs are, thus, probably present in the 
alveolar space before SARS-CoV-2 infection, although it 
is not possible to draw definitive conclusions on this point 
because we had no access to BAL samples obtained from 
these patients before infection. We also cannot exclude the 
possibility that these antibodies cross the mucosae as a 
consequence of viral spread, although our findings suggest 
that they can reach the alveolar space without the need for 
alveolar hemorrhage. Regardless of the timing and mech-
anism of their arrival in the alveolar space, these auto-
Abs probably impair local type I IFN immunity, thereby 
contributing to hypoxemic COVID-19 pneumonia. In line 
with our previous single-cell RNA-sequencing (scRNAseq) 
analysis on blood from patients with life-threatening 
COVID-19 pneumonia [23], the similar alveolar inflam-
mation profiles observed in patients with life-threatening 
COVID-19 with and without auto-Abs against type I IFNs 
further suggest that impaired type I IFN immunity is a 
general pathogenic mechanism.

Supplementary Information  The online version contains supplementary 
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