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Abstract 

Background  The murine CBA/J mouse model widely supports immunology and enteric pathogen research. This 
model has illuminated Salmonella interactions with the gut microbiome since pathogen proliferation does not require 
disruptive pretreatment of the native microbiota, nor does it become systemic, thereby representing an analog to 
gastroenteritis disease progression in humans. Despite the value to broad research communities, microbiota in CBA/J 
mice are not represented in current murine microbiome genome catalogs.

Results  Here we present the first microbial and viral genomic catalog of the CBA/J murine gut microbiome. Using 
fecal microbial communities from untreated and Salmonella-infected, highly inflamed mice, we performed genomic 
reconstruction to determine the impacts on gut microbiome membership and functional potential. From high depth 
whole community sequencing (~ 42.4 Gbps/sample), we reconstructed 2281 bacterial and 4516 viral draft genomes. 
Salmonella challenge significantly altered gut membership in CBA/J mice, revealing 30 genera and 98 species that were 
conditionally rare and unsampled in non-inflamed mice. Additionally, inflamed communities were depleted in micro‑
bial genes that modulate host anti-inflammatory pathways and enriched in genes for respiratory energy generation. 
Our findings suggest decreases in butyrate concentrations during Salmonella infection corresponded to reductions in 
the relative abundance in members of the Alistipes. Strain-level comparison of CBA/J microbial genomes to prominent 
murine gut microbiome databases identified newly sampled lineages in this resource, while comparisons to human 
gut microbiomes extended the host relevance of dominant CBA/J inflammation-resistant strains.

Conclusions  This CBA/J microbiome database provides the first genomic sampling of relevant, uncultivated microor‑
ganisms within the gut from this widely used laboratory model. Using this resource, we curated a functional, strain-
resolved view on how Salmonella remodels intact murine gut communities, advancing pathobiome understanding 
beyond inferences from prior amplicon-based approaches. Salmonella-induced inflammation suppressed Alistipes and 
other dominant members, while rarer commensals like Lactobacillus and Enterococcus endure. The rare and novel spe‑
cies sampled across this inflammation gradient advance the utility of this microbiome resource to benefit the broad 
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research needs of the CBA/J scientific community, and those using murine models for understanding the impact of 
inflammation on the gut microbiome more generally.

Keywords  CBA/J mouse, Salmonella, Metagenome, Pathogen, Pathobiome

Introduction
Non-typhoidal Salmonella (NTS) is one of the leading 
causes of gastroenteritis and associated mortality 
worldwide, resulting in nearly 1 million cases and more 
than 50,000 deaths in 2017 [1–3]. Salmonella enterica 
serovar Typhimurium (referred to hereon as Salmonella) 
is a NTS model enteric pathogen that exploits 
inflammation to increase its pathogenicity and fitness 
relative to other bacteria [4–6]. Prior research in murine 
models showed gut microbiota are remodeled during 
Salmonella-induced inflammation because of innate 
immunity, diminished resources, and altered chemical 
environment [6, 7]. Similar inflammation-associated 
changes in commensal gut ecology are observed in 
patients with Crohn’s disease, irritable bowel disease, and 
metabolic syndrome [4, 8]. The Salmonella disease model 
may represent a human-relevant system for investigating 
host–pathogen-microbiota interactions in the inflamed 
GI tract germane to microbiome changes during other 
human chronic inflammatory conditions.

Earlier work showed that Salmonella induced 
inflammation created reactive oxygen and nitrogen 
species in the luminal environment, increasing the 
availability of oxygen and potentiating formation of 
tetrathionate and nitrate [9]. Increased concentrations 
of these terminal electron acceptors allowed Salmonella 
to respire and out-compete obligate fermentative 
commensals like members of the Clostridia [6, 10]. 
Additionally, in the remodeled gut ecosystem respiring 
Salmonella benefited from unique access to non-
competitive carbon sources like propionate and 
ethanolamine [11, 12]. Prior competition studies often 
focused on decreases in the Clostridia [7, 13], ignoring 
implications for the other members of the community, 
and those that can withstand Salmonella infection. 
Here we provide a holistic, strain resolved view of the 
changes in microbiome membership and function during 
Salmonella infection.

Previous investigations of the impacts of Salmonella 
on the gut microbiome relied on the use of pre-
treated reduced diversity communities [14–16]. Mice 
in past studies (e.g., BALB/c or C57BL/6) required 
antibiotic conditioning prior to pathogen introduction, 
preventing investigation of Salmonella physiology in 
response to an intact microbial community [14, 15, 17]. 
As an alternative, CBA/J mice are gaining appreciation 
as a model to interrogate Salmonella pathogenicity as 

they support longer non-systemic Salmonella infection 
without prior antibiotic perturbation, similar to enteric 
disease manifestation in humans [17–20]. While 
in  vitro and in  vivo studies with reduced microbiota 
consortia provide an important theoretical framework, 
additional research is needed in the presence of 
native microbial communities to understand how 
specific inflammation-induced changes to microbiota 
membership and function impact Salmonella 
physiology and pathogenicity.

Currently, the capability to study intact resident gut 
microbiota during Salmonella-induced inflammation 
is hindered because CBA/J mice are missing from 
available murine microbiome genomic catalogs 
[21–23]. Furthermore, existing murine gut genomic 
databases exclude inflamed mice, and mice colonized 
by enteric pathogens (e.g., like Salmonella, Klebsiella, 
and Citrobacter), thus limiting the extension of these 
existing microbiome resources to pathobiome models. 
Despite being recognized as important contributors to 
human health [24], these existing curated murine gut 
microbial genome catalogs also lack virome sampling 
[25, 26]. Accurate interrogation of complete microbial 
community functions during Salmonella infection 
requires comprehensive model-specific knowledge 
of gene content and community membership both in 
healthy and inflamed guts.

To evaluate the functional potential of microbial 
communities during Salmonella-induced inflammation, 
and to explore if the CBA/J inflammation model harbors 
unique and previously understudied microorganisms, 
we constructed a metagenome assembled genome 
catalog from healthy and Salmonella-infected 
CBA/J mice. We employed high-depth metagenomic 
sequencing and used several assembly strategies 
to increase the de novo reconstruction of viral 
and bacterial genomes. These efforts resulted in a 
comprehensive culture-independent genome resource 
that (i) revealed novel taxonomy unique to CBA/J and 
inflamed mice, (ii) included taxa with relevance to 
human systems and with anti-inflammatory effector 
potential, and (iii) showed how enteric inflammation 
remodels the functional profile of the gut by selecting 
for bacteria that encode mechanisms to withstand 
oxidative stress. Ultimately our findings reframe 
existing responses of the microbiota during Salmonella 
infection and provide new insights into specific bacteria 
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that can withstand inflammation to maintain critical 
gut functions, perhaps revealing promising future 
probiotic targets.

Results
Pathogen perturbation extends the genomic sampling 
of the CBA/J microbiome
To examine the microbial community response to Sal-
monella colonization, 14 CBA/J mice were infected with 
109 CFU Salmonella enterica serovar Typhimurium strain 
14,028 with results compared to 16 uninoculated con-
trol mice sampled at the same time points (n = 30 mice, 
Fig. 1A). Feces were collected prior to infection (day − 1) 
and in late stages of infection (days 10 and 11), with 16S 
rRNA microbial community analyses performed at early 
and late time points (n = 60) and lipocalin-2, an indica-
tor of enteric inflammation, measured on late time points 
from select mice from each treatment group (n = 12). The 
60 fecal samples yielded 2,047,287 paired end 16S rRNA 
reads, which identified 23,022 unique amplicon sequenc-
ing variants (ASVs) from both inflamed and control 
treatments (Additional file 1: Data S1). To confirm infec-
tion, we established that inoculated mice had Salmonella 
relative abundance greater than 25% on day 11 and had 
significantly higher lipocalin-2 concentrations than con-
trol mice on day 10. From these mice, we selected feces at 
day 11 from 3 Salmonella infected mice and 3 uninfected 
mice for deep metagenomic sequencing.

The 16S rRNA gene findings confirmed Salmonella 
infection resulted in statistically discernable microbial 
communities by day 11 following infection (Fig.  1B). 
A Salmonella enterica relative abundance increase 
(≥ 25%) was concomitant with increased inflammation 
evidenced by a 2.5 log-fold rise in lipocalin-2 compared 
to levels in uninfected mice (Fig. 1B, Additional file 1: 
Data S1). The microbial community of inflamed mice 
statistically differed from control uninfected mice 
at the same time point, and pre-pathogen-treated 
mice from both treatments (Fig.  1B,C, Fig. S1A). Pre-
infection (day − 1) mice that later became Salmonella 
inoculated, and uninoculated mice had fecal microbial 
communities that were not discernable from each 
other, indicating observed community differences by 

day 11 were due to Salmonella infection (Fig. S1B). 
As others have reported [13, 27], Salmonella-induced 
inflammation significantly changed gut microbial 
diversity, it reduced ASV richness by more than half 
(76.2%) and decreased Shannon’s diversity by 2.6-fold. 
These findings demonstrate that pathogen perturbation 
changes microbial membership and structure, offering 
a strategy for differential genomic sampling of the 
CBA/J gut microbiome.

To extend the relevance of our findings, we compared 
uninfected amplicon sequenced communities to 
communities from CBA mice in two other studies and 
showed a strong overlap in taxonomy between the 
three (Fig. S2) [27, 28]. Dominate taxa in the CBAJ-DB 
were shared across studies despite myriad differences 
including mouse breeding facility, chow type, 
experimental facility, and experimental methods (Fig. 
S2). These findings highlight the relevance of this first 
CBA mouse genomic resource to microbiome research 
in this model more broadly by expounding notable 
community consistency between pathogen-free CBA 
mice despite other confounding factors.

These 16S rRNA analyses revealed inflamed commu-
nities were enriched in members of the Gammapro-
teobacteria and Bacilli, while gut communities of 
uninoculated mice included higher relative abundances 
of Bacteroidia, Mollicutes, and Clostridia (Fig.  1C). 
From the mice also sampled for metagenomic analysis 
(n = 6), Alistipes sp. was the most dominant commen-
sal and the most reduced during inflammation (from 
37.2%), but notably still detectable (7.68%). Salmonella 
enterica Typhimurium dominated the Gammaproteo-
bacteria in inflamed communities, contributing up to 
a mean relative abundance of 94% in infected samples. 
Certain low abundant members of the CBA/J microbi-
ome significantly increased in relative abundance fol-
lowing pathogen treatment, including some members 
of Lactobacillus, Enterococcus, and Lachnospiraceae 
(Fig.  1D). Control mouse communities are consist-
ent with findings from prior work showing uninfected 
CBA/J mouse gut community membership dominated 
by Bacteroidetes and Firmicutes, especially Clostridia of 
various Lachnospiraceae and Ruminococcaceae families 

(See figure on next page.)
Fig. 1  Amplicon sequencing of the CBA/J gut reveals shifts in microbiome composition with inflammation. A Experimental design shows the 
number of mice in healthy (green) and infected (brown, infected with 109 CFU Salmonella) treatments with fecal sampling times and corresponding 
analysis indicated by black circles. B Boxplots show lipocalin-2 (Lc2) levels of mice in each treatment during peak infection (top), with Salmonella 
relative abundance indicated by circle size. Non-metric multidimensional scaling of Amplicon Sequence Variant (ASV) Bray–Curtis distances 
showing significantly distinct communities between treatments at time of sampling with points scaled to Salmonella relative abundance (bottom). 
Asterisks indicate mice used to create the CBAJ-DB. C ASV Class distribution is depicted by stacked bar charts of healthy and infected communities, 
with each bar representing a single mouse at the day 11 timepoint. D Rank abundance curve of mean ASV relative abundance by treatment in mice 
sampled to create the CBAJ-DB. Bars represent a single ASV and are colored by treatment, with ASVs ranked separately for each treatment to show 
the changes in rank and abundance with inflammation. Bars are labeled with taxonomic identity in text if greater than 3% mean relative abundance 
in either treatment, with text color denoting treatment. Black text indicates both treatments have the same ASV taxonomy within that rank
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Fig. 1  (See legend on previous page.)



Page 5 of 22Leleiwi et al. Microbiome          (2023) 11:114 	

[27, 28]. These 16S rRNA gene analyses revealed abun-
dant members in both healthy and inflamed CBA/J 
gut microbiomes that represented microorganismal 
genome “targets” for our database.

Microbial genomic reconstruction from CBA/J mice 
recovers relevant members sampled in amplicon surveys
To thoroughly catalog the CBA/J gut microbiota, high 
sequencing depth was required to sequence through 
Salmonella dominance (25.8–94.2% by amplicon analy-
ses) and recover some of the first genomes from rare, 
but persistent co-occurring members of the pathogen 
inflamed gut. We obtained 254.2 Gbps of metagen-
omic sequencing data (Additional file  2: Data S2) from 
6 representative mice (inflamed n = 3, uninfected n = 3, 

Fig.  1A), sevenfold more sequencing/sample than is 
commonly done in murine catalogs (Fig. S3A) [21, 22, 
29]. Additionally, we used iterative, targeted assembly 
approaches (single, co-assembly, subtractive assem-
bly) as well as two different assemblers to attempt to 
enhance genome quality and recovery, especially from 
less dominant members (Fig.  2A, Fig. S3B). Subtrac-
tive and co-assembly methods derived 259 additional 
metagenomically assembled genomes (MAGs) beyond 
those from single sample assemblies, with the distribu-
tion of MAGs from each assembler reported (Fig.  2A). 
In total, we recovered 2281 MAGs. Quality assessment 
revealed 504 MAGs to be either medium or high-qual-
ity (MQHQ) with sufficiently low contamination to 
be included in further analyses. Of the genome quality 

Fig. 2  CBA/J mouse database (CBAJ-DB) genomic methods and composition. A Circle plot shows the number of medium and high quality 
(MQHQ) metagenome assembled genomes (MAGs) reconstructed from CBA/J mouse gut metagenomes and corresponding assembly 
method and assembly software. B Completeness and contamination of all MQHQ MAGs colored by sample treatment origin (brown = infected; 
green = uninfected; purple = co-assembly) are shown by box plots, with bold horizontal lines indicating median across all MQHQ MAGs. C Circle plot 
shows the number of viral metagenome assembled genomes (vMAGs) reconstructed from CBA/J mouse gut metagenomes and corresponding 
assembly method and assembly software. D Dereplicated MQHQ (dMQHQ) MAG phylum distribution is shown by sequential colored rings listed 
from least specific (Domain, D) to most specific (Species, S) moving outwards from the plot center. Gaps at each taxonomic level represent MAGs 
that are previously undescribed. The outer ring is labeled with the number of MAGs from the dMQHQ CBAJ-DB database within each Phylum
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tools used, CheckM [30] provided the most conserva-
tive MAG set (n = 504 MQHQ MAGs), compared to 
CheckM2 [31] (n = 531 MQHQ MAGs) and GUNC [32] 
(n = 790, MQHQ MAGs) as assessed by contamination 
and completeness. There existed no significant differ-
ences between the quality metrics of MAGs from either 
treatment (uninfected, infected) or between assembly 
methods (Fig. S4A). These quality genomes contained 
156,921 uniquely called predicted genes [33, 34] (Fig. 2, 
Additional file 3: Data S3).

Dereplication of our metagenome assembled genomes 
(99% identity) resulted in 113 medium and high-quality 
MAGs (dMQHQ) from both treatments. These MAGs 
were assigned to 7 Phyla – Actinobacteriota (1), Bacteroi-
dota (4) Firmicutes (7), Firmicutes_A (98), Firmicutes_B 
(1), Proteobacteria (1), and Verrucomicrobiota (1) 
(Fig.  2D, Additional file  2: Data S2). Nearly a third (30 
of the 113) of the dereplicated MAGs were assigned to 
30 genera and 98 to species that were only recognized 
by alphanumeric numbering in GTDB-Tk, hinting that 
novelty sampled here may be undescribed not only in 
murine but larger MAG collections. Reflecting the rich-
ness of these samples, the majority of MAGs originated 
from uninfected mice (59%) and their co-assemblies 
(35%) while 13% came from inflamed mice. Specifically, 
Enterococcus_D gallinarum, Erysipelatoclostridium 
cocleatum, Kineothrix sp000403275, and Lactobacillus_B 
animalis MAGs were uniquely recovered from inflamed 
mice, consistent with their 16S rRNA membership 
(Fig. 1D).

This finding indicates how perturbation can aid in the 
sampling of genomes from conditionally rare members; 
however, we also acknowledge the risk of facility 
specificity and other factors influencing these microbiota.

Expanding this resource beyond solely bacterial 
genomes, we also reconstructed viral genomes from our 
CBA/J assemblies, recovering 4516 viral metagenome 
assembled genomes (vMAGs). Of these, 2351 vMAGs 
were ≥ 10 kb which were then dereplicated into 609 viral 
genomes (Figs. 2C and 4D, Additional file 4: Data S4).

We first sought to verify if this microbial derepli-
cated MAG set represented the key members identified 
in our amplicon sequenced CBA/J communities from 
both inflamed (n = 14) and uninfected (n = 16) individu-
als (Fig. 1B). The relative abundance of dMQHQ MAGs 

closely mirrored the full community 16S rRNA amplicon 
at the class level from both uninfected day 11 (rho = 0.68) 
and inflamed day 11 (rho = 0.86) mice, indicating the 
dMQHQ database is representative of CBA/J untreated 
and inflamed communities (Figs.  1C and  3A, ). More 
specifically, a linear discriminate analysis of MAG rela-
tive abundance indicated similar dynamics between our 
genome and amplicon data sets. For example, Salmonella 
and Enterococcus_D were the most significant genomes in 
determining infected communities, while genomes from 
Alistipes, Duncaniella, and Lachnospiraceae COE1 were 
most significant in determining uninfected communities 
(Fig. 3B). Additional to these genera, relative abundance 
of other key taxa is consistent with amplicon sequencing, 
including Akkermansia, and Muribaculaceae prominence 
in uninfected mice and persistence in infected mice. Lac-
tobacillus genome and ASV relative abundance also simi-
larly increased during infection (Fig. 3C).

To link these reconstructed genomes more precisely 
to the amplicon data, we identified 96 MAGs that 
contained a partial to full 16S rRNA gene sequence. A 
relatively low proportion of MAGs containing 16S rRNA 
sequences may be attributed to the difficulty de novo 
assembly algorithms have with the conserved regions 
and tetranucleotide variation associated with this gene 
[35]. A pairwise comparison of MAG-derived 16S rRNA 
sequences and the V4 region sequences from our ASVs 
identified 33 unique genomes containing sequences 
matching ASVs in our 16S rRNA dataset. Many MAGs 
with 16S rRNA matches were among the most enriched 
taxa including Lactobacillus johnsonii, Alistipes 
sp002428825, and Clostridia in order 4C28d-15 (Fig. 
S4B, Additional file 1: Data S1). Together these findings 
indicate significant membership congruence in our 
MAG database and our amplicon data, demonstrating 
that inferences made with the CBAJ-DB have relevance 
to the more broadly sampled amplicon sequenced gut 
communities from inflamed and uninfected mice.

This CBA/J microbial genomic resource includes mouse 
and human relevant lineages
One goal of developing a genome-resolved CBA-spe-
cific microbiome resource is to advance future multi-
omics studies in this mouse model. Metaproteomes and 
metatranscriptomes are mapped using high stringency to 

(See figure on next page.)
Fig. 3  The CBA/J database (CBAJ-DB) genomes are representative key members in amplicon microbiome data. A Class distribution of dereplicated 
MQHQ (dMQHQ) metagenome assembled genome (MAG) relative abundance across individual metagenomes (U# = uninfected, I# = infected) 
labeled by treatment. B Linear discriminant analysis Effect Size (LEfSe) scores of most important genera in either treatment in metagenomes, 
including genera LEfSe linear discriminant analysis (LDA) scores for amplicon sequencing variants (ASVs) with matching taxonomy. C Rank 
abundance of dMQHQ MAGs (n = 113) showing mean relative abundance (RA) in uninfected (green) and infected (brown) treatments (TRT). Circles 
below bars highlight LDA significant species (black) and genera (gray) (top row) and treatment origin of each MAG (bottom row). MAGs are labeled 
with the most resolved GTDB-Tk taxonomy
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Fig. 3  (See legend on previous page.)
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illuminate changes in gene expression, often at a genome-
resolved level, typically the strain level (> 99% average 
nucleotide identity) [36–38]. To assess the unique mem-
bers captured in this resource, we compared strain level 
identity of our sampled MAGs to similar quality MAGs 
from two prevalent mouse gut genome catalogs: (i) Inte-
grated Mouse Gut Metagenomic Catalog (iMGMC) [21] 
and (ii) The Mouse Gastrointestinal Bacteria Catalogue 
(MGBC) [22]. Notably, many of these CBA-derived 
genomes represented unique strains from the classes 
Bacilli (n = 3), Bacteroidia (n = 2), Clostridia (n = 24), 
Coriobacteriia (n = 1), and Dehalobacteriia (n = 1) not 
represented in iMGMC, and MAGs from Bacilli (n = 1), 
Dehalobacteriia (n = 1), and Clostridia (n = 30) not rep-
resented in MGBC (Fig. 4A). Additionally, of the strains 
that were sampled in our dataset and prior curated cata-
logs, 33 (30 Clostridia, 3 Bacilli) received a higher qual-
ity score indicating the value of these recovered MAGs 
to advance knowledge of cultivated and uncultivated 
genomes in murine models more broadly. At a coarser 
taxonomic level (e.g. 95% genome sequence identity), we 
still detected novel taxa in the CBAJ-DB that were absent 
in these existing genomic collections. For example, clus-
tered at 95% identity, the CBAJ-DB harbored a novel Fae-
calicatena sp. and Provencibacterium sp. not found in the 
iMGMC.

We also examined CBAJ-DB MAGs against genomes 
derived from human hosts. To analyze shared genera and 
species, our dMQHQ database was dereplicated with 
isolate genomes from the Human Microbiome Project 
(HMP) [39] (n = 813) and MQHQ MAGs (n = 2560) from 
a human cohort (PRJNA725020) [40] (Additional file  5: 
Data S5) [39]. Akkermansia muciniphila (CBAJDB_482) 
and Enterococcus_D gallinarum (CBAJDB_497), two 
defining members of the commensal and inflamed gut 
respectively, clustered with species previously recovered 
from human hosts. Recovery of Enterococcus_D galli-
narum from the uninfected CBA/J gut demonstrates the 

applicability of perturbation techniques to uncover con-
ditionally rare members. As has been reported by oth-
ers, there was more similarity at higher taxonomic levels 
(e.g., genus) between our murine and human gut micro-
bial members [41, 42], with 27 MAGs from Bacilli, Bacte-
roidia, Clostridia, Corriobacteriia, Gammaproteobacteria, 
and Verrucomicrobiae sharing similarity (Fig. 4A).

We were particularly interested if the microbial mem-
bers recovered from our pathogen-inflamed CBA/J 
had relevance to inflammation in humans. To test this, 
sequencing reads from the Lloyd-Price et al. cohort [43] 
containing 972 inflamed and 365 healthy gut metagen-
omes were stringently mapped to the CBAJ-DB MQHQ 
MAGs (Additional file  6: Data S6) [43]. Consistent 
with their distribution across our treatments, sequenc-
ing reads from healthy and inflamed humans mapped 
to 11 of our Akkermansia muciniphila MAGs, while 3 
Enterococcus_D gallinarum MAGs derived only in our 
inflamed treatments recruited sequences from inflamed 
human subjects (Fig. 4B, C). While it can be challenging 
to extend specific microorganismal findings from murine 
to human conditions [22, 41, 42], inferences from criti-
cal lineages (e.g., A. muciniphila or E. gallinarum) in our 
database may have more direct human relevance as A. 
muciniphila is recognized to promote gut barrier integ-
rity and E. gallinarum has multiple documented cases 
as a pathobiont [44, 45]. Beyond inflammation, we also 
dereplicated the CBAJ-DB with the Unified Human Gas-
trointestinal Genome (UHGG) catalog [46]. Species from 
the Muribaculaceae (including genus CAG-485) and 
Oscillospiraceae family (including Lawsonibacter spp., 
Oscillibacter spp., genus UBA9475, and an undescribed 
genus) were well represented in the CBAJ-DB and 
human fecal samples (Data S5). Together these findings 
show that the CBAJ-DB recovered new species, but also 
many that have genomic coherence with members in the 
human gut.

Fig. 4  CBA/J database (CBAJ-DB) genomes link to other murine and human studies. A Medium and high quality (MQHQ) metagenome assembled 
genomes (MAGs) that clustered with genomes from either murine databases (light purple columns) or the HMP/Human cohort (yellow columns). 
CBAJ-DB MAGs that were the highest quality genome in each cluster are marked with an asterisk and are displayed in the stacked bar chart 
grouped by database. MAGs are grouped by class (first bar annotation) and treatment origin (second bar annotation), with the lowest assigned 
taxonomy indicated in gray scale (right bar). For each database in black outline, blue cells indicate CBAJ-DB MAGs that clustered, while green cells 
show no clustering. Accompanying bar chart shows the number of CBAJ-DB MAGs with higher quality scores corresponding genomes in other 
databases. The MAG indicated with red font in the heatmap was determined to contain possible chimeric by GUNC but not CheckM. B CBAJ-DB 
MAGs that recruited human reads are shown by blue (Akkermansia muciniphila) and orange nodes (Enterococcus_D gallinarum), with size indicating 
number of CBAJ-DB MAGs. MAG nodes are linked to databases shown as pie charts, where green (healthy human) and tan (inflamed human) 
indicate sequencing origin of mapped reads and node size indicates sample number. C SRA accession ID’s of samples from the Lloyd-Price cohort 
that mapped to CBAJ-DB MAGs Akkermansia muciniphila (blue) or Enterococcus_D gallinarum (orange). D vContact2 network that shows 609 
clustered viral metagenome assembled genomes (vMAG) populations present in CBAJ-DB. The network colors represent the vMAG study origin. Pie 
chart shows proportion of CBAJ-DB vMAGs that clustered to other studies that are cosmopolitan genera (brown), singletons (gray), novel genera 
(clusters of > 1 vMAGs from this study only, green), or known taxonomy (yellow)

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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Salmonella infection and inflammation restructures 
the metabolic potential of the murine gut microbiome
Given this is one of the first genome-resolved analyses of 
a pathogen-impacted microbiota, and the first for Salmo-
nella, it offered a new opportunity to assess functional 
potential remodeling during infection. Prior reports 
indicated that pathogen-induced inflammation created 
oxidative conditions that generated terminal electron 
acceptors like oxygen, tetrathionate, nitrate, and sul-
fate [9, 19]. As such, we wanted to evaluate the respira-
tory capacity of inflamed communities and compare it to 
uninflamed communities. Interestingly, individual respi-
ration functions were not significantly different between 
treatments; however, when analysis was expanded to 
consider the entire respiration category, we found MAGs 
with respiration capability to be significantly enriched 
in infected samples (ANOVA p = 1.23e−4), likely due to 
the increased n afforded at the category level of analysis 
(Fig.  5A). In infected communities, Salmonella has the 
highest mean genome relative abundance and encoded 
gene sets for respiring oxygen (both high and low affin-
ity oxidases), fumarate, tetrathionate, and trimethyl-
amine N-oxide (TMAO) (Fig.  5A). Outside Salmonella, 
no other organisms had the capability for respiring with 
low affinity oxidases, but we infer Enterococcus and Lac-
tobacillus have the capability to reduce low levels of oxy-
gen for detoxification (due to the absence of complex I in 
electron transport chain) while Akkermansia municiph-
ila and Muribaculaceae likely respire low levels of oxy-
gen using high affinity oxygenase. Similarly, we observed 
genes for detoxifying reactive oxidative damage (SOD, 
catalase, thioredoxin reductase) were more enriched in 
the inflamed community than the uninfected commu-
nity. Together these findings demonstrated organisms 
co-existing with Salmonella in the inflamed gut encode 
the metabolic abilities to withstand or leverage the oxida-
tive redox conditions caused by inflammation (Fig.  5C). 
Markedly, there were members in the uninflamed gut 
with respiratory metabolic potential that were not main-
tained in the inflamed gut (Duncaniella sp, Hungatella_A 
sp), demonstrating there are other selective forces besides 
the ability to respire that dictate persistence in response 
to pathogen colonization (Fig. 5C).

Prior reports by our team and others demonstrated 
that butyrate, a key gut short-chain fatty acid (SCFA), 
decreased by 15-fold in the Salmonella inflamed gut, 
most likely due to inflammation induced redox changes 
with detrimental impacts on members of the class 
Clostridia [13, 27]. Here we sought to better understand 
the relationship between taxonomy and SCFA production 
potential. In uninflamed communities, the most 
prevalent butyrate-producing bacteria were members of 
the Alistipes and Lachonospiraceae, members of classes 
Bacteroidia and Clostridia respectively. Interestingly, 
while the most dominant Clostridia did decrease in 
relative abundance with inflammation, replacement 
Clostridia members (Lachnospiracea, Dorea, 
Faecalicatena) were enriched which encoded overlapping 
butyrate production potential. For example, a MAG 
belonging to the genus Dorea within the Clostridia was 
enriched 16-fold and likely most contributed to butyrate 
production stability, while the dominant Alistipes MAG 
(a member of the Bacteroidia) reduced in abundance 
by a third was not replaced by taxonomically similar 
members. Together, these data suggest the notion that 
decreased butyrate concentrations observed in the 
CBA/J mouse model during Salmonella infection [27] 
may be attributed to Bacteroidia reduction and less so 
to Clostridia, a hypothesis needing further validation 
using gene expression to track butyrate production and 
consumption activities in the inflamed gut.

Salmonella-induced inflammation alters carbon usage 
patterns with more favorable redox conditions enabling 
the use of less energetically favorable substrates like 
1,2-propanediol and ethanolamine [47, 48]. While 
Salmonella encodes this metabolic capacity, we were 
interested if any of the other persisting microorganisms 
could compete for use of these substrates. 
Enterococcus_D and multiple Oscillospirales genomes 
contain genes from the eut gene cluster for ethanolamine 
utilization and pdu genes for 1,2-propanediol utilization. 
These genera increase in relative abundance with 
inflammation, particularly Enterococcus_D, which is one 
of the next most abundant members after Salmonella 
(expanding to 2.6% of the inflamed community). 
Additionally, we showed that the polymer utilization 

(See figure on next page.)
Fig. 5  The CBA/J database (CBAJ-DB) highlights differential metabolisms encoded in uninfected and inflamed mice. A Normalized relative 
abundance is shown by a heatmap. Values are mean GeTMM relative abundance of all MAGs with each function center scaled across rows. 
Functions that are significantly different between treatments as determined by analysis of variance (ANOVA) (p ≤ 0.05) are indicated by horizontal 
bars between heatmaps with red highlighting significance at the function (first bar) or functional group level (second bar). Gray bars on each 
heatmap indicate the number dereplicated medium- and high-quality (dMQHQ) MAGs that comprise at least 0.5% of the community with a given 
function. B Percent change in relative abundance (RA) between treatments the 17 most divergent MAGs. Points are colored by the treatment 
(uninfected, green; infected, brown) with higher RA. Individual MAGs are uniquely colored by surrounding boxes, acting as color legend for 
subsequent figure sections. C Individual MAG contribution to specific functions is shown, with bar magnitude denoting mean RA in either 
treatment. D Clostridia MAGs with mean RA greater than 0.5% in both treatments are shown. E Clostridia contribution to significant functions (top) 
and contribution of other taxa (bottom). Plot fields are colored by treatment and bar magnitude indicates mean RA within a treatment
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Fig. 5  (See legend on previous page.)
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profile was also impacted with inflammation, as infected 
communities can utilize more alpha-galactan and chitin 
(Fig.  5). In a similar fashion, the community utilization 
potential of sugars fructose, fucose, and mannose 
increased with inflammation. Collectively, these data can 
inform probiotic approaches for controlling Salmonella 
abundance through competitive exclusion targeting 
select substrate use patterns using inflammation resistant 
strains.

Next, we quantified genes commonly reported in 
humans to impact inflammation and examined if they 
were depleted in this inflamed mouse model. Consist-
ent with literature reporting healthy individuals have a 
greater potential for tryptophan degradation [49–51], 
we observed the potential for tryptophanase-mediated 
conversion of tryptophan to indole by members of Bacte-
roidia, Clostridia, and Verrucomicrobiae in both inflamed 
and uninfected mice. However, the proportion of Bacte-
roidia with this gene was much lower in inflamed guts 
(Fig.  6B). Tryptophan Indole/AhR pathway representa-
tion in infected mice is concurrent with lower propor-
tions of Verrucomicrobiae and Bacteroidia spp. (Fig.  6). 
Also, like human microbiomes, we observed microbial 
genes responsible for cleaving taurine or glycine from 
primary bile acids and metabolizing secondary bile acid 
products (bsh, baiN, baiA, and hdhA) were significantly 
lower in relative abundance in mice infected with Sal-
monella (Fig.  6). These data provide promising insights 
that the functional gene profiles for modulating inflam-
mation are present in the CBA/J model and may suggest 
its relevance for study of similar inflammation-associated 
mechanisms in humans.

Viral AMGs contribute to the bacterial community 
functional potential in CBA/J mice via Firmicutes
In the creation of the first murine gut viral database, we 
sought to compare viral genomic content cataloged here 
to other mammalian gut systems. Of the 609 derepli-
cated vMAGs that were recovered from both treatments, 
less than 1% had taxonomic assignments (Additional 
file  4: Data S4). These three vMAGs were assigned to 
the Caudovirales in the families Siphoviridae (n = 2) and 

Myoviridae (n = 1). To perform biogeographic analyses, 
we collated phage genomes previously reported from 
mammalian guts [24, 38, 43, 52, 53] and clustered these 
with our mouse recovered vMAGs. We found that 322 
of the CBA/J-derived vMAGs (53%) had similar repre-
sentatives in other phage gut metagenome studies, mean-
ing over half of our vMAGs clustered with viruses from 
at least one additional study (Fig.  4D). This suggests a 
potentially cosmopolitan phage seedbank that may be 
conserved across a wide variety of animals, geographies 
and, in the case of humans, ethnicities and health sta-
tuses. Ultimately, viral content in the CBAJ-DB can have 
relevance to other mouse models and human guts.

To explore if viral communities could potentially 
influence the structure and function of the CBAJ-DB 
uninflamed and inflamed microbial communities, we 
verified that microbial and viral genome-based ordina-
tions were coordinated (Fig. S5). With informatics we 
conservatively determined that of the 609 vMAGs, 11.5% 
were putatively linked to 43 MAGs that encompassed 
27 unique taxonomies (Fig. S5). All putative hosts cor-
responded to members of the Firmicutes, and included 
members of the Lachnospiraceae, Ruminococcaceae, 
Oscillospiraceae, Anaerotignaceae, and Acutalibac-
teraceae families. Among the vMAGs that putatively 
infected hosts, we identified 36 auxiliary metabolic genes 
(AMGs) with functionalities including regulation of the 
TCA cycle (citrate synthase), glycolysis (orthophosphate 
dikinase), phosphate metabolism (PhoH), and oxidative 
stress response (rubrerythrin). These phage genomes 
also encoded AMGs for the induction of germination 
(Peptidase A25), spore formation (M50B), the cleavage of 
amorphous cellulose (GH2), and low pH resistance (orni-
thine carbamoyltransferase). Among the putative viral 
hosts were members within the Clostridia class, exhibit-
ing some of the largest MAG relative abundance differ-
ences between inflammation states. For example, Dorea 
and Faecalicatena enriched in inflamed mice, and Lach-
nospiraceae COE1 enriched in uninfected mice. Together 
these findings indicate phages may be underappreciated 
top-down (predation) and bottom-up (resource) control-
lers of microbiota functionality in the murine gut.

Fig. 6  Tryptophan and bile acid metabolism in inflamed and uninfected gut microbiomes. A Mean relative abundance summed for each function 
(rows). Functions that are significantly different between treatments as determined by analysis of variance (ANOVA) (p ≤ 0.05) are indicated by 
horizontal bar between heatmaps with red highlighting significance at the function level. Gray bars indicate the number medium- and high-quality 
(MQHQ) metagenome assembled genomes (MAGs) that comprise at least 0.5% of the community with a given function. B Relative abundance 
(point color) and number of MAGs (size) in each class with each gene for tryptophan degradation separated by MAG presence in each treatment, 
where both indicate MAGs that recruited strictly mapped reads from both treatments. C Tryptophan degradation to indole and indole derivatives 
pathway with pie charts colored by proportion of MAGs in each class (coloring from B) for each treatment. D Relative abundance (bars) of MAGs 
in each treatment encoding bile salt hydrolase (bsh), points show sequence similarity to bsh, or hdhA (K22605), baiN (K00076), or baiA (K07007) 
involved in secondary bile acid metabolism. Dorea are highlighted as MAGs with more than one gene for metabolizing secondary bile acid 
products

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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Discussion
Perturbation expanded the microbial and viral genomic 
cataloging of the CBA/J gut microbiome
Genome resolved catalogs like CBAJ-DB are valuable 
resources for interrogating metabolic potential of the 
microbiome, yet these databases are biased by the by 
environment, organism, or disease state they were 
generated from, and host associated microbiomes 
can vary drastically between different species, model 
organisms, and even within an individual [54–56]. 
Previous murine gut bacterial databases lacked 
membership from inflamed individuals and CBA/J 
mice, and none have curated viral content [21, 22, 
57], underscoring a clear value of this resource to the 
community. Our findings highlight the power of using 
biological perturbation, in this case Salmonella-induced 
inflammation, to genomically sample taxa that are 
conditionally rare and obscured by their low abundance 
only to be critical contributors to ecosystem functionality 
under altered states.

While assemblies and binning are prone to missing key 
lineages or under-sampling diversity, we used paired 16S 
rRNA analyses to affirm the representation of critical 
community members in the inflamed and uninfected 
gut. Our paired amplicon sequencing indicates the 
CBAJ-DB contains membership similar to previously 
reported Salmonella-inflamed CBA/J communities and 
proportional representation of similar bacteria to those 
found in other mouse breeds [13, 27, 58]. It is our intent 
to create a resource for other researchers conducting 
microbiome analyses using CBA/J mice, such that this 
genome content can be accessed by taxonomic naming 
or linkages to the 16S rRNA gene. Likewise, this genome 
library can be used by others for read recruitment of 
future metagenome and metatranscriptome sequencing, 
or to substantiate metabolomic insights from the CBA/J 
microbiome.

The vMAG database also provides interesting context 
for researchers in other mammalian gut habitats, but 
especially mouse gut which has been historically under-
sampled in this regard. While collections of human gut 
viruses are available, the mouse virome is understud-
ied [24, 59]. This collection of over 4000 vMAGs con-
tains a significant number of cosmopolitan genera also 
found in other mammalian guts including humans. The 
existence of a core mammalian gut virome is an excit-
ing proposition that alludes to an intricacy in gut com-
munity function and begs further exploration. The gut 
microbiome is a complex system involving the interplay 
of host, microbes, and abiotic elements [60–62]. Beyond 
functional characterization of gut communities during 
Salmonella infection, the CBAJ-DB offers a bacterial and 

viral resource for holistic microbiome study in a common 
mouse model.

A genome resolved inventory of functional potential 
changes in the pathogen inflamed gut
Previous studies of gut microbiomes highlight the 
role microbial metabolites play in gastrointestinal 
inflammation as signaling effectors in host immune 
regulation [63, 64]. The CBAJ-DB showcases the 
juxtapose of pro-inflammatory and anti-inflammatory 
microbial membership and gene content in CBA/J mice 
and during Salmonella infection. Salmonella-induced 
inflammation shifted the functional potential of infected 
communities favoring respiring organisms, marked by 
a reduction of butyrate and acetate producers and an 
increase in bacteria with anaerobic respiration capability. 
Convention indicates butyrate agonism of PPAR-γ and 
SCFA engagement with G-protein coupled receptors 
respectively help to maintain luminal anaerobiosis and 
promote colonic regulatory T cell development [6, 65, 
66]. We showed specific bacteria reduction coincides 
with an inflamed state and diminished SCFA production 
potential in the gut.

Our findings indicate Alistipes reduction following 
inflammation as a possible cause of butyrate production 
potential loss, contrasting with current dogma linking 
butyrate production in the gut chiefly to Clostridia 
abundance [11, 67–69]. Furthermore, Salmonella 
infection enriched certain Clostridia including Dorea, 
Faecalicatena, and a novel bacteria described only at 
the class level, highlighting the functional redundancy 
that may be provided within this class. Interestingly, the 
mouse with the lowest Salmonella relative abundance 
had the greatest diversity of Clostridia. It is interesting to 
speculate that this lineage and the diversity within it may 
be important for microbiota recolonization and return 
to homeostasis following gastric infection, a notion 
supported by previous research [70].

Salmonella-induced inflammation also caused a 
reduction in bacteria with the capability to mediate 
anti-inflammatory microbial metabolites. Bacteria 
with genes for secondary bile acid production and 
tryptophan catabolism were decreased in inflamed 
metagenomes, a response previously shown to increase 
host susceptibility to infection [71]. Specifically, reduced 
bile acid can limit ligands like pregnane X (PXR) and 
farnesoid X (FXR) which are important regulators of 
the host anti-inflammatory response, thus reduced 
production of these genes could have further feedback 
on inflammation [64, 65]. Similarly, indole and indole 
derivatives like indole acrylic acid, indole-3-probionate, 
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and indole-3-lactate are AhR and PXR agonists and thus 
anti-inflammatory [49, 72]. Here we demonstrate how 
the reduction of bacteria capable of producing these 
important host pathway modulators can further promote 
inflammation and Salmonella expansion, evidenced by 
high lipocalin-2 levels concomitant with high Salmonella 
relative abundance and lower functional potential for 
bile acid deconjugation, secondary bile acid production, 
and tryptophan catabolism in inflamed mice. Future 
research directly measuring transcription and metabolite 
concentrations can be used in concert with the CBAJ-DB 
to determine the anti-inflammatory impact of individual 
bacteria on the microbiome.

Commensal bacteria that can withstand inflammation may 
represent future biological therapeutic opportunities
A recent rise of antibiotic-resistant Salmonella strains 
globally underpins the need for alternative treatments 
and prevention measures against foodborne pathogens. 
One avenue may be the use of probiotic bacteria to 
reduce the intensity or duration of infection [49, 73, 74]. 
Alistipes sp002428825 and Akkermansia muciniphila 
clustered closely with genomes from human microbial 
communities and we explore here their potential as anti-
inflammatory probiotics.

Akkermansia muciniphila is a well-known commensal 
gut bacterium in mammals that lives in the lumen 
mucosal layer and contributes to epithelial gut barrier 
integrity [75, 76]. Nevertheless, one study showed 
Akkermansia muciniphila exacerbated inflammation and 
increased Salmonella typhimurium relative abundance 
[77]. These findings are inconsistent with our data 
however, where Akkermansia muciniphila is relatively 
abundant and consistently present in uninfected and 
Salmonella-infected mice. Genome analysis reveals the 
capacity of Akkermansia muciniphila to produce indole, 
potentially an important anti-inflammatory mechanism 
and Salmonella deterrent. Other studies have shown 
the effectiveness of indole from E. coli increasing tight 
junctions of the gut epithelial and decreasing Salmonella 
pathogenicity, though more work is needed to confirm 
similar action from Akkermansia in buffering gut 
inflammation [78].

Alistipes sp002428825 was also consistently detected 
in both treatments. Analysis of this genome suggests it 
can respire oxygen and directly compete with Salmonella 
for arabinan, arabinose, and pectin, while maintaining 
critical gut homeostasis functionalities like butyrate 
production. Alistipes spp. are often associated with 
healthy human microbiomes [79, 80] and have even 
been shown to facilitate microbiota recolonization 
following perturbation [81]. We have shown Alistipes 
has saccharolytic genes to metabolize rhamnose and 

fucose, and it is possible that Gram-positive bacteria 
eliminated by inflammation and fucosylated proteins 
from host epithelial erosion could support Alistipes 
during Salmonella infection as sources of these sugars 
[82, 83]. Given this genus, like Akkermansia muciniphila, 
remained abundant despite host inflammation, and both 
bacteria contain genes for indole derivative production, it 
also may be directly antagonistic to Salmonella through 
anti-inflammatory effector potential.

It also bears mentioning the presence of lactic acid 
bacteria E. gallinarum and L. johnsonii in the CBAJ-DB 
in relatively high abundance during Salmonella infection. 
In fact, these members were previously illuminated 
in prior studies from mice as well as clinical patients, 
demonstrating co-occurrence may exist beyond this 
single study or mouse model [84]. Beyond resisting 
or maybe even responding to conditions created by 
Salmonella infection, we provide genomic evidence 
supporting L. johnsonii nutrient competition for 
arabinose, mixed-linkage glucans, and amorphous 
cellulose, while E. gallinarum may compete for chitin, 
pectin, and arabinan. Additionally, closely related 
species to these have been shown to produce anti-
Salmonella agents like bacteriocin and organic acids 
putatively decreasing Salmonella abundance over time 
[85–87]. Given these species have many members already 
approved as probiotics and our data indicate CBA/J mice 
harbor at least one species of Enterococcus common 
to human guts and Lactobacillus spp. resistant to host 
inflammation, a probiotic lactic acid bacteria strain 
resistant to Salmonella may reside in the CBAJ-DB [88]. 
This genome resolved research identifies future targets 
with promising potential for exploration as probiotics 
robust to Salmonella infection. Yet, we recognize that 
commensal bacteria like these can be pathobionts 
provided the right setting [54, 77, 89, 90], such that 
future research in this mouse model would first include 
challenge experiments with isolates or even targeted 
consortia that provide multiple avenues of overlapping 
pathogen colonization resistance.

Conclusion
The CBAJ-DB uniquely captures gut community varia-
tion in CBA/J mice. MAG reconstruction from metagen-
omic sequencing enabled us to profile the functional 
potential of the murine gut microbiome during acute Sal-
monella inflammation, contrasting community member-
ship and gene content with uninfected mice. Persisting 
taxa in the inflamed gut encoded the capability to with-
stand or utilize changing redox conditions, while bacteria 
producing SCFA and producing host anti-inflammatory 
effectors decreased in mice with high Salmonella burden. 
Further, our phage analyses leave open the possibility that 
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phage infection could alter Firmicutes energy regulation 
and spore formation.

Together, these findings validate physiological 
investigations performed with reduced complexity 
synthetic or modified gut microbiota. We also provide 
new perspectives that advance the understanding of 
Salmonella effect on an intact microbiome and provide 
model specificity to CBA/J gut consortia. Our efforts 
show novel bacteria unique to the CBA/J mouse model 
and enriched by Salmonella infection. An exploration 
of potential probiotic targets in the CBAJ-DB revealed 
multiple lactic acid bacteria capable of withstanding 
the host immune response to Salmonella and that may 
be indifferent to Salmonella competition. Additionally, 
genomes were recovered of A. muciniphila and E. 
gallinarum with species similarity to bacteria in human 
guts. The CBAJ-DB is the first culture-independent 
murine genome catalog to include sampling from CBA/J 
mice and inflamed individuals, providing a resource with 
application to multi-omic microbiome investigation, gut 
inflammation research, and studies involving the CBA/J 
mouse model broadly.

Methods
Strains and media
S. enterica serovar Typhimurium strain 14,028 (S. 
typhimurium 14,028) was cultured overnight in Luria–
Bertani (LB) broth at 37  °C with constant agitation. 
Overnight culture was washed and resuspended in water. 
S. typhimurium 14,028 ASV was determined manually 
from an identical sequence match to the 16S region of 
NCBI Reference Sequence NZ_CP034230.1 mapped with 
Geneious Prime® 2020.1.2.

Animals and experimental design
Female CBA/J mice were purchased from The Jackson 
Laboratory (Bar Harbor, ME) and housed 5 per cage in 
conventional enclosures maintained in a temperature 
controlled 12-h light/dark cycle. To mitigate microbiome 
differences caused by variables other than Salmonella, 
we housed all mice in the same room, and mice were 
chosen at random when populating cages and assigning 
treatment. Irradiated mouse chow (Teklad, 7912) was 
made available ad  libitum to mice in the control group 
(n = 16) and to infected mice (n = 14) housed separately. 
Individuals in this study were chosen based on fecal 
sample availability at day 11, and only infected mice 
with ≥ 25% S. typhimurium 14,028 at the sampling time 
were used. Mice in the infected group received 109 CFU 
S. typhimurium 14,028 oral gavage on day 0 with no 
subsequent treatment, and control group mice were left 
without treatment. Animal experiment protocol was 
approved by The Ohio State University Institutional 

Animal Care and Use Committee (IACUC; OSU 
2009A0035).

Sample collection
Fecal pellets were collected from each mouse 1 day prior 
to treatment and 10 and 11 days after treatment initiation 
on autoclaved aluminum foil. Pellets were immediately 
placed in labeled microcentrifuge tubes and flash frozen 
with EtOH/dry ice prior to storage at − 80 °C until further 
processing.

Lipocalin‑2 quantification
Vortex homogenization of fecal sample in PBS containing 
0.1% Tween 20 (100  mg/ml) for 20  min was performed 
prior to centrifugation of the resultant suspension at 
12,000 rpm for 10 min at 4 °C. The resulting supernatant 
was used to measure levels of inflammation marker 
Lipocalin-2 using the Duoset murine Lcn-2 ELISA kit 
(R&D Systems, Minneapolis, MN).

DNA extraction and sequencing
Total nucleic acids were extracted using the Quick-DNA 
Fecal/Soil Microbe Microprep Kit (Zymo Research) 
and stored at − 20  °C until amplicon or metagenomic 
sequencing. DNA was submitted for amplicon 
sequencing at Argonne National Lab at the Next 
Generation Sequencing facility using Illumina MiSeq 
with 2 × 251  bp paired end reads following established 
HMP protocols [91]. Briefly, universal primers 515F 
and 806R were used for PCR amplification of the V4 
hypervariable region of 16S rRNA gene using 30 cycles. 
The 515F primer contained a unique sequence tag to 
barcode each sample. Both primers contained sequencer 
adapter regions. DNA for metagenomes was submitted 
to the Genomics Shared Resource facility at Ohio State 
University and was prepared for sequencing with a 
Nextera XT library system followed by solid-phase 
reversible immobilization size selection. Libraries were 
quantified and then sequenced using an Illumina HiSeq 
platform.

16S rRNA preprocessing
Amplicon sequencing fastq data were processed in a 
QIIME2 2019.10.0 environment [92]. Reads were demul-
tiplexed and then denoised with DADA2 [93]. For all 
sequencing runs (n = 4), forward reads were truncated 
at 246 bps and reverse reads were truncated at 167 bps. 
Feature tables from each sequencing run were combined, 
and ASVs were assigned taxonomy with the silva-132–
99-515–806-nb-classifier [94]. Before further analy-
sis, the ASV table was filtered with R version 4.0.2 to (i) 
remove samples with no ASVs, (ii) to remove samples 
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with a combined ASV count < 1000 across all samples, 
(iii) to remove ASVs with 0 abundance in every sample, 
and (iv) to remove ASVs designated as mitochondria 
and chloroplast. The resulting filtered feature table con-
tained 23,022 ASVs. Raw reads are deposited on NCBI 
(PRJNA348350) and the final ASV table is published in 
the supplementary materials (Additional file 1: Data S1). 
Reads for external study comparison were obtained from 
the NCBI Sequence Read Archive under accession num-
ber SRP057511 (O’loughlin [28]) and under bioproject 
PRJNA348350 (Borton [27]). All 16S rRNA amplicon 
data for comparison analyses were treated as described 
above. ASV relative abundances were then summed 
within genera or the lowest annotated taxonomy level 
when no classification was provided.

Genome reconstruction from metagenomes
All bioinformatic tools were run with default 
parameters unless otherwise specified. Quality scores 
of raw metagenomic reads were evaluated using FastQC 
(v0.11.9, [95]). Reads were trimmed, adapters removed, 
and mouse reads removed using BBDuk (ktrim = r, 
k = 23, mink = 11, hdist = 1, qtrim = rl, trimq = 20, 
minlen = 75, maq = 10) from BBTools (v38.89, https://​
jgi.​doe.​gov/​data-​and-​tools/​bbtoo​ls). Trimmed reads 
from each individual sample were assembled with 
Megahit (v1.1.1, [96]) and with IDBA_UD (v1.1.3, [97]). 
Each assembler was also used to perform co-assembly 
of all the samples (n = 6) at once.

Subsequently, each single-sample and co-sample 
assembly was binned separately. To obtain bins, 
reads were mapped to assembly contig or scaffold 
set filtered to ≥ 2500 bps using BBMap (https://​
jgi.​doe.​gov/​data-​and-​tools/​bbtoo​ls), sorted using 
SAMtools (v1.9, [98]), and then binned with 
Metabat2 (v2.12.1, [99]). The resulting MAGs were 
checked for quality and contamination with CheckM 
(v1.1.2, [30]), CheckM2 (v0.1.3, [31]), and GUNC 
(v1.0.5, [32]). Using the resulting medium-quality 
(completeness ≥ 50%, contamination < 10%) and high-
quality (completeness ≥ 90%, contamination < 5%) 
MAGs from the initial single-sample and co-sample 
assemblies, trimmed reads were mapped using 
BBMap in perfect mode. Reads that did not map were 
assembled individually by-sample and co-assembled 
by treatment with IDBA_UD (v1.1.3, [97]) to create 
subtractive assemblies. The resulting subtractive 
contigs or scaffolds were then subject to previously 
described filtering (≥ 2500 bps), processing, binning, 
and quality check.

To construct the final CBAJ-DB, all MQHQ 
MAGs from all assemblies were assigned taxonomy 
with GTDB-Tk (v1.3.0, r95, [100], classify_wf ) and 

dereplicated with dRep (v2.5.4, 99% ANI, [101]). Con-
ventional assembly and binning of reads rarified with 
BBTools for MAG recovery sensitivity to read depth 
was performed with the Snakemake [102] workflow 
included here (https://​github.​com/​ilele​iwi/​metaG_​
pipel​ine/​blob/​main/​Snake​file_5.​88_​onesa​mp).

16S rRNA linked to MAGs
Mining of MAGs for 16S rRNA genes was performed 
with Wrighton Lab software (https://​github.​com/​Wrigh​
tonLa​bCSU/​join_​asvbi​ns) MMseqs2 (v13.45111 [103],) 
and Barrnap (v0.9 [104],) and SILVA reference database 
(SILVA_138_SSURef_NR99_tax_silva [94],) followed by 
pairwise comparison to the V4 region sequences from 
our amplicon sequencing.

Database mapping and comparison to other MAG 
resources
To calculate relative abundance of individual dMQHQ 
MAGs, BBmap (https://​jgi.​doe.​gov/​data-​and-​tools/​
bbtoo​ls) was used to randomly map trimmed reads to 
the dMQHQ with minid = 0.95. Then CoverM (v0.6.0, 
https://​github.​com/​wwood/​CoverM) was used to 
estimate read counts per scaffold and per bin. Values 
are the mean number of aligned reads calculated after 
removing positions with the most and the least coverage 
as determined by default values (methods:–proper-pairs-
only -m trimmed_mean –min-read-percent-identity-pair 
0.95, –proper-pairs-only -m mean –min-read-
percent-identity-pair 0.95 –min-covered-fraction 0.75, 
–proper-pairs-only -m reads_per_base –min-read-
percent-identity-pair 0.95 –min-covered-fraction 0). 
Relative abundances of mapped reads were then GeTMM 
normalized (Additional file  2: Data S2) [105] using the 
edgeR package (v3.36.0 [106],). To place MAGs in either 
treatment (control, infected) or both treatments, CoverM 
was used and mapping was only considered if the subject 
covered fraction exceeded 75% with 95% sequence 
identity and a minimum of 3 reads per base depth.

To estimate the relative abundance of each vMAG, the 
metagenomic reads were mapped using Bowtie2 [107]. 
Reads were mapped using BBMap with minid = 0.95. 
Afterwards, CoverM was run using the -mean option 
to consider only those vMAGs that have > 75% of their 
fraction covered. Relative abundances for each vMAG 
were calculated as their coverage proportion from the 
sum of the whole coverage of all bins for each set of 
metagenomic reads prior to GeTMM normalization and 
are reported in Additional file 4: Data S4.

Isolate MAGs were obtained from the Human 
Microbiome Project [39], and medium- and high-quality 
MAGs were obtained from https://​doi.​org/​10.​5281/​
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zenodo.​49777​12. Metagenomic reads from the Human 
cohort and Lloyd-Price cohort [43] were obtained 
from PRJNA725020 and the SRA Database Commons 
respectively. Human cohort rarefication to 2Gbps was 
performed with BBTools reformat. Human metagenomic 
reads were mapped to MQHQ bins with fastANI (v1.32, 
[108]). Genome matches with ANI ≥ 94% and alignment 
fraction (AF) ≥ 33% were deemed of the same species and 
genome matches with ANI ≥ 73% and AF ≥ 33% of the 
same Genus [109].

Comparison to mouse database MAGs was performed 
on MGBC [22] non-redundant high-quality genomes 
(Additional file  5: Data S5, MGBC-hqnr_26640) 
and iMGMC [21] dereplicated medium- and high-
quality MAGs (Additional file  5: Data S5, iMGMC-
mMAGs-dereplicated_genomes). iMGMC MAGs were 
re-classified with GTDB-Tk version 1.3.0 r95 to align 
with CBAJ-DB and MGCB taxonomy, and dereplication 
with each MAG set and CBAJ-DB was performed with 
dRep (v2.5.4, 99% ANI).

MAG function analysis
CBAJ-DB MAGs were annotated using DRAM (v1.1.1) 
[34] and dbCAN (v3.0.2, dbCAN-HMMdb-V10, [110]). 
CAZy genes called with DRAM were updated with the lat-
est dbCAN database and parsed with HMMer (v3.3, [111]) 
to include only significant hits (e-value < 10−18) with > 35% 
coverage. Wrighton lab software rule_adjectives (https://​
github.​com/​rmFly​nn/​rule_​adjec​tives) and functions_pa 
(https://​github.​com/​ilele​iwi/​funct​ions_​pa) were used to 
parse KEGG ids, Enzyme Commission numbers, and 
dbCAN ids from gene annotations referencing function 
rule sheets (Additional file 7: Data S7) to determine func-
tion presence or absence in each MAG. Function relative 
abundance significance was determined with ANOVA 
performed using the R stat package (v4.1.3).

Viral host‑linkage and AMGs
Metagenomic assemblies and subassemblies (n = 16) 
were screened for DNA viral sequences using VirSorter2 
(v2.2.2, [112]) using the published protocol in Protocols.
io [113]. Briefly, VirSorter2 was run using parameters 
“–include-groups dsDNAphage, ssDNA,” “–min-length 
10,000,” and “–min-score 0.5.” The resulting VirSorter2 
output was then run through CheckV [114] to ensure 
quality viral sequences using the “end_to_end” function. 
The trimmed viral sequences output by CheckV were 
then once again run through VirSorter2 using options 
above with additional flags “–seqname-suffix-off,” “–
viral-gene-enrich-off,” and “–prep-for-dramv”. The final 
output was then manually curated using the CheckV 
output as described in Protocols.io. Briefly, (1) viral-
like scaffolds that had more than 1 viral gene were kept 

and deemed viral, (2) viral-like scaffolds with no viral 
genes, host genes equal to zero, or score ≥ 0.95, or that 
had 1 host gene with a length of ≥ 10 kb were separated 
and further inspected. Scaffolds not meeting the above 
criteria or manually inspected to be non-viral were dis-
carded. After generation of a curated, quality-controlled 
viral vMAGs, they were clustered at 95% identity across 
85% of the shortest contig representing viral populations 
using ClusterGenomes [113].

To determine taxonomic affiliation, vMAGs were 
clustered to viruses belonging to viral reference 
taxonomy databases NCBI Bacterial and Archaeal 
Viral RefSeq V85 with the International Committee 
on Taxonomy of Viruses (ICTV) and NCBI Taxonomy 
using the network-based protein classification software 
vConTACT2 (v0.9.8, [115]) using default methods 
[116]. To determine if the viruses present in this study 
represented relevant communities across mammalian gut 
ecosystems, we included viruses mined from 5 publicly 
available datasets in our vConTACT2 analyses from (1) 
human guts [24, 43, 52], moose rumen [38], and bird / 
other mammalian guts [53]. The viral sequences that 
were identified from these systems and the genes used for 
vConTACT2 are deposited on Zenodo with https://​doi.​
org/​10.​5281/​zenodo.​71446​64 with more information of 
downloaded datasets found in Additional file 4 Data S4.

Viral contigs were annotated with DRAM-v [34]. 
Auxiliary scores were assigned by DRAM, based on the 
following ranking system: A gene is given an auxiliary 
score of 1 if there is at least one hallmark gene on both 
the left and right flanks, indicating the gene is likely 
viral. An auxiliary score of 2 is assigned when the gene 
has a viral hallmark gene on one flank and a viral-
like gene on the other flank. An auxiliary score of 3 is 
assigned to genes that have a viral-like gene on both 
flanks. All vMAG annotations are reported in Additional 
file  4: Data S4. To identify likely vMAG hosts, we used 
two strategies which included (1) linking viral spacers 
found in CRISPR systems assembled using CRASS 
[117] and (2) oligonucleotide frequencies between virus 
and hosts using VirHostMatcher and a threshold of d2* 
measurements of < 0.25 [118]. The lowest d2* value for 
each viral contig < 0.2 was used, and only vMAGs for 
which the top 3 hits had taxonomic consensus at the 
genera level were considered “good” hits [118]. All virus-
host links are reported in Additional file 4: Data S4.

Spearman correlation of metagenomic and amplicon 
communities
Relative abundance of mapped reads to dMQHQ MAGs 
were averaged within treatment, and the total rela-
tive abundance of each MAG in Bacteriodia, Clostridia, 
Verrucomicrobiae, Gammaproteobacteria, Bacilli, and 
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Coriobacteriia Classes was summed respectively. Relative 
abundance of MAGs from all other classes were summed 
together into an additional category. Similarly, 16S 
amplicon sequence ASV relative abundances from high 
responder mice and control mice were summed within 
each treatment and by taxonomy according to the classes 
previously mentioned, combining all other ASV abun-
dances into an additional category. Spearman correlation 
was then performed with the R stats package comparing 
Class abundances between metagenomic communities 
and ASV communities within the same treatment.

Statistical analysis
Alpha (Shannon’s diversity) and Beta diversity (Bray–Cur-
tis dissimilarity) were calculated with ASV or MAG rela-
tive abundances from the filtered data using the Vegan 
package 2.5.7 in R [119]. The NMDS Beta diversity visu-
alization was produced using ggplot in R [120]. To deter-
mine significant grouping of samples by treatment, we 
performed an analysis of similarities and mrpp [121], with 
a stress test determining goodness of fit [121]. Lipocalin-2 
(ng/g) and S. typhimurium 14,028 relative abundance 
significance between treatments was determined using a 
Wilcoxon rank sum test, the same test used to compare 
class relative abundance between different treatments 
and timepoints. Linear discriminate analysis on MAGs 
and ASVs was done with LEfSe [122]. MAG and vMAG 
ordination coordination was determined by Procrustes 
analysis [119]. MAG quality quartile significance between 
groups was calculated with a chi squared test in R.
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