Skip to main content
. 2023 May 20;18:375. doi: 10.1186/s13018-023-03837-y

Table 3.

Results of algorithms of KNN, LR and SVM

Algorithm Model Cohort AUC (95% CI) Accuracy Sensitivity Specificity
KNN M-S Train 0.786 (0.710–0.844) 0.701 0.614 0.783
Validation 0.712 (0.529–0.833) 0.613 0.533 0.688
M-C Train 0.805 (0.741–0.863) 0.718 0.544 0.883
Validation 0.771 (0.621–0.886) 0.645 0.533 0.750
M-S-C Train 0.866 (0.809–0.915) 0.786 0.667 0.900
Validation 0.860 (0.724–0.952) 0.839 0.733 0.938
L-S Train 0.832 (0.773–0.888) 0.744 0.667 0.817
Validation 0.706 (0.530–0.83) 0.677 0.533 0.875
L-C Train 0.835 (0.770–0.886) 0.735 0.649 0.817
Validation 0.752 (0.592–0.895) 0.710 0.667 0.750
L-S-C Train 0.867 (0.890–0.912) 0.778 0.632 0.917
Validation 0.796 (0.625–0.931) 0.839 0.733 0.938
P-S Train 0.774 (0.707–0.844) 0.667 0.561 0.767
Validation 0.694 (0.559–0.867) 0.677 0.553 0.813
P–T Train 0.834 (0.762–0.889) 0.769 0.702 0.833
Validation 0.721 (0.598–0.891) 0.677 0.600 0.750
P-S-T Train 0.846 (0.786–0.86) 0.769 0.684 0.850
Validation 0.950 (0.890–0.993) 0.903 0.933 0.875
Final-M Train 0.927 (0.878–0.960) 0.880 0.789 0.967
Validation 0.938 (0.862–0.988) 0.839 0.800 0.875
Clnc-M Train 0.695 (0.622–0.762) 0.684 0.632 0.733
Validation 0.692 (0.531–0.827) 0.642 0.600 0.688
LR M-S Train 0.813 (0.736–0.872) 0.718 0.737 0.700
Validation 0.883 (0.745–0.996) 0.742 0.733 0.750
M-C Train 0.774 (0.696–0.840) 0.726 0.684 0.767
Validation 0.733 (0.567–0.885) 0.710 0.800 0.625
M-S-C Train 0.830 (0.759–0.885) 0.744 0.719 0.767
Validation 0.875 (0.754–0.962) 0.774 0.733 0.813
L-S Train 0.876 (0.819–0.924) 0.795 0.789 0.800
Validation 0.913 (0.804–0.983) 0.806 0.733 0.875
L-C Train 0.839 (0.771–0.895) 0.761 0.702 0.817
Validation 0.842 (0.704–0.950) 0.742 0.800 0.688
L-S-C Train 0.917 (0.873–0.952) 0.821 0.789 0.850
Validation 0.938 (0.857–0.991) 0.871 0.800 0.938
P-S Train 0.884 (0.829–0.931) 0.786 0.754 0.817
Validation 0.883 (0.858–0.992) 0.806 0.867 0.750
P–T Train 0.885 (0.832–0.933) 0.821 0.754 0.883
Validation 0.908 (0.836–0.982) 0.742 0.667 0.813
P-S-T Train 0.977 (0.957–0.993) 0.932 0.947 0.917
Validation 0.921 (0.906–1.000) 0.806 0.867 0.750
Final-M Train 0.984 (0.969–0.995) 0.940 0.877 1.000
Validation 0.983 (0.957–1.000) 0.968 1.000 0.938
Clnc-M Train 0.684 (0.599–0.751) 0.684 0.544 0.817
Validation 0.644 (0.451–9.782) 0.645 0.533 0.451
SVM M-S Train 0.829 (0.752–0.885) 0.752 0.737 0.767
Validation 0.708 (0.521–0.850) 0.645 0.600 0.689
M-C Train 0.883 (0.826–0.929) 0.821 0.772 0.867
Validation 0.792 (0.647–0.919) 0.742 0.800 0.689
M-S-C Train 0.885 (0.822–0.931) 0.769 0.737 0.800
Validation 0.817 (0.649–0.929) 0.710 0.733 0.688
L-S Train 0.920 (0.881–0.953) 0.821 0.789 0.850
Validation 0.838 (0.693–0.940) 0.774 0.667 0.875
L-C Train 0.888 (0.833–0.930) 0.786 0.719 0.850
Validation 0.829 (0.675–0.947) 0.806 0.800 0.813
L-S-C Train 0.941 (0.905–0.970) 0.821 0.754 0.883
Validation 0.896 (0.765–1.000) 0.839 0.800 0.875
P-S Train 0.923 (0.883–0.959) 0.821 0.772 0.867
Validation 0.867 (0.832–0.986) 0.806 0.733 0.875
P–T Train 0.915 (0.864–0.953) 0.838 0.789 0.883
Validation 0.858 (0.744–0.975) 0.806 0.733 0.875
P-S-T Train 0.956 (0.927–0.978) 0.846 0.789 0.900
Validation 0.879 (0.827–1.000) 0.806 0.733 0.875
Final-M Train 0.984 (0.968–0.996) 0.940 0.877 1.000
Validation 0.958 (0.895–1.000) 0.935 0.933 0.938
Clnc-M Train 0.747 (0.674–0.815) 0.667 0.667 0.667
Validation 0.715 (0.548–0.860) 0.710 0.733 0.688