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Abstract
The Nun study is a well-known longitudinal epidemiology study of aging and 
dementia that recruited elderly nuns who were not yet diagnosed with dementia (i.e., 
incident cohort) and who had dementia prior to entry (i.e., prevalent cohort). In such 
a natural history of disease study, multistate modeling of the combined data from 
both incident and prevalent cohorts is desirable to improve the efficiency of infer-
ence. While important, the multistate modeling approaches for the combined data 
have been scarcely used in practice because prevalent samples do not provide the 
exact date of disease onset and do not represent the target population due to left-
truncation. In this paper, we demonstrate how to adequately combine both incident 
and prevalent cohorts to examine risk factors for every possible transition in study-
ing the natural history of dementia. We adapt a four-state nonhomogeneous Markov 
model to characterize all transitions between different clinical stages, including 
plausible reversible transitions. The estimating procedure using the combined data 
leads to efficiency gains for every transition compared to those from the incident 
cohort data only.
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1  Introduction

In the field of epidemiology, understanding the natural history of a chronic dis-
ease, which refers to the clinical course of a disease progress, is important for for-
mulating prevention and control strategies for the disease. In dementia studies, the 
cognitive function of a senior is assessed periodically and summarized roughly as 
intact cognition, mild cognitive impairment (MCI), or dementia. The transitions 
among these states describe the natural history of the disease. An example is the 
Nun Study of aging and Alzheimer’s disease (Nun Study), which monitored nuns 
aged 75 years or older at entry for future disease progression with approximately 
annual examination up to 10 years. In this study cohort, some individuals were 
already found to be in the dementia state in their screening tests, yielding two 
sub-cohorts: the incident cohort of subjects without dementia at entry and fol-
lowed for the potential diagnosis of dementia and death, and the prevalent cohort 
of subjects who were diagnosed with dementia at entry and followed up to death.

Of particular interest is the study of risk factors for cognitive decline and the 
duration from dementia onset to death. In the analyses using incident cohort data 
from the Nun Study, Tyas et  al. (2007) concluded that the presence of apolipo-
protein E4 allele (ApoE4) and low education increased the risk of transition to 
MCI but not the risk of the transition from MCI to dementia or death. Meanwhile, 
Wei et al. (2014) showed that both risk factors were positively associated with the 
transitions to MCI and dementia. Although the incident cohort is the collection 
of random samples from the target population, it is possibly limited in its ability 
to observe sufficient events of death. This factor can be mitigated by including 
the prevalent cohort with more failure events. Analyzing the combined data from 
the incident and prevalent cohorts leads to more efficiency in estimating baseline 
intensity functions and evaluating risk factors. In this paper, we revisit the asso-
ciation of risk factors with the transitions to MCI, dementia, and death by using 
both incident and prevalent cohorts from the Nun Study.

Analyzing the combined incident and prevalent cohort data is complex, owing 
to some unique and challenging data features. First, cognitive functioning is often 
assessed by intermittent visits, resulting in interval censored times for transitions. 
Second, since reverting from MCI back to intact cognition is fairly common in the 
natural history of dementia, the exact disease trajectory for a subject is difficult to 
ascertain. Third, the patients sampled in the midst of dementia usually cannot 
provide the exact starting date of the dementia. Only the remaining period of the 
progression from dementia to death, the time from study enrollment to death or 
loss to follow-up, is observed from the prevalent cohort. Lastly, the subjects from 
the prevalent cohort are likely to have longer durations from dementia to death 
compared to the dementia patients in the incidence cohort, which causes selection 
bias, i.e., the left-truncation problem. Failure to address these theoretical chal-
lenges when combining incident and prevalent cohorts may result in biased infer-
ence on the natural history of the disease and its association with risk factors.

With a single survival endpoint of interest, a few works from the literature 
have shown the benefits of combining both incident and prevalent cohorts. For 
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example, Lee et  al. (2019) proposed an efficient estimation procedure that uses 
both the incident and prevalent cohorts under a proportional mean residual life 
model with right-censored data. In other areas, Wolfson et al. (2019) suggested 
approaches for estimating the non-parametric estimators of the survival func-
tion with the combined data in myotonic dystrophy by assuming that the disease 
onset of a prevalent case was known to be within an interval. McVittie et  al. 
(2020) constructed the parametric likelihood of the combined data to estimate 
hospital stay durations, subject to right-censoring and the assumption of sta-
tionarity. Although important, their methods are not applicable to describe the 
natural history of disease that is represented with transitions between multiple 
states and often observed with data subject to selection bias. Joint modeling of 
the combined data with multiple transitions has been proposed in the literature. 
For example, Kulathinal et al. (2020) showed a gain in efficiency by combining 
both the incident and prevalent cohorts under the multistate model framework. 
They postulated that the incidence of the event of interest could be retrospectively 
observed in the prevalent cohort. On the other hand, Saarela et  al. (2009) and 
Gorfine et al. (2021) proposed estimation procedures to jointly model both prev-
alent and incident cases subject to right censoring when important information 
from the prevalent cases is uncertain. To the best of our knowledge, there is no 
prior work that addresses the topic of modeling interval-censored natural history 
data obtained from a combination of incident and prevalent cohorts, particularly 
when the onset of prevalent disease cannot be observed retrospectively.

We propose a multistate approach for analyzing interval-censored event history 
data that are observed from both incident and prevalent cohorts to examine the asso-
ciation of risk factors with the transitions that are involved in the natural history 
of the disease. The modelling of cognitive changes and death in dementia is illus-
trated with a nonhomogeneous multistate Markov model, allowing for the reversible 
transition between intact cognition and MCI and the transition from any cognitive 
state to death. Within a multistate modeling framework, we derive the distribution 
of dementia onset using event-history observations, and we use this to model the 
observable residual periods of prevalent samples in a general truncation structure. 
We present a likelihood-based estimation procedure for jointly modelling the com-
bined data from incident and prevalent cohorts in Sect. 2. In Sect. 3, intensive simu-
lation studies are conducted to investigate the finite sample performance of the esti-
mation procedure and to show the efficiency gains of the estimators compared to 
those that are obtained using the incident cohort only. We use the proposed method 
to analyze the Nun Study in Sect. 4. Section 5 contains some concluding remarks.

2 � Statistical methodologies

2.1 � Notations and model

We denote the participant’s health status at a given time t (t ≥ 0) by a multistate 
process X(t) that takes a finite number of the values for the states representing dis-
crete clinical conditions or death. In dementia studies, the multistate processes are 
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typically characterized with four states, namely X(t) ∈ {0, 1, 2, 3} , where 0 denotes 
cognitively intact for age, 1 denotes cognitive impairment, 2 denotes clinical 
dementia, and 3 denotes death. The biologically plausible transitions between the 
four states are depicted in Fig. 1, where the transition between state 0 and state 1 is 
potentially reversible, the transition from state 0 to 2 is assumed to proceed through 
MCI, and state 3 is the absorbing state that can be reached from all other states.

Assume that X(t) follows a conditional Markov multistate model with four states, 
characterized by the conditional transition probabilities,

where k, l ∈ {0, 1, 2, 3} , t1 ≤ t2 and Z is a vector of risk factors. Then, the condi-
tional transition intensity from k to l, qkl(t|Z) , is

for k ≠ l and qkk(t�Z) = −
∑

l≠k qkl(t�Z) (Cox and Miller 1965). Let P(t1, t2) denote 
the transition probability matrix whose (k, l) entry is pkl(t1, t2|Z) and Q(t) denote the 
transition intensity matrix whose (k,  l) entry is qkl(t|Z) and k, l ∈ {0, 1, 2, 3} . With 
the possible transitions shown in Fig. 1,

The transition probabilities for a continuous-time Markov process can be obtained 
by solving the following Kolmogorov forward equation,

where P(t0, t0) = I is the identity matrix. For a nonhomogeneous Markov model, 
however, the solution to equation (1) is intractable with non-trivial forms of Q(t) , 
and it is computationally intensive to get the solution with covariates (Titman 2011). 

pkl(t1, t2|Z) = P{X(t2) = l|X(t1) = k,Z},

qkl(t|Z) = lim
Δt→0+

P(X(t− + Δt) = l|X(t−) = k,Z)

Δt
,

P(t1, t2) =

⎛
⎜⎜⎜⎝

p00(t1, t2�Z) p01(t1, t2�Z) p02(t1, t2�Z) p03(t1, t2�Z)
p10(t1, t2�Z) p11(t1, t2�Z) p12(t1, t2�Z) p13(t1, t2�Z)

0 0 p22(t1, t2�Z) p23(t1, t2�Z)
0 0 0 1

⎞⎟⎟⎟⎠
and

Q(t) =

⎛
⎜⎜⎜⎝

q00(t�Z) q01(t�Z) 0 q03(t�Z)
q10(t�Z) q11(t�Z) q12(t�Z) q13(t�Z)

0 0 q22(t�Z) q23(t�Z)
0 0 0 0

⎞⎟⎟⎟⎠
.

(1)
dP(t0, t)

dt
= P(t0, t)Q(t),

Fig. 1   Transition diagram with 
four states for dementia: state 
0 for intact cognition, state 1 
for mild cognitive impairment 
(MCI), state 2 for dementia and 
state 3 for death
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In some situations, an analytic solution to equation (1) is available; the first example 
is a progressive process with a small number of states (Pak et al. 2017, 2019), and 
the second example is a time transformation model that assumes the transition inten-
sity matrix is a form of Q(t) = Q0dh(t)∕dt with the operation time h(t), where Q0 is 
the transition intensity matrix for a homogeneous Markov process and h(t) is a non-
negative function (Kalbfleisch and Lawless 1985; Omar et al. 1995; Hubbard et al. 
2008). We adapt the time transformation model when constructing the likelihood 
function for event-history data.

We assume the multiplicative intensity model for each transition that is

where q(0)
kl
(t) is the k-to-l baseline transition intensity and �kl is the regression coef-

ficient vector for the transition from state k to state l. We use the Weibull distribu-
tion to model the baseline transition intensities under the assumption of the same 
time dependency across transitions, namely, q(0)

kl
(t) = �kl�t

�−1 with unknown positive 
parameters, �kl and � . Then, the transition intensity matrix Q(t) can be expressed 
as Q0dh(t)∕dt , where Q0 is the transition intensity matrix whose (k,  l) entry is 
�kl exp

(
Z′�kl

)
 and dh(t)∕dt = �t�−1 . This implies that there exists a new time scale, 

h(t), which leads to the homogeneous process with the transition intensity matrix 
Q0 (Hubbard et al. 2008). Thus, we have P(t1, t2) = exp

[
Q0{h(t2) − h(t1)}

]
 , where 

h(t) = ∫ t

0
�s�−1ds.

We introduce additional notation to model the prevalent samples. The prevalent 
cohort includes participants who are alive but with dementia at the time of recruit-
ment. Let U denote individual’s age at study enrollment. Further, we let Ao be the 
age of onset for clinical dementia and Ad be the age at death. Then, the prevalent 
cohort is formed by the individuals whose age at enrollment U is between Ao and 
Ad . Let W̃ = U − Ao denote the time from dementia onset to study enrollment and 
T̃ = Ad − Ao denote the time from dementia onset to death within a prevalent popu-
lation of patients with dementia. Let (W,  T) be a pair of (W̃, T̃) for the observed 
samples in the prevalent cohort among those who are eligible to be sampled at the 
time of recruitment (i.e., �T > �W ). Note that (W, T) is not exactly observed. This is 
because the exact age at dementia onset is generally unavailable from the prevalent 
cohort. We let T = W + V  , where V is the observed time from study recruitment 
to death and C denote a residual censoring time from study recruitment to loss of 
follow-up. The diagram in Fig. 2 depicts these notations for the prevalent sampling.

2.2 � Likelihood and estimation

Consider a random sample of m independent subjects that are combined from both 
the incident and prevalent cohorts with respective sample sizes of m1 and m2 , where 
m = m1 + m2 . Suppose that those in the incident cohort are labeled 1,⋯ ,m1,m1 < m . 
Let Xi(t) be the state of the health condition at time t for the i-th subject ( i = 1,⋯ ,m ). 
For the i-th subject, we let si = (si1,⋯ , sini )

� denote the states, consecutively observed 
by ni observations with the corresponding time points ti = (ti1,⋯ , tini )

� , and zi denote a 

(2)qkl(t|Z) = q
(0)

kl
(t) exp(Z��kl), k ≠ l
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vector of baseline risk factors. In the Nun Study, the time to death was observed exactly 
when a subject died during the study. Let �i = 1 if the i-th subject died before the end of 
study and �i = 0 otherwise. Then, sini = 3 for �i = 1 and sini ∈ (0, 1, 2) for �i = 0.

The observed event history data from the incident cohort consist of 
O

(inc) ≡ (O
(inc)

1
,⋯ ,O(inc)

m1
) , where O(inc)

i
= (ti, si, �i, zi) and i = 1⋯ ,m1 . We assume 

that the disease progression is a Markov process and O(inc)

i
 is independent across sub-

jects. Denote the vector of all model parameters by � . The likelihood for the incident 
cohort of the i-th subject who was alive at the end of the study, denoted by 
L
(inc)

i
(�; ti, si, �i = 0, zi) , can be expressed as the product of the transition probabilities, 

which is

where P{X(ti1) = si1|zi} can be approximated by p0si1(t0, ti1|zi) with a possible time 
point t0 of being in intact cognition, such as the age at which the disease initiated.

In the Nun Study, a subject’s cognitive state at the moment of death was unknown 
unless they were diagnosed with dementia before death. Multiple possible risks 
of death may exist after the last cognitive assessment of the subject. For example, if 
the last assessment of a subject was the MCI state, there were three possible risks of 
death: (1) cognitive function was improved and she died in the cognitive intact state, 
(2) dementia was not developed before death and she died in the MCI state, and (3) 
dementia was developed and she died in the dementia state. The likelihood for the i-th 
subject of the incident cohort who died during the study (i.e., the subject with sni = 3 
for i = 1,⋯ ,m1 ) is then

Therefore, the likelihood of the incident cohort data, L(inc) , is

(3)L
(inc)

i
(�; ti, si, �i = 0, zi) = P{X(ti1) = si1|zi}

{
ni∏
r=2

psi(r−1)sir (ti(r−1), tir|zi)
}

,

(4)
L
(inc)

i
(�; ti, si, �i = 1, zi) =P{X(ti1) = si1|zi}

{
ni−1∏
r=2

psi(r−1)sir (ti(r−1), tir|zi)
}

×
∑
k≠3

psi(ni−1)k
(ti(ni−1), t

−
ini
|zi)qk3(tini |zi).

Fig. 2   The diagram for left truncation in a prevalent cohort study: Case (1) is for a subject sampled in the 
cohort, and Case (2) is for a subject not sampled in the cohort
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Next, we construct the likelihood for the prevalent cohort after adjusting for left-
truncation. Based on our multistate model, the probability density function of the 
age of dementia onset Ao given the covariates Z = z , denoted by fAo(a|z) , is

Then, the conditional density function of T̃  given Ao = a follows:

where f23 and S23 are, respectively, the density function and the survival function for 
Ad given Z = z.

We assume that T̃  is independent of W̃  given Ao and Z = z . Note that the sub-
jects from the prevalent cohort of the Nun Study are among those who have 
�T > �W  due to the prevalent sampling, and T is dependent of (W, V) due to their 
relationship in T = W + V  . If a subject from the prevalent cohort dies during the 
study, the age of study enrollment U and the residual survival time V are observ-
able. With (6) and (7), the joint density of (U, V) given Z = z and the sampling 
constraint, denoted by f (u, v|z) , follows:

where g(w|z) is the probability density function for W̃ given Z = z , and

A parametric family of distribution can be used for g(w|z) . Length-biased sampling 
can also be assumed by letting g(w|z) be a uniform distribution over (0, �) , where � 
is a constant that makes the probability mass P(T = t|T > A) → 0 for t > 𝜏 (Shen 
et al. 2009).

(5)L
(inc)(�;O(inc)) =

m1∏
i=1

L
(inc)

i
(�; ti, si, �i, zi).

(6)fAo(a|z) = p01(0, a|z)q12(a|z)
∫ ∞

0
p01(0, u|z)q12(u|z)du

.

(7)f
T̃|Ao (t|a, z) = f23(a + t|z)

S23(a|z) ,

f (u, v|z) = P(U = u,V = v|�T > �W,Z = z)

=
∫ u

0
P(�T = u + v − a, �W = u − a|Ao = a,Z = z)fAo (a|z)da

P(�T > �W|Z = z)

=
∫ u

0
f�T|Ao (u + v − a|z)g(u − a|z)fAo (a|z)da

P(�T > �W|Z = z)
,

P(�T > �W|Z = z) = ∫
∞

0

P(�T > �W,Ao = a|Z = z)da

= ∫
∞

0 ∫
∞

0

P(�T > �W, �W = w|Ao = a,Z = z)fAo(a|z)dadw

= ∫
∞

0 ∫
∞

0

S�T|Ao (w|z)g(w|z)fAo (a|z)dadw.
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Since the transition that is possible for a subject with dementia is the transition 
toward death, the information on study enrollment and last assessment suffices to 
describe the prevalent cohort data. Let ui be the age at study enrollment and yi be the 
observed time from study entry to the last assessment for the i-th subject. Then, the 
observed data for the i-th subject consist of ui , yi = min(Vi,Ci) , 𝛿i = I(Vi < Ci) , and zi . 

We denote the prevalent cohort data as O
(pre) ≡ (O

(pre)

m1+1
,⋯ ,O(pre)

m
) , where 

O
(pre)

i
= (ui, yi, �i, zi) and i = m1 + 1,⋯ ,m.

Assume that C is independent of (T̃ , W̃,V) given Z = z . Then, the likelihood for the 
prevalent cohort is proportional to

where S(u, y|z) = ∫ ∞

y
f (u, r|z)dr , � is a vector of the same model parameters for the 

target population of the incident cohort, and � is a vector of the parameters in g(w|z).
The likelihood function for combined data from incident and prevalent cohorts can 

be expressed as the product of the likelihoods given in (5) and (8),

We can estimate � and � by maximizing the logarithm of the likelihood in (9).
The likelihood function can readily be extended to handle the event history data with 

interval-censored events in the prevalent cohort. Assume that the residual period of a 
prevalent subject is only known to be within a specific interval, i.e., V ∈ [L,R) , where 
L ≥ U and R = ∞ for right-censoring. The likelihood for the prevalent cohort can be 
generalized to

where (li, ri) is the interval of (L, R) for the i-th subject, and 𝛿Ii = I(Ri < ∞) . Thus, 
the likelihood function for the combined data with interval-censored prevalent sam-
ples is proportional to the product of the likelihoods given in (5) and (10).

The maximum likelihood implementation requires calculating integrals over finite 
or infinite intervals, which may not have analytic solutions. In such a case, we obtain 
a numerical integral value by using the Gauss-Jacobi quadrature after transforming 
an integral over the unit interval (0,  1). The statistical inference about � ≡ (��, ��)� 
can be performed with the asymptotic distribution of �̂ , which we approximate by 
N(�̂, I−1

obs
(�̂)) , where Iobs is the observed information matrix.

(8)L
(pre)(�, �;O(pre)) ∝

m2∏
i=m1+1

f (ui, yi|zi)�i S(ui, yi|zi)1−�i ,

(9)L(�, �;O(inc),O(pre)) ∝ L
(inc)(�;O(inc)) × L

(pre)(�, �;O(pre)).

(10)
L
(pre)(�, �;O(pre)) ∝

m2∏
i=m1+1

{
f (ui, yi|zi)�i S(ui, yi|zi)1−�i

}1−�Ii

×
{
S(ui, li|zi) − S(ui, ri|zi)

}�Ii ,



1 3

Evaluation of the natural history of disease by combining…

3 � Simulation studies

We conducted a series of simulation studies to assess finite sample properties of 
the proposed likelihood-based approach. Two different sets of sample sizes for the 
incident cohort and the prevalent cohort were considered: (a) m = 600 ( m1 = 300 
and m2 = 300 ) and (b) m = 1200 ( m1 = 600 and m2 = 600 ). We generated two 
independent covariates from Z1 ∼ Bernoulli (0.4) and Z2 ∼ Uniform (0, 1) , 
i.e., Z = (Z1, Z2)

� . In data generation of the life-history process for a subject, 
the Weibull baseline transition intensities were used with the set of parameters: 
�01 = 0.5 , �03 = 0.2 , �10 = 0.4 , �12 = 0.3 , �13 = 0.4 , �23 = 0.3 , and � = 1.5 . The 
coefficients of Z for transitions, denoted by � = (��

01
, ��

03
, ��

10
, ��

12
, ��

23
)� , were cho-

sen to be ��
01

= (0.2,−0.2) , ��
03

= (0.1,−0.2) , ��
10

= (−0.2, 0.2) , ��
12

= (0.2,−0.3) , 
��
13

= (0.2, 0.2) , and ��
23

= (0.3,−0.2) . Ten cognitive assessment times for each 
subject were simulated to generate interval censored data, which were set to 
t1 = 0.2 + Uniform (0, 0.4) and tj = tj−1 + Uniform (0.2, 0.4) for j = 2,⋯ , 10 . 
With these assessment rules, about 50% of subjects were still alive at the last 
assessment. For the prevalent cohort, the distribution of W̃  was assumed to fol-
low the Weibull distribution that is g(w) = 0.6w0.2 exp(−0.5w1.2) , and the residual 
censoring time C was generated from Uniform (0, c) , where c was set to achieve 
two censoring percentages, 15% and 30% . Lastly, 1000 replicates were generated 
in each set of sample sizes for Monte Carlo simulations.

Tables  1 and 2 show the simulation results for estimating � from the com-
bined cohort data with the different censoring rates of a prevalent cohort, along 
with the results of fitting a multistate model to the incident cohort data only. The 
mean estimates from all simulated cohort data are close to the true parameter 
values. The empirical standard errors of the estimates are almost the same as the 
mean of the estimated asymptotic standard errors, and they decrease by almost √
2 when the sample size doubles. The coverage probability for every estimator is 

also close to the nominal level. We further calculated the relative efficiency (RE) 
of the two approaches, defined as the ratio of the mean square error of the esti-
mator from the combined cohort to that from the incident cohort. As expected, 
the approach using the combined cohort data has the highest efficiency gain in 
estimating �23 with the range of REs being about from 7.4 to 11.7 across all sce-
narios. The censoring rate of the prevalent samples is negatively related to the 
RE of �23 . The efficiency gains in estimating the baseline intensity for the 2-to-3 
transition are also depicted in Fig. 3; the 95% pointwise confidence intervals of 
the baseline intensities from the combined cohort data are narrower than those of 
the incident cohort data. Although the prevalent samples provide the information 
on the 2-to-3 transition only, REs of the parameters for other transitions also tend 
to be over one. This implies that combining the incident and prevalent cohorts 
affects the estimation of overall transition probabilities.

The results for the baseline intensity parameters and the parameters in g(w) 
are relegated to the Supplementary Information. They show similar trends to the 
regression parameters. The RE of �23 ranges from 5.2 to 6.7 across all scenar-
ios. A slight improvement in efficiency also was shown in the estimation of other 
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baseline intensity parameters, especially for � , as their REs were greater than one. 
The parameters in g(w) also were reasonably close to the true values with the 
coverage probabilities close to the nominal level.

We also performed a sensitivity analysis when the density of W̃  was incor-
rectly specified under the current simulation settings (see Table  S3 of the Sup-
plementary Information). We considered two misspecified cases: W̃  is assumed to 
follow (1) the exponential distribution and (2) the uniform distribution (i.e., the 
length-biased sampling). In summary, the parameter estimates from the proposed 

Table 1   Simulation results for estimating � with incident cohort data only (m1 = 300) or with the com-
bined cohort ( m1 = 300 and m2 = 300 ) under different censoring rates for the prevalent cohort. The coef-
ficient vector for k-l transition is denoted by �

kl
= (�

(1)

kl
, �

(2)

kl
)� , where �(1)

kl
 for Z1 and �(1)

kl
 for Z2

a the empirical bias
b the empirical standard error of the parameter estimator
c the average of the standard error estimator
d the coverage of the 95% confidence interval with the Normal approximation
e the relative efficiency obtained by the ratio of the mean-squared error from the combined cohort to that 
from the incident cohort
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�
(1)
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�
(1)
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�
(2)

23

Truth 0.20 −0.20 0.10 −0.20 −0.20 0.20 0.20 −0.30 0.20 0.20 0.30 −0.20
Incident cohort only
Bias

a −0.01 −0.01 0.02 −0.02 −0.01 0.06 0.01 0.04 −0.01 −0.08 −0.01 −0.01

ESE
b 0.15 0.67 0.27 1.04 0.33 1.32 0.28 1.22 0.27 1.09 0.36 1.62

SE
c 0.15 0.65 0.25 1.05 0.32 1.31 0.27 1.17 0.26 1.10 0.36 1.57

CP
d 0.95 0.95 0.96 0.96 0.95 0.95 0.96 0.94 0.95 0.96 0.95 0.95

Combined cohorts with no censored prevalent samples
Bias −0.01 −0.02 0.01 −0.02 −0.02 0.05 0.01 0.04 −0.01 −0.05 0.00 0.01
ESE 0.15 0.63 0.26 1.02 0.32 1.30 0.26 1.16 0.25 1.03 0.11 0.48
SE 0.15 0.62 0.25 1.02 0.32 1.29 0.26 1.11 0.24 1.03 0.11 0.46
CP 0.95 0.95 0.95 0.96 0.96 0.95 0.95 0.94 0.94 0.96 0.95 0.94
RE

e 1.10 1.13 1.05 1.04 1.07 1.03 1.08 1.10 1.16 1.11 11.28 11.63
Combined cohorts with 15% censored prevalent samples
Bias 0.01 −0.01 0.00 0.03 0.03 0.07 −0.01 −0.03 0.00 −0.05 −0.01 0.01
ESE 0.15 0.60 0.25 1.05 0.32 1.32 0.27 1.16 0.25 1.08 0.12 0.50
SE 0.15 0.62 0.25 1.03 0.32 1.30 0.26 1.11 0.24 1.03 0.12 0.49
CP 0.95 0.95 0.96 0.94 0.95 0.95 0.94 0.94 0.94 0.94 0.95 0.96
RE 1.07 1.24 1.14 0.99 1.05 1.00 1.04 1.10 1.16 1.02 9.25 10.50
Combined cohorts with 30% censored prevalent samples
Bias −0.01 0.02 0.01 0.03 0.01 0.08 −0.01 0.01 0.00 0.00 0.00 0.01
ESE 0.15 0.63 0.25 1.02 0.32 1.31 0.27 1.16 0.24 1.05 0.13 0.52
SE 0.15 0.62 0.25 1.03 0.32 1.29 0.26 1.11 0.24 1.03 0.12 0.53
CP 0.95 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.94 0.95 0.96
RE 1.11 1.12 1.13 1.03 1.06 1.01 1.08 1.11 1.29 1.08 8.12 9.86
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method were found to be reasonably robust against the misspecification of the 
form for g(w).

4 � Application

The Nun Study is a longitudinal study of aging and dementia with a cohort of 678 
participants who were born before 1917 and recruited among members of the School 
Sisters of Notre Dame congregation in the United States. The cognitive status of 

Table 2   Simulation results for estimating � with incident cohort data only (m1 = 600) or with the com-
bined cohort ( m1 = 600 and m2 = 600 ) under different censoring rates for the prevalent cohort. The coef-
ficient vector for k-l transition is denoted by �

kl
= (�

(1)

kl
, �

(2)

kl
)� , where �(1)

kl
 for Z1 and �(1)

kl
 for Z2

a the empirical bias
b the empirical standard error of the parameter estimator
c the average of the standard error estimator
d the coverage of the 95% confidence interval with the Normal approximation
e the relative efficiency obtained by the ratio of the mean-squared error from the combined cohort to that 
from the incident cohort
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Truth 0.20 −0.20 0.10 −0.20 −0.20 0.20 0.20 −0.30 0.20 0.20 0.30 −0.20
Incident cohort only
Bias −0.00 −0.02 0.00 0.01 0.00 −0.05 −0.01 0.00 −0.012 0.01 −0.01 −0.04
ESE 0.11 0.45 0.18 0.73 0.22 0.91 0.196 0.80 0.18 0.753 0.25 1.12
SE 0.11 0.45 0.18 0.73 0.22 0.91 0.189 0.81 0.18 0.768 0.25 1.06
CP 0.95 0.95 0.94 0.96 0.96 0.95 0.945 0.95 0.95 0.957 0.95 0.94
Combined cohorts with no censored prevalent samples
Bias −0.00 −0.01 0.01 0.01 0.00 −0.05 −0.00 0.006 −0.01 0.01 0.00 0.00
ESE 0.10 0.43 0.18 0.71 0.22 0.90 0.189 0.76 0.171 0.71 0.08 0.32
SE 0.10 0.43 0.17 0.72 0.22 0.90 0.181 0.77 0.167 0.72 0.08 0.32
CP 0.95 0.96 0.94 0.96 0.95 0.95 0.934 0.95 0.944 0.96 0.96 0.97
RE 1.09 1.10 1.04 1.05 1.01 1.022 1.08 1.103 1.12 1.13 10.57 11.71
Combined cohorts with 15% censored prevalent samples
Bias −0.01 −0.02 0.01 −0.01 −0.00 0.01 0.01 −0.010 −0.01 0.00 0.00 0.02
ESE 0.10 0.42 0.18 0.74 0.23 0.91 0.186 0.78 0.173 0.71 0.08 0.34
SE 0.10 0.43 0.17 0.71 0.22 0.90 0.181 0.78 0.167 0.72 0.08 0.35
CP 0.94 0.96 0.95 0.95 0.95 0.95 0.954 0.95 0.943 0.95 0.96 0.95
RE 1.10 1.12 1.07 1.01 0.97 1.01 1.10 1.069 1.11 1.13 9.30 10.19
Combined cohorts with 30% censored prevalent samples
Bias −0.00 −0.01 −0.01 −0.03 0.02 −0.03 −0.00 0.009 0.00 0.02 0.00 0.01
ESE 0.10 0.46 0.18 0.71 0.217 0.95 0.19 0.78 0.170 0.73 0.09 0.39
SE 0.10 0.44 0.18 0.72 0.220 0.90 0.18 0.78 0.168 0.72 0.09 0.37
CP 0.95 0.94 0.95 0.94 0.955 0.94 0.94 0.95 0.946 0.95 0.94 0.93
RE 1.12 1.03 1.04 1.05 1.009 0.98 1.10 1.08 1.12 1.11 7.44 8.23
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each participant was assessed annually for close to a decade and their awareness of 
deficits were classified into four stages according to severity: cognitively intact for 
age, cognitive deficit not affecting activities of daily living, cognitive deficit affect-
ing one or more activities of daily living, and clinical dementia. Ages at their assess-
ments and deaths were also recorded during the follow-up, along with two important 
covariates, the presence of at least one apolipoprotein E4 allele (APOE4) and their 
level of education (EDUCAT). To reduce dimensionality, we grouped the partici-
pants’ status into four states and recorded them as follows: 0 for intact cognition, 1 
for MCI, 2 for dementia, and 3 for death.

We applied the proposed approach to data from 501 subjects with complete base-
line information. Among them, 424 were in the intact cognition or MCI state (i.e., 
incidence cases), while 77 were diagnosed with clinical dementia (i.e., prevalent 
cases) at their study recruitment. In the incident cohort, about 36% progressed to 
dementia and only 29% died with dementia during the follow-up. In the prevalent 
cohort, about 97% died during the follow-up. The flow chart for the samples of the 
incident cohort and the prevalent cohort from the Nun Study is available in the Sup-
plementary Information. The average age at the first assessment was 82.53 years for 
the incident cohort and 85.89 years for the prevalent cohort. Table 3 shows the dis-
tribution of risk factors by cohort. The combined cohorts consist of more dementia 
cases in each group compared to the incident cohort. In the analysis, 75 years old, 
which is the earliest age at the intact cognition state in the incident cohort, is set as 
the initial time point of disease progression. The exponential distribution is used for 
the density of W̃ , which implies that the period between dementia onset and study 
entry does not depend on the dementia onset itself.

The resulting parameter estimates and their standard errors, respectively obtained 
by analyzing the combined cohorts data and the incident cohort data only, are 
shown in Table  4. In model estimation, the proposed method was refitted to the 

Fig. 3   The average of the esti-
mated baseline intensities with 
the pointwise 95% confidence 
intervals, obtained from the 
combined cohort data (red) 
and the incident cohort only 
(blue) under the scenario with 
m1 = 300 , m2 = 300 , and 30% 
censoring rate for the prevalent 
cohort (Color figure online)
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data sets without the regression coefficients for the 0-to-3 transition because their 
estimates were close to zero. The results with both incident and prevalent cohorts 
of the Nun Study show that ApoE4 promotes the cognitive decline of a subject, in 
that an ApoE4 carrier is expected to have a relatively longer time of the transition 
from MCI back to intact cognition (p value = 0.011); a higher risk of being in MCI, 
which is marginally significant (p value = 0.054); and a shorter time of the transition 
from MCI to dementia (p value = 0.032), compared to a non-carrier. The education 
level of a subject is found to be significantly associated with the 0-to-1 and 2-to-3 
transitions; the higher level of education (12 years or more) is found to decrease the 
risk of progression from intact cognition to MCI (p value = 0.003) and increase the 
risk of death with dementia (p value = 0.049). The results of incident cohort data 
show similar results with those of the combined cohort data except that education 
level was not significantly related to the 2-to-3 transition. The positive association 
between higher education and mortality with dementia also has been reported in 
other studies (Stern et al. 1995; Contador et al. 2017).

Figure 4 shows the estimated baseline intensity for the 2-to-3 transition with 
pointwise 95% confidence intervals. The analysis results of the combined data 

Table 3   Distribution of risk factors by cohort with the number of patients who experienced dementia 
before death during the study and the number of death at last follow-up

Incident cohort only Combined cohorts

(m1 = 424) (m1 = 424,m2 = 77)

Size Dementia (%) Death (%) Size Dementia (%) Death (%)

APOE4
Presence 82 39 (48%) 65 (79%) 111 68 (61%) 93 (84%)
Absence 342 114 (33%) 243 (71%) 390 162 (42%) 290 (74%)
EDUCAT​
College and higher 383 134 (35%) 274 (72%) 432 183 (42%) 323 (75%)
Others 41 19 (46%) 34 (83%) 69 47 (68%) 60 (87%)

Table 4   Results of the parameter estimation in each transition using the combined cohorts and the inci-
dent cohort from the Nun Study

Combined cohorts Incident cohort only

(Transition) 0-to-1 1-to-0 1-to-2 1-to-3 2-to-3 0-to-1 1-to-0 1-to-2 1-to-3 2-to-3

APOE4 (presence=1, absence=0)
Estimate 0.28 −0.68 0.40 −0.09 −0.10 0.26 −0.71 0.39 −0.07 −0.19
SE 0.15 0.27 0.19 0.26 0.16 0.15 0.27 0.19 0.27 0.21
EDCAT (college and higher=1, others=0)
Estimate −0.89 0.62 0.17 0.59 0.34 −0.91 0.60 0.12 0.64 0.16
SE 0.30 0.43 0.24 0.34 0.17 0.31 0.44 0.25 0.39 0.26



	 D. Pak et al.

1 3

from the incident and prevalent cohorts show narrower 95% pointwise confidence 
intervals than those of the incident cohort data only. The estimated density of the 
dementia onset in the prevalent population is presented in Fig. 5 as a byproduct of 
the analysis of the combined data. The median onset age of dementia was 86.43 
(95% CI: 84.85 − 88.01 ) for an ApoE4 carrier with low education and 87.66 (95% 
CI: 86.57 − 88.76 ) for a non-carrier with low education. The estimated median 
survival after the onset of dementia was 3.13 years (95% CI: 2.27 − 4.00 ) for 
a patient with ApoE4 and a higher level of educational attained from the com-
bined cohort data, while it was 3.04 years (95% CI: 1.97 − 4.11 ) from the incident 
cohort data.

Fig. 4   The estimated baseline 
survival functions with the 
pointwise 95% confidence 
intervals, obtained from the 
combined cohort (red) and the 
incident cohort (blue) of the 
Nun Study
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5 � Discussion

In this paper, we propose a multistate approach based on the likelihood-based 
inference to assess the effects of risk factors on the transitions that are related 
to the natural history of disease by using event history data that consists of both 
incident and prevalent samples. In the observational studies that are designed to 
follow the life course of a disease, prevalent samples are commonly available 
because patients receiving routine care in healthcare facilities are often within a 
study population. In the analysis with the prevalent samples, identifying the age 
of disease onset is essential because it plays a key role in addressing sampling 
bias induced by the prevalent sampling scheme. However, it is often difficult to 
retrospectively identify age of onset for many chronic diseases. The proposed 
method overcomes this challenge by using the complementary information that 
both incident cohort and prevalent cohort provide to each other, while accounting 
for interval censored observations of transition times between disease states.

The approach was illustrated by incorporating parametric transition intensi-
ties into a multistate model; however, it can be easily modified with other flex-
ible forms such as a locally weighted smoother (Hubbard et al. 2008) and linear 
splines (Pak et al. 2019), although a substantial increase in the number of param-
eters to estimate is inevitable with many cases of possible transitions. By utilizing 
the commonly used temporal homogeneity model for transition intensity, we have 
a parsimonious model to capture the potential reversible transition between intact 
cognition and MCI in dementia progression. Alternatively, one could employ 
piecewise constant models to accommodate the more flexible temporal trend of 
the disease process, though it will require more transition events being observed 
to obtain stable estimates (Pérez-Ocón et al. 2001; Titman 2011).

As with other prevalent-data settings, it would be a challenge to incorporate 
time-dependent covariates into the analysis of combined data. If the time-depend-
ent covariates are specified differently relative to each transition, one must know 
which transitions a prevalent individual went through before the development of 
dementia. Nevertheless, with extra information for the prevalent samples or mod-
eling assumptions, one may incorporate time-dependent covariates when combin-
ing the incident and prevalent cohorts, which merits future research.

The key benefit of the analysis of the event history data is that one can simul-
taneously assess the effects of risk factors on every transition that represents the 
natural history of the disease. The proposed method can be applied to event his-
tory data from other disease studies. An example is with studies on the natural 
history of the coronavirus disease (COVID-19), where the information from 
travelers who are found to be infected upon arrival (i.e., prevalent samples) can 
be a complement to the study on the endpoints of death or recovery in periods of 
quarantine.

Supplementary Information  The online version contains supplementary material available at https://​doi.​
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