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Abstract

The ability to identify B-cell epitopes is an essential step in vaccine design, immunodiagnostic tests and antibody production. Several
computational approaches have been proposed to identify, from an antigen protein or peptide sequence, which residues are more
likely to be part of an epitope, but have limited performance on relatively homogeneous data sets and lack interpretability, limiting
biological insights that could otherwise be obtained. To address these limitations, we have developed epitope1D, an explainable
machine learning method capable of accurately identifying linear B-cell epitopes, leveraging two new descriptors: a graph-based
signature representation of protein sequences, based on our well-established Cutoff Scanning Matrix algorithm and Organism Ontology
information. Our model achieved Areas Under the ROC curve of up to 0.935 on cross-validation and blind tests, demonstrating robust
performance. A comprehensive comparison to alternative methods using distinct benchmark data sets was also employed, with our
model outperforming state-of-the-art tools. epitope1D represents not only a significant advance in predictive performance, but also
allows biologically meaningful features to be combined and used for model interpretation. epitope1D has been made available as a
user-friendly web server interface and application programming interface at https://biosig.lab.uq.edu.au/epitope1d/.
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INTRODUCTION
B-cell epitopes encompass a class of antigenic determinants that
are dependent on the amino acid arrangement on the surface of
the antigen protein structure. Contiguous stretches of residues
along the primary sequence form linear epitopes, whereas non-
adjacent residues, though nearby placed due to protein folding,
form the discontinuous (or conformational) epitopes. Both forms
impose a significant role upon the binding with its counter-
parts, the Immunoglobulins, that could be either in the form of
membrane bound receptors or as antibodies, which are versatile
macromolecules capable of recognizing foreign threats [1, 2].

Identifying and selecting the appropriate epitope that could
elicit an effective immune reaction in the host, and thus creating a
protective memory immunity, is the fundamental basis of vaccine
development [3, 4]. Being an extremely complex and multifacto-
rial process, the amount of time spent in vaccine development is
on average a decade, and it can cost over 2 billion dollars for it to
reach the market [5, 6]. Consequently, effectively aiding the selec-
tion of epitope candidates with computational techniques holds
a promising role in this field in terms of substantial decreasing
development time and cost.

Linear B-cell epitopes account for only 10% among the
two classes and although in silico prediction methods have
significantly evolved over the past decades, varying from amino
acid propensity scale scores [7–10], to combining physicochemical
attributes and more robust machine learning techniques [11–
15], their performance is still biased toward specific data sets,
leading to limited generalization capabilities. A recently published
approach [16] attempted to address these gaps by systematically
cross-testing several previous benchmark data sets on their
machine learning model and thus proposing two final models:
a generalist and other specifically tailored for viral antigens.
However, the general model was trained on data predominantly
from HIV epitopes, which could be potentially non-representative,
with the virus-specific model still performing modestly, reaching
a maximum Matthew’s Correlation Coefficient (MCC) of 0.26 on
blind tests.

To fill these gaps, here we propose an explainable machine
learning classifier based on the largest experimentally curated
linear epitope data set so far, covering a large span of organisms,
presenting robust performance with different validation tech-
niques, in addition to two new feature representation approaches:

http://creativecommons.org/licenses/by/4.0/
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Figure 1. epitope1D workflow with four main stages: (1) Data Collection and Curation, which includes the selection of benchmarks and also the curation
of an updated large-scale data set; (2) Feature Engineering, representing the step where all descriptors were calculated; (3) Explainable Machine Learning,
in which the supervised machine learning classifiers were analyzed in terms of their predictive power, explainability, and assessed via cross-validation
and blind-test approaches; (4) Web Server Interface, where epitope1D is made publicly available as a user-friendly web interface and API.

graph-based signatures of protein sequences labeled with physic-
ochemical properties and organism ontology identification of
each input peptide, leveraging the classifier distinction between
epitopes and non-epitopes.

MATERIALS AND METHODS
epitope1D has four general steps, as can be seen in Figure 1:
(1) Data collection and curation; (2) Feature Engineering: evalu-
ation of currently used features and newly proposed features to
represent peptide sequences; (3) Explainable Machine Learning:
assessment of several supervised learning algorithms and further
comparison among previous work using different data sources
and explainability resources and (4) Web server interface: devel-
opment of an easy-to-use platform for end users.

Data collection
Well-established reference data sets were used to train, test and
validate supervised learning algorithms, as a classification task. A
comprehensive list of benchmark data sets, derived from ABCPred
method [11], BCPred [17], AAP [18], LBtope [13] and iBCE-EL [12],
was further employed to impartially evaluate the predictive power
of our selected model against the original ones and state-of-the-
art tools such as EpitopeVec [16], BepiPred [19] and BepiPred-
2.0 [14]. A detailed review of them is located in Supplementary
Materials available online at http://bib.oxfordjournals.org/. Sub-
sequently, given that most data sets were outdated (dated from 5
to 16 years ago), we have curated a newly updated data set derived
from IEDB database [20], which will be used as the final basis for
our model. Table 1 summarizes the information of all data used
in this work, and further analysis can be read below.

Curating a new experimental benchmark data
set
We have curated a new set derived from the IEDB database
aiming to reflect data availability on experimentally confirmed
linear B-cell epitopes and also non-epitopes. Our main motivation
arises because most of the previously mentioned data sets were
collected more than 10 years ago, and their negative class sets
(non-epitope sequences) were not empirically proven. In addition,
epitope sequences derived from the Bcipep database [21] can
impose an obstacle to model generalization, given that around
80% of them refer only to HIV. Therefore, organism information

from each sequence in the new data is taken into account to
assess whether the taxonomy can aid distinguish epitopes from
non-epitopes, in a variety of subspecies.

The curation process of the new experimental data set com-
prises the following steps: (1) Download all possible (any host
and disease) linear peptides of B-cell epitopes and non-epitopes
as of June, 2022; (2) Keep only the epitopes and non-epitopes
confirmed in two or more different assays; (3) Consider solely the
peptides with length between 6 and 25 amino acids, since 99% of
linear epitopes range within these lengths [1, 12, 14]; (3) Remove
sequences that were present in both classes simultaneously; (4)
Exclusively retain entries that contain information about the
source organism; (5) Perform a systematic sequence redundancy
removal step using CD-HIT [22], at different thresholds (95%, 90%,
80% and 70%) to assess the overall learning efficiency within
high to medium similarity. Considering that a single antigen may
contain several different epitope stretches that lead to distinct
antibody bindings, it is worth accommodating the majority of
available epitope sequences belonging to each antigen protein [2].

The final set, with a maximum of 95% similarity, is composed of
154,899 data points, in which 25,902 are epitopes, encompassing
1,192 sub-species that were aggregated into a higher taxonomy
parent organism lineage of 20 classes, each belonging to the
superkingdom of Virus, Eukaryota or Bacteria. The final set was
randomly divided into a training set with 123,919 data points, in
which 20,638 are epitopes (ratio 1:6) and correspond to 80% of
the data, and the remaining 20% as an independent test set with
30,980 data points with the same epitope/non-epitope proportion.

Feature engineering
To better characterize peptide sequences that might compose
an epitope, previously used descriptors as well as novel features
were evaluated. To reduce model complexity, a forward stepwise
greedy feature selection algorithm was applied [23] to retain
only the most representative set. The description of new
proposed features is introduced here, while auxiliary features
are described in Supplementary Materials available online at
http://bib.oxfordjournals.org/. An overall summary is also pro-
vided in Table S1 available online at http://bib.oxfordjournals.org/.

Graph-based signatures
We have designed a new graph-based feature, tailored for
modeling linear epitopes of flexible length, inspired by the Cutoff

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad114#supplementary-data
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Table 1. Description of the data sets applied to train and evaluate epitope1D

Data Set Original Method #Epitopes #Non
Epitopes

Experimentally
Defined

Data Source Peptide
Length

Validation

General benchmark data sets
BCPred BCPred 701 701 Only Epitopes Bcipep and SwissProt 20-mer Cross-validation
ABCPred-1 ABCPred 700 700 Only Epitopes Bcipep and SwissProt 20-mer Blind
ABCPred-2 ABCPred 187 200 Only Epitopes Bcipep/SDAP and SwissProt Assorted Blind
AAP AAP 872 872 Only Epitopes Bcipep and SwissPro 20-mer Blind
LBtope LBTope 7,824 7,853 Yes IEDB 20-mer Blind
iBCE-EL-1 iBCE-EL 4,440 5,485 Yes IEDB Assorted Blind
iBCE-EL-2 iBCE-EL 1,110 1,408 Yes IEDB Assorted Blind
New curated large-scale benchmark data set
epitope1D Training epitope1D 20,638 103,281 Yes IEDB Assorted Cross-validation
epitope1D Testing epitope1D 5,264 25,716 Yes IEDB Assorted Blind

The first column, named "Data Set", is the name we are referring them to throughout the text; "Original Method" is where the set originally is derived from;
"Epitopes” and "Non Epitopes” correspond to the total amount of labeled data within the set; "Experimentally Defined" indicates if the data from the two
classes were experimentally assessed; "Data Source” specifies the database from which the set was extracted; "Peptide Length" indicates the size of the
peptides within the data set (specifies the length—if fixed; or Assorted); "Validation" column designates if we apply the set for cross-validation or
blind-testing purposes.

Figure 2. Modeling linear epitopes using graph-based signatures. The first step comprises the selection of residue pairs at incremental sequence
distances and applies different types of labeling approaches on them. The third and final step is to vectorize the output as cumulative distances
between different label pairs.

Scanning Matrix (CSM) algorithm [23–26]. The key idea was to
model distance patterns among residues (nodes) at different
distance cutoffs (each distance inducing the edges of a graph),
which are summarized in two approaches: cumulative and non-
cumulative distributions. Sequence graphs were labeled in two
ways: (1) the corresponding scales of hydrophilicity prediction [8],
beta turn prediction [27], surface accessibility [9] and antigenicity
[10] and (2) the amino acid physicochemical properties, such as
Apolar, Aromatic, Polar Neutral, Acid or Basic, as done previously
[23, 28, 29]. Figure 2 shows the steps comprising the new graph-
based feature.

Organism identification
The organism source information, extracted from the IEDB
database together with each peptide sequence, is expressed
by its ontology identifier deriving from two sources: (1) The
Ontobee data server [30] for the NCBI organismal taxonomy
and (2) The Ontology of Immune Epitopes, which is an internal
web resource from IEDB that was then converted back to
the corresponding NCBI taxonomy term for standardization.
This information was used aiming to contribute with epitope
identification addressing the pain point in the machine learning
process that arises from high heterogeneity in organism classes
[16, 31]. To transform the 20 ontological terms, described in

Table S1 available online at http://bib.oxfordjournals.org/, from
categorical data into numerical, a one-hot encoding process
was imposed. This descriptor was applied in the new curated
benchmark data set only.

Machine learning methods
As epitope identification could be described as a binary clas-
sification task, various supervised learning algorithms were
assessed using the Scikit Learn Python library [32]. These
included Support Vector Machine (SVM), Adaptive Boosting,
Gradient Boosting, Random Forest (RF), Extreme Gradient
Boosting, Extra Trees, K-nearest neighbor, Gaussian Processes and
Multi-Layer Perceptron. In addition, an inherently interpretable
method named Explainable Boosting Machine (EBM), a type of
generalised additive model and considered as a glassbox model,
was assessed via the open-source Python module InterpretML
[33]. The goal of interpretable machine learning models is to
provide a rationale behind prediction that would allow for
meaningful biological insights to be derived, also assisting in
the possible biases and errors as well as highly predictive
features.

Performance evaluation for each model was done based on
MCC, which is a robust statistical measure appropriate for imbal-
anced data sets [34]. Complementary performance metrics were

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad114#supplementary-data
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Figure 3. Behavior of the feature AAT_max, which represents the maximum rate of Antigenicity for AAT, over its possible values ranging from −0.889
to 11.2. The epitope class probability increases when the AAT_max becomes larger than 5 (score above 0). The bottom chart depicts the distribution of
the corresponding data points in each feature interval.

also used including F1-score, Balanced Accuracy and Area Under
the ROC Curve (AUC). Performance between internal validation
(k-fold cross validation) and external validation (blind tests) was
contrasted to infer generalization capabilities.

RESULTS
Two scenarios of evaluation were considered to assess the
ability of epitope1D to accurately identify linear epitopes,
based on the data set employed and direct comparison with
previous methods. The first comprises the use of well-established
benchmarks: the BCPred set, assessed under 10-fold cross-
validation, followed by external validation with different inde-
pendent blind-test sets, as previously described (ABCPred-1,
ABCPred-2, AAP, LBtope, iBCE-EL-1 and iBCE-EL-2). This scenario
impartially compares the performance of our models with recent
developments and identifies feature importance and their current
limitations.

The second scenario consists of our newly curated, large-
scale data set extracted from the IEDB database which includes
organism information. Data sets filtered at different sequence
similarity levels were employed: with internal validation evalu-
ated using 10-fold cross-validation, and models assessed exter-
nally via blind tests. Furthermore, recently development methods,
including BepiPred-3.0 [35], EpitopeVEC and EpiDope, also had
their performance assessed on the same blind test to determine
differences in performance.

Comparison with alternative methods using the
BCPred data set
Feature representation: What makes up a linear epitope?
The data set extracted from BCPred, composed of 1402 peptide
sequences with a balanced class ratio of 1:1, was used to train and
test several supervised learning models as a classification task.
Their ability to distinguish between epitopes and non-epitopes
was assessed and most predictive features identified. Outstanding
features identified in this scenario include: (i) the maximum and
minimum value of Antigenicity ratios in terms of amino acid
triplets (AAT, measuring how overrepresented some amino acids
are in the epitope class of this data set); (ii) the Composition pat-
tern (Composition, Transition and Distribution - CTD) of physic-
ochemical and structural properties (hydrophobicity, normalized

van der Waals volume, polarity, secondary structure and solvent
accessibility) and (iii) the Graph-based signatures using both types
of labeling: physicochemical properties (Acidic, Apolar, Polar Neu-
tral, Basic and Aromatic) and Parker hydrophilicity prediction
scale.

Using the interpretable classifier, EBM, to understand feature
importance (Figure S1 of Supplementary Materials available
online at http://bib.oxfordjournals.org/), we observed that the
antigenicity ratio features were in the top three most relevant:
the maximum value within a peptide sequence (AAT_max), the
interaction amid the maximum and the minimum (AAT_max
x AAT_min) and the minimum value (AAT_min); followed by
its interaction with specific Graph-based and Composition
physicochemical descriptors, such as Apolar:Aromatic-8 (pairs
of apolar and aromatic amino acids within a sequence distance
cutoff of 8) and the amino acid composition in terms of
Hydrophobicity (G1: Polar, G2: Neutral, G3: Hydrophobicity).

Further exploring interpretability, Figure 3 depicts the rationale
behind the model’s decision considering only the topmost signif-
icant feature, the maximum AAT value, the cumulative sum of
the antigenicity ratio scale for all possible AAT within a peptide
sequence. In the top chart, the horizontal axis details the feature
range values, while the vertical axis shows the class, with the
decision mark between the two classes set to 0 (above zero a
higher probability of being an epitope and non-epitope otherwise).
A clear decision point has been learned when AAT_max ranges
from 4 to 6 (more precisely, larger than 5), which is also the average
value of this feature for this data set. A possible interpretation
of this result, in terms of the data set that includes 20-mer
peptides only, can be that if at least five combinations of AAT
are overrepresented in the sequence, there is a higher chance of
it being an epitope. The bottom chart of the figure depicts the
feature value distribution.

Machine learning models
Under 10-fold cross-validation, the best performing models
include RF and EBM, both reaching a MCC of 0.72 and AUC of
0.92 and 0.93, respectively. Similar performance was observed
using 5-fold cross validation. Table 2 provides a comparison of
epitope1D with the previous methods that employed this data
set including BCPred and EpitopeVec. Both methods used an SVM
approach.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad114#supplementary-data
http://bib.oxfordjournals.org/
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Table 2. Performance comparison of epitope1D using two
different algorithms (EBM and RF) with BCPred and EpitopeVec
methods under 10-fold cross-validation using the BCPred
data set

METHOD MCC ROC-AUC F1

BCPred 0.360 0.758 –a

EpitopeVec 0.620 0.880 0.810
epitope1D (RF) 0.720 0.920 0.850
epitope1D (EBM) 0.720 0.930 0.860

aMetric unavailable in original publication.

Table 3. Performance comparison with previous methods using
three distinct blind-test sets: AAP, ABCPred-2 and LBTope

METHOD MCC ROC-AUC F1 ACCURACY

Data set: AAP
iBCE-EL −0.036 0.528 0.350 0.494
BepiPred 0.217 0.665 0.600 0.604
BepiPred-2.0 −0.021 0.424 0.400 0.493
EpiDope 0.061 0.559 0.350 0.507
EpitopeVec 0.770 0.958 0.880 0.883
epitope1D 0.815 0.907 0.909 0.907
Data set: ABCPred-2
ABCPred –a –a –a 0.664
AAP 0.292 0.689 –a 0.646
iBCE-EL −0.227 0.501 0.320 0.434
BepiPred 0.132 0.627 0.570 0.566
BepiPred-2.0 0.181 0.62 0.480 0.555
EpiDope 0.091 0.541 0.360 0.508
EpitopeVec 0.445 0.778 0.720 0.718
epitope1D 0.543 0.841 0.848 0.781
Data set: LBTope
iBCE-EL 0.135 0.619 0.39 52.20
BepiPred 0.092 0.566 0.55 54.57
BepiPred-2.0 −0.001 0.476 0.42 49.95
EpiDope 0.036 0.559 0.35 50.34
EpitopeVec 0.065 0.548 0.51 52.98
epitope1D 0.067 0.527 0.333 52.80

aMetric unavailable in original publication. Highlighted in bold are the
highest performing values for each dataset.

In order to externally validate our model and assess its
generalization capabilities, different blind-test sets were pre-
sented to the epitope1D (EBM) model as detailed in Table 3
and in Table S2 of Supplementary Materials available online at
http://bib.oxfordjournals.org/, where we can also examine the
performance achieved by previous methods such as BepiPred,
BepiPred-2.0, EpiDope and EpitopeVec. Significant performance
differences were observed for the methods when trained
and tested using different data sources (i.e. Bcipep and IEDB
databases). For instance, with the AAP data set (originally derived
from Bcipep) in the first part of Table 3, epitope1D and EpitopeVec
(both trained using data from Bcipep database) achieved higher
performances (MCC of 0.815 and 0.770, respectively) compared
to the other methods that were trained using data derived from
IEDB database (iBCE-EL, BepiPred and EpiDope). Alternatively,
when applying the iBCE-EL testing data set (extracted from IEDB),
our model and EpitopeVec achieved lower values of MCC, 0.092
and 0.095, compared to the model trained on data from this
source (which reached a MCC of 0.454). However, in this scenario,
some models trained using the same data source (e.g. BepiPred,
BepiPred-2.0 and EpiDope) did not perform well either.

Regarding the machine learning process, this behavior raises
concerns of potential biases in these data sets or lack of repre-
sentativeness. Both cases lead to a lack of generalization and can
occur due to a variety of reasons, some of which we might conjec-
ture: (i) all previous benchmark data sets listed here were adjusted
to a highly balanced ratio for epitope and non-epitope classes,
which do not represent the biological truth; (ii) Bcipep databases,
as originally stated, are predominantly composed of viruses (HIV
predominantly), which induces an underrepresentation of other
organisms; (iii) Truncation/Extension approaches, adopted by part
of the methods to define a fixed peptide length, change the
originally validated epitope sequence and may impose a learning
bias toward an artificial set; (iv) The use of non-experimentally
validated sequences to populate the non-epitope class, strategy
adopted by some of the benchmarks, could lead the machine
learning model to learn from imprecise or even erroneous data.

Performance on a newly curated benchmark data
set from the IEDB database
Feature importance and organism-aware predictions
To address the potentially unrepresentative nature of the data,
we curated an experimentally validated, large-scale data set,
integrated with high-level taxonomy organism information that
incorporates the three main superkingdoms: Virus, accounting for
83% of the data and enclosed in eight classes (Riboviria, Duplod-
naviria, Monodnaviria, Varidnaviria, Ribozyviria, Anelloviridae,
Naldaviricetes, Adnaviria), followed by 15% of Eukaryota with five
classes (Metamonada, Discoba, Sar, Viridiplantae, Opisthokonta);
and 2% of Bacteria with seven classes (Terrabacteria group,
Proteobacteria, PVC group, Spirochaetes, FCB group, Thermod-
esulfobacteria, Fusobacteria), totalising 20 binary categories.
Organism taxonomy information was included in the set of
features previously used (detailed in Table S3 of Supplementary
Materials available online at http://bib.oxfordjournals.org/),
composed of four main categories: Graph-based signatures, AAT
Antigenicity ratio, Composition features and Organism taxonomy.

To better understand individual feature contributions to model
outcomes, a post-hoc analysis using the SHAP [36] was employed
using the RF model. The importance order of each descriptor in
this scenario can be understood as a ranked summary depicted
in Figure S2 of Supplementary Materials available online at
http://bib.oxfordjournals.org/. The Antigenicity ratio group, with
AAT maximum and minimum values, are very predictive features
with higher values strongly correlating with the epitope class.
The next most important feature is part of the Composition group,
charge.G3, denoting a higher number of negatively charged amino
acids in the epitope class. The fourth most important feature
was organism taxonomy, particularly the Riboviria, potentially
showing what the model learned as a consequence of the
class imbalanced data, where 87% of the Riboviria sequences
belong to the non-epitopes, thus correlating the epitope class
with organisms other than Riboviria. Graph-based signature
features also play an important role to the model decision (e.g.
Apolar:PolarNeutral-9 feature), denoting pairs of residues (polar
and apolar) far apart from each other in sequence, though con-
tributing to the epitope class (particularly for Riboviria sequence,
Figure S3 available online at http://bib.oxfordjournals.org/). To
complement the SHAP summary visualization, the impurity-
based value (Gini importance) is also being presented in Table S3
available online at http://bib.oxfordjournals.org/, besides each
feature description, as well as the performance of each feature
category (Table S4 of Supplementary Materials available online
at http://bib.oxfordjournals.org/). The Gini importance of all

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad114#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad114#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad114#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad114#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad114#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad114#supplementary-data
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Figure 4. Performance comparison via ROC curves using the epitope1D test set at different similarity levels (95%, 90%, 80% and 70% for panels, A, B, C
and D, respectively). epitope1D achieved significantly higher AUC values of up to 0.935 (curve located closer to the upper left axes in red), followed by
EpitopeVEC (in yellow), EpiDope (in blue) and BepiPred-3.0 (in green).

descriptors sums to 1, thus the higher the value the stronger
the contribution to the model decision. Although the sorted
descending order presents some slight differences compared with
the SHAP ranking, we can again perceive that the top 10 features
comprise the Antigenicity group, with around 20% and 17%
importance to the AAT_max and AAT_min, followed by 11% of
the Graph-based named Apolar:PolarNeutral-9, the Composition
group and two of the Organisms, the Riboviria with 3.5% and the
Opisthokonta with 1.2%.

Machine learning models
In this second analysis, EBM and RF classifiers were assessed and
performed equally, with RF presenting a slightly faster training
time, the reason why it has been chosen. Ten-fold cross-validation
was performed using the epitope1D training set, followed by
the blind-test evaluation with the independent blind test. Perfor-
mances of state-of-the-art methods BepiPred-3.0, EpitopeVec and
EpiDope on the same blind test were compared. Table 4 outlines
the performance metrics for the cross-validation and blind tests,
with epitope1D reaching a MCC of 0.613 and 0.608, respectively,
in contrast with the best performing alternative method, Epi-
topeVEC, only achieving up to 0.139 MCC and BepiPred-3.0 achiev-
ing −0.007. Although the EpiDope method was trained using data
from the same source, IEDB, we did not perform a homology

Table 4. Performance metrics on cross-validation (CV) and blind
test, using epitope1D data set. State-of-the-art methods for
linear B-cell epitope prediction were also appraised using the
blind test set: BepiPred-3.0, EpitopeVEC and EpiDope.

Method MCC ROC-AUC F1

epitope1D (CV) 0.613 0.935 0.658
epitope1D (blind test) 0.608 0.935 0.654
EpitopeVec (blind test) 0.139 0.618 0.306
EpiDope (blind test) 0.051 0.610 0.024
BepiPred-3.0 (blind test) -0.007 0.586 0.290

Highlighted in bold are the highest performing values in cross validation
and blind test.

removal check on the test set to guarantee direct comparison and
avoid data contamination.

To better visualize model performance and Sensitivity/Speci-
ficity tradeoff for all the methods on the blind test, ROC curves
were created (Figure 4), for the data set filtered at different sim-
ilarity level cutoffs. The epitope1D curve, displayed closer to the
top-left axes in red, reached a significantly better ROC-AUC value
of 0.935, compared to 0.618 from EpitopeVEC, plotted just below
it in yellow, followed by 0.610 from EpiDope in blue and 0.586
from BepiPred-3.0 in green, nearer the dashed diagonal line (for a
95% similarity cutoff—Figure 4A). Further analysis with different
cutoffs of 90%, 80% and 70% (Figure 4B–D, respectively) applied
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in the independent testing set are likewise depicted, demonstrat-
ing that epitope1D consistently and significantly outperforms
all alternative methods, with a small decrease in performance,
further highlighting its robustness. In addition, we evaluated the
iBCE-EL method using the 70% similarity blind-test set, since this
method was originally trained and tested using data from IEDB
database with a homology threshold of 70%, which resulted in a
MCC value of 0.120 and ROC-AUC of 0.630, compared to 0.440 and
0.822 for epitope1D, respectively, emphasizing the considerable
gain in performance due to incremental data and proposed new
features.

The architecture of both EpiDope and BepiPred-3.0 models
is based on deep learning approaches with language models;
the former applies a pre-trained Embeddings from Language
Model, ELMo, that is a character-level CNN to encode the amino
acid input sequences followed by LSTM layers, while the later
employed a similar strategy, but combining Feed Forward with
CNN and LSTM and additionally assessing the model with
BLOSUM62 and sparse encodings.

Web server and application programming interface
epitope1D was made available as a user-friendly web server inter-
face, where the user can input the protein or peptide sequence in
fasta format and select from a drop-down menu the equivalent
organism taxonomy representation (Figure S4 available online at
http://bib.oxfordjournals.org/). In addition, an application pro-
gramming interface (API) enables for batch submissions and inte-
gration to standard analytical pipelines, contributing to repro-
ducibility and usability of the resource.

CONCLUSIONS
Linear B-cell epitope prediction is yet an extremely challenging
task in which the sophisticated biological mechanism underlying
the binding among Antibody–Antigen poses challenges to com-
putational and experimental methods. The majority of previous
benchmark data sets dated from up to 15 years ago, also sug-
gesting a potential bias and lack of organism representativeness,
leading to weak to poor generalization capabilities.

epitope1D fills these gaps via an explainable machine learning
method, built on the largest non-redundant experimentally vali-
dated data set to date, composed of over 150,000 data points, con-
sisting of a diverse set of organisms within Virus, Eukaryota and
Bacteria superkingdoms. epitope1D leverages well-established as
well as novel features engineered to model epitopes, including a
new graph-based signature to train and test taxonomy-aware and
accurate predictors.

A comprehensive comparison of our method with state-
of-the-art tools showed robust performance across distinct
blind-test sets, with epitope1D significantly outperforming all
methods, thus highlighting its generalization capabilities. We
believe epitope1D will be an invaluable tool assisting vaccine and
immunotherapy development and have made it freely available
to the community as an easy-to-use web interface and API at
https://biosig.lab.uq.edu.au/epitope1d/.

Key Points

• epitope1D is a novel and accurate linear B-cell
epitope predictor based on an explainable machine
learning.

• We have curated the largest, non-redundant experimen-
tally derived epitope data set to date, covering a large
number of organisms.

• epitope1D demonstrates robust performance and gener-
alization capabilities, being validated under internal and
external validation procedures and outperforming state-
of-the-art approaches.

• epitope1D is available as an API to allow program-
matic integration with bioinformatics pipelines as well
as democratizing access to users with no computational
background via a user-friendly web interface.

SUPPLEMENTARY DATA
Supplementary data are available online at https://academic.oup.
com/bib.
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munamomo/epitope1D.

REFERENCES
1. Ponomarenko JV, Regenmortel MHVV. B-Cell Epitope Prediction.

Hoboken, New Jersey, USA: John Wiley & Sons, Inc. Vol. 2. Struc-
tural Bioinformatics, 2009:849–79.

2. W. E. Paul, Fundamental Immunology. Philadelphia, USA: Wolters
Kluwer, 2012. [Online] http://ebookcentral.proquest.com/lib/
unimelb/detail.action?docID=3417830 (20 May 2022, date last
accessed).

3. Takahashi H. Antigen presentation in vaccine development.
Comp Immunol Microbiol Infect Dis 2003;26(5):309–28.

4. Hoft DF, Brusic V, Sakala IG. Optimizing vaccine develop-
ment. Cell Microbiol 2011;13(7):934–42. https://doi.org/10.1111/
j.1462-5822.2011.01609.x.

5. Gouglas D, Thanh le T, Henderson K, et al. Estimating the
cost of vaccine development against epidemic infectious dis-
eases: a cost minimisation study. Lancet Glob Health 2018;6(12):
e1386–96.

6. Plotkin S, Robinson JM, Cunningham G, et al. The complex-
ity and cost of vaccine manufacturing—an overview. Vaccine
2017;35(33):4064–71.

7. Welling GW, Weijer WJ, van der Zee, Welling-Wester S. Prediction
of sequential antigenic regions in proteins. FEBS Lett 1985;188(2):
215–8.

8. Parker JMR, Guo D, Hodges RS. New hydrophilicity scale
derived from high-performance liquid chromatography

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad114#supplementary-data
https://biosig.lab.uq.edu.au/epitope1d/
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbad114#supplementary-data
https://academic.oup.com/bib
https://academic.oup.com/bib
https://biosig.lab.uq.edu.au/epitope1d/
https://biosig.lab.uq.edu.au/epitope1d/
https://github.com/munamomo/epitope1D
https://github.com/munamomo/epitope1D
http://ebookcentral.proquest.com/lib/unimelb/detail.action?docID=3417830
http://ebookcentral.proquest.com/lib/unimelb/detail.action?docID=3417830
https://doi.org/10.1111/j.1462-5822.2011.01609.x
https://doi.org/10.1111/j.1462-5822.2011.01609.x


8 | da Silva et al.

peptide retention data: correlation of predicted surface residues
with antigenicity and x-ray-derived accessible sites. Biochemistry
1986;25(19):5425–32.

9. Emini EA, Hughes JV, Perlow DS, Boger J. Induction of hepatitis
a virus-neutralizing antibody by a virus-specific synthetic pep-
tide. J Virol 1985;55(3):836–9.

10. Kolaskar AS, Tongaonkar PC. A semi-empirical method for pre-
diction of antigenic determinants on protein antigens. FEBS Lett
1990;276(1):172–4.

11. Saha S, Raghava GPS. Prediction of continuous B-cell epitopes in
an antigen using recurrent neural network. Proteins 2006;65(1):
40–8.

12. Manavalan B, Govindaraj RG, Shin TH, et al. iBCE-EL: a new
ensemble learning framework for improved linear B-cell epi-
tope prediction. Front Immunol 2018;9. [Online]. https://www.
frontiersin.org/article/10.3389/fimmu.2018.01695 (19 May 2022,
date last accessed).

13. Singh H, Ansari HR, Raghava GPS. Improved method for linear
B-cell epitope prediction using Antigen’s primary sequence. PloS
One 2013;8(5):e62216.

14. Jespersen MC, Peters B, Nielsen M, Marcatili P. BepiPred-2.0:
improving sequence-based B-cell epitope prediction using con-
formational epitopes. Nucleic Acids Res 2017;45(W1):W24–9.

15. Collatz M, Mock F, Barth E, et al. EpiDope: a deep neural network
for linear B-cell epitope prediction. Bioinformatics 2021;37(4):
448–55.

16. Bahai A, Asgari E, Mofrad MRK, et al. EpitopeVec: linear epitope
prediction using deep protein sequence embeddings. Bioinfor-
matics 2021;37(23):4517–25.

17. EL-Manzalawy Y, Dobbs D, Honavar V. Predicting linear B-cell
epitopes using string kernels. J Mol Recognit 2008;21(4):243–55.
https://doi.org/10.1002/jmr.893.

18. Chen J, Liu H, Yang J, Chou K-C. Prediction of linear B-cell
epitopes using amino acid pair antigenicity scale. Amino Acids
2007;33(3):423–8.

19. Larsen JEP, Lund O, Nielsen M. Improved method for predicting
linear B-cell epitopes. Immunome Res 2006;2(1):2.

20. Vita R, Mahajan S, Overton JA, et al. The immune epitope
database (IEDB): 2018 update. Nucleic Acids Res 2019;47(D1):
D339–43.

21. Saha S, Bhasin M, Raghava GP. Bcipep: a database of B-cell
epitopes. BMC Genomics 2005;6(1):79.

22. Fu L, Niu B, Zhu Z, Wu S, Li W. CD-HIT: accelerated for
clustering the next-generation sequencing data. Bioinformatics
2012;28(23):3150–52.

23. da Silva, Myung Y, Ascher DB, Pires DEV. epitope3D: a machine
learning method for conformational B-cell epitope prediction.
Brief Bioinform 2022;23:bbab423.

24. Pires DE, de Melo-Minardi, dos Santos, et al. Cutoff scanning
matrix (CSM): structural classification and function prediction
by protein inter-residue distance patterns. BMC Genomics
2011;12(4):S12.

25. da Silveira, Pires DEV, Minardi RC, et al. Protein cutoff scanning:
a comparative analysis of cutoff dependent and cutoff free
methods for prospecting contacts in proteins. Proteins 2009;74(3):
727–43.

26. Pires DEV, de Melo-Minardi, da Silveira, et al. aCSM: noise-free
graph-based signatures to large-scale receptor-based ligand pre-
diction. Bioinformatics 2013;29(7):855–61.

27. Chou PY, Fasman GD. Prediction of the secondary structure
of proteins from their amino acid sequence. Adv Enzymol Relat
Areas Mol Biol 1978;47:45–148.

28. Pires DEV, Ascher DB, Blundell TL. mCSM: predicting the effects
of mutations in proteins using graph-based signatures. Bioinfor-
matics 2014;30(3):335–42.

29. Pires DEV, Ascher DB, Blundell TL. DUET: a server for pre-
dicting effects of mutations on protein stability using an inte-
grated computational approach. Nucleic Acids Res 2014;42(W1):
W314–9.

30. Xiang Z, Mungall C, Ruttenberg A, He Y. Ontobee: A linked data
server and browser for ontology terms. In ICBO 2011.

31. Ashford J, Reis-Cunha J, Lobo I, et al. Organism-specific training
improves performance of linear B-cell epitope prediction. Bioin-
formatics 2021;37(24):4826–34.

32. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn:
Machine learning in Python. The Journal of machine Learning
research 2011;12:2825–30.

33. Nori H, Jenkins S, Koch P, Caruana R. Interpretml: A unified
framework for machine learning interpretability. arXiv preprint
arXiv 2019:1909.09223.

34. Chicco D, Jurman G. The advantages of the Matthews
correlation coefficient (MCC) over F1 score and accuracy
in binary classification evaluation. BMC Genomics 2020;
21(1):6.

35. Clifford JN, Høie MH, Deleuran S, Peters B, et al. BepiPred-3.0:
Improved B-cell epitope prediction using protein language mod-
els. Protein Science 2022;31(12):e4497.

36. Lundberg SM, Lee SI. A unified approach to interpreting model
predictions. Advances in neural information processing sys-
tems. 2017;30.

https://www.frontiersin.org/article/10.3389/fimmu.2018.01695
https://www.frontiersin.org/article/10.3389/fimmu.2018.01695
https://doi.org/10.1002/jmr.893

	 epitope1D: accurate taxonomy-aware B-cell linear epitope prediction
	 INTRODUCTION
	 MATERIALS AND METHODS
	 RESULTS
	 CONCLUSIONS
	 Key Points
	 SUPPLEMENTARY DATA
	 FUNDING
	 DATA AVAILABILITY


