
Niloofar Yousefi, PhD (University of Central Florida), is a postdoctoral research associate at UCF’s Complex Adaptive Systems (CAS) laboratory in the collage of
Engineering and Computer Science. Her research areas include machine learning, artificial intelligence and statistical learning theory to develop data analytics
solutions with more transparency and explainability.
Mehdi Yazdan-Jahromi is a third-year PhD student in computer science at the University of Central Florida. His current research interests include computer
vision, drug–target interaction and algorithmic fairness.
Aida Tayebi is a third year PhD student at University of Central Florida. Her current research interests include algorithmic fairness and bias mitigation techniques
in DTI.
Elayaraja Kolanthai, PhD (Anna University), is a postdoctoral research associate at UCF’s Materials Science and Engineering. His current research interests
include Development of nanoparticles, layer-by-layer antimicrobial/antiviral nanoparticle coating, polymer composites for tissue engineering and gene/drug
delivery application.
Craig J. Neal, PhD (University of Central Florida), is a postdoctoral research associate at UCF’s Materials Science and Engineering. His current research interests
include wet chemical synthesis and surface engineering of nanoparticles for biomedical applications and electrochemical devices. Electroanalysis of
nanomaterials and bio-nano interactions.
Tanumoy Banerjee is a second year PhD student at Lehigh University. His current research interest is developing energy storage technologies and computational
modeling of hydrogen-based energy storage systems.
Agnivo Gosai did his PhD from Iowa State University in Mechanical Engineering. His research explored the development of point of care biosensors for Ebola and
other diseases. He is currently employed at Corning Inc. and is working on Telecom device, biomass reactor R&D. Dr. Gosai has multiple publications and patent
applications.
Ganesh Balasubramanian is an associate professor of Mechanical Engineering & Mechanics at Lehigh University. He received his BME degree in Mechanical
Engineering from Jadavpur University (India) in 2007, his PhD in Engineering Mechanics from Virginia Tech in 2011, and was a postdoctoral research associate in
Theoretical Physical Chemistry at TU Darmstadt (Germany) till fall of 2012. His research and teaching interests are in advanced energy and structural materials,
nanoscale transport and mechanics, and predictive engineering. Some of his recognitions include the NSF CAREER award, ASEE Outstanding New ME Educator
award, AFRL Summer Faculty Fellowship, Graduate Man of the Year and Liviu Librescu Scholarship at Virginia Tech, and Young Engineering Fellowship from the
Indian Institute of Science.
Sudipta Seal is currently the chair of the Department of Materials Science and Engineering at University of Central Florida, as well as a Pegasus Professor and a
University distinguished professor. He joined the Advanced Materials Processing and Analysis Center and UCF in 1997. He has been consistently productive in
research, instruction and service to UCF since 1998. He has served as the Nano Initiative coordinator for the vice president of research and commercialization. He
served as the director of AMPAC and the NanoScience Technology Center from 2009 to 2017.
Ozlem Ozmen Garibay is an assistant professor of Industrial Engineering and Management System at the University of Central Florida where she directs the
Human-Centered Artificial Intelligence Research Lab (Human-CAIR Lab). Prior to that, she served as the Director of Research Technology. Her areas of research
are big data, social media analysis, social cybersecurity, artificial social intelligence, human-machine teams, social and economic networks, network science,
STEM education analytics, higher education economic impact and engagement, artificial intelligence, evolutionary computation, and complex systems.
Received: October 11, 2022. Revised: March 2, 2022. Accepted: March 16, 2023
© The Author(s) 2023. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For
commercial re-use, please contact journals.permissions@oup.com

Briefings in Bioinformatics, 2023, 24(3), 1–13

https://doi.org/10.1093/bib/bbad136
Advance access publication date 24 April 2023

Problem Solving Protocol

BindingSite-AugmentedDTA: enabling a next-generation
pipeline for interpretable prediction models in drug
repurposing
Niloofar Yousefi†, Mehdi Yazdani-Jahromi†, Aida Tayebi, Elayaraja Kolanthai, Craig J. Neal, Tanumoy Banerjee, Agnivo Gosai,

Ganesh Balasubramanian, Sudipta Seal and Ozlem Ozmen Garibay
Corresponding author. Ozlem Ozmen Garibay; E-mail: ozlem@ucf.edu
†Niloofar Yousefi and Mehdi Yazdani-Jahromi contributed equally to this work.

Abstract

While research into drug–target interaction (DTI) prediction is fairly mature, generalizability and interpretability are not always
addressed in the existing works in this field. In this paper, we propose a deep learning (DL)-based framework, called BindingSite-
AugmentedDTA, which improves drug–target affinity (DTA) predictions by reducing the search space of potential-binding sites of the
protein, thus making the binding affinity prediction more efficient and accurate. Our BindingSite-AugmentedDTA is highly generalizable
as it can be integrated with any DL-based regression model, while it significantly improves their prediction performance. Also,
unlike many existing models, our model is highly interpretable due to its architecture and self-attention mechanism, which can
provide a deeper understanding of its underlying prediction mechanism by mapping attention weights back to protein-binding sites.
The computational results confirm that our framework can enhance the prediction performance of seven state-of-the-art DTA
prediction algorithms in terms of four widely used evaluation metrics, including concordance index, mean squared error, modified
squared correlation coefficient (r2

m) and the area under the precision curve. We also contribute to three benchmark drug–traget
interaction datasets by including additional information on 3D structure of all proteins contained in those datasets, which include
the two most commonly used datasets, namely Kiba and Davis, as well as the data from IDG-DREAM drug-kinase binding prediction
challenge. Furthermore, we experimentally validate the practical potential of our proposed framework through in-lab experiments. The
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relatively high agreement between computationally predicted and experimentally observed binding interactions supports the potential
of our framework as the next-generation pipeline for prediction models in drug repurposing.

Keywords: deep learning, drug–target affinity, binding sites, machine learning, drug–target interaction, SARS-CoV-2, DTA software, DTA
database

INTRODUCTION
One critical step in drug designing and development is the iden-
tification of novel drug–target interactions (DTIs), which char-
acterize the binding of innovative candidate drug compounds
to particular protein targets. Such experiments are often highly
automated with chemical libraries for test compounds screened
for activity in high-throughput methodologies. However, consid-
ering the enormous chemical and proteomic spaces, identifying
novel compounds with specific interactive characteristics toward
a particular protein target(s), if feasible, is often expensive, time-
and resource-consuming [1, 2]. To relieve this bottleneck, the
use of computational methods is urgent to narrow down the
search space for novel DTIs by predicting or estimating the inter-
action (strength) of novel drug–target (DT) pairs. A large body
of studies proposed computational methods for DTI prediction
tasks. Among these computational methods, docking simulations
and machine learning methods are the two main approaches
for in-silico prediction of DTI. Despite the accuracy and good
interpretability of simulation and molecular docking, [3] in vir-
tual screening tasks, the performance of these structure-based
computational methods highly depends on the high-resolution 3D
structure of protein data and their availability. Additionally, these
methods typically require tremendous computational resources,
which tends to be a bottleneck for computational speed and
prevents any large-scale applications of the methods. To over-
come some of these hurdles, artificial intelligence (AI), includ-
ing machine learning (ML) and deep learning (DL) algorithms,
have been introduced and applied across different stages of drug
development and design pipelines. These models generally work
by translating available knowledge about known drugs and their
targets into some features, then used to train models that can
predict interactions between new drugs or new targets. Earlier
traditional ML methods use shallow models such as support
vector machines, logistic regression, random forest, and shallow
neural networks [4–7] to address the problem of DTI predic-
tion/estimation. However, these shallow models are often inad-
equate in capturing crucial features needed in modeling of com-
plex interactions. Recently and powered by the increase in data
and high-capacity computing machines, DL models have gained
increased attention to address diverse problems in bioinformat-
ics/cheminformatics applications, including drug discovery, espe-
cially DTI prediction tasks. DL approaches advance traditional
shallow ML models due to their ability to automatically learn and
extract feature representation, therefore identifying, processing
and extrapolating complex hidden interactions between drugs
and targets [8–11]. Since the focus of this study is DL models,
which have gained much momentum over the last decades, we
dedicate the entire Section 3 to discussing the state-of-the-arts
that use DL approaches to address the problem of DTI prediction.
In this study, we propose a computational-experimental frame-
work that enables the next-generation pipeline for developing
generalizable, interpretable and more accurate prediction mod-
els in drug-repurposing applications. At the core of our frame-
work is an augmented-DTA in-silico prediction module, which uti-
lizes a graph convolutional neural network (GCNN)-based model
called AttentionSiteDTI that acts as a detector to identify the

most probable binding sites of the target protein. This critical
information is then augmented into a DL-based DTA predic-
tion model to predict the binding affinities between DT pairs to
enhance their prediction performance by narrowing down the
search space of binding sites to the most promising ones. This
approach is significant due to depending on the protein-binding
sites that are particularly sensitive and can be used to identify
the ligands’ proper binding interactions [12]. As the computa-
tional results show, our framework leads to significantly improved
performance of many state-of-the-art DTA prediction models
in multiple evaluation metrics. We further design an in-vitro
validation module, where we validate the practical application
of our framework by comparing the computationally predicted
DTA values with those experimentally observed (measured) in
the laboratory for several candidate compounds interacting with
several target proteins. Also, our in-lab experimental validation
illustrates improved agreement between computationally pre-
dicted and experimentally observed binding affinities between
candidate compounds and proteins. Encouraged by the compu-
tational and experimental results, we then utilize our framework
to accelerate the process of hit compounds identification in drug
repurposing with the case study of SARS-CoV-2. Visualization of the
proposed computational–experimental framework is illustrated
in section 1. It consists of three main modules: an end-to-end
graph-based DL model, namely AttentionSiteDTI, to identify the
most probable binding sites of the proteins. In the next step, this
crucial piece of information is augmented with the DL model of
our choice to perform in silico predictions of DTA values. Indeed,
the role of AttentionSiteDTI is to narrow down the search space
of regression models and to make the problem easier for them to
learn, which leads to more accurate results. Finally in the third
module, through an in-vitro validation, we validate the practical
potential of the models in prediction of binding interactions in
real-world applications.

Over the last decade, most of the computational methods
regarded DTI prediction as a binary classification problem, where
the goal is to determine whether or not a drug–target (DT)
pair interacts [13]. These methods ignore a vitally significant
piece of information, namely the DT-binding affinity values,
reflecting the strength of interaction in DT pairs [14]. Although
there exist approaches that treat the problem of DTI prediction
using a regression framework, we argue that the performance of
these regression models can be improved using a more efficient
approach, wherein we first narrow down the search space by
identifying the most probable binding sites of the protein in a DT
pair, and then use this auxiliary piece of information in prediction
of binding affinity values. To achieve this, we introduce a novel DL-
based framework, BindingSite-AugmentedDTA, which not only
improves the generalization and interpretation capabilities of the
DTA prediction task but also leads to enhanced performance of
many state-of-the-art models.

Despite the significant efforts that have been devoted to the
development of computational models in recent years, their pre-
diction power is rarely evaluated through in-lab experiments,
which makes their practical benefits unknown, and thus limits
their potential application in drug discovery and repurposing.
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Figure 1. Our proposed framework includes three main modules: (1) in-silico prediction that consists of a DL-based DTA prediction model augmented
with AttentionSiteDTI for finding the most probable binding sites of proteins; (2) in-vitro validation, where we compare our computationally-predicted
results with experimentally measured DTA values in laboratory to test and validate the practical potential of our proposed framework and (3) drug-
repurposing module that utilizes our prediction model to identify hit compounds in prioritizing the most potent interactions for further in-vitro or ex-vivo
verification in the laboratory.

The work in [15] is the one of the few studies (if not the only
one) that introduced a computational–experimental framework
to evaluate the benefit of a kernel-based prediction model in
prediction of DTI. Therefore, it is highly imperative to assess the
prediction performance of in-silico models through experimental
investigations in the laboratory in order to evaluate their practical
power and to ensure their reliability in real-world predictions.

Contribution
The main contributions of our study are summarized as follows.

(i) We build an experimental–computational pipeline based
on a graph convolutional neural network model,

which is computationally and experimentally proven
to lead to improved prediction performance when inte-
grated with many state-of-the-art DL-based DTA pre-
diction models. Also, our framework benefits from high
generalizability and interpretability in prediction of DTA
values:

(a) Our model is shown to significantly improve the pre-
diction performance of many state-of-the-art models in
terms of several performance metrics. The boost in the
performance of these models is achieved by making them
selectively focus on the most relevant parts of the input
proteins when learning interaction relationships in DT
pairs.



4 | Yousefi et al.

(b) Our model is highly generalizable because of to two
main reasons: first is that it can be easily integrated
with any DL-based prediction model, and the second
is due to our target protein input representation that
uses protein pockets (i.e. molecular fragments of binding
sites influencing binding character) encoded as graphs.
This helps the model concentrate on learning generic
topological features from protein pockets, which can be
generalized to new proteins that are not similar to the
ones in the training data.

(c) Our model is highly interpretable in terms of the
language of protein-binding sites. Our model’s self-
attention mechanism enables interpretability by under-
standing the prediction mechanism behind the model.
In essence, this interpretability is enabled through
learning which parts of the protein are more relevant in
interacting with a given ligand. This is especially impor-
tant in designing and developing new pharmaceutically
active molecules, where it is crucial to know which parts
of a molecule are essential for its biological properties.

(ii) We demonstrate the prediction power of our model in prac-
tical applications through conducting in-vitro experiments.
To achieve this, we compare the computationally predicted
binding affinities (between some candidate compounds and
a target protein) against the experimentally measured bind-
ing affinities for the corresponding pairs. This is one of
the main contributions of this work, as most of the in sil-
ico prediction models lack experimental validation, which
is the ultimate determinant in assessing the validity of a
computational model. Molecular dynamics (MD) simulations
are additionally used as another computational yardstick to
compare the in-lab experiments besides DL.

(iii) Finally, inspired by the good performance of our proposed
framework, we utilize it for drug repurposing by predicting
binding affinity values between FDA-approved drugs and
key proteins of SARS-CoV-2 including spike, 3C-like protease,
RNA-dependent RNA polymerase (RdRp), helicase as well as
Spike/ACE2 complex. We then provide a reference list of the
top-ranked FDA-approved antiviral drugs with good binding
affinities targeting different proteins of SARS-CoV-2.

(iv) As a part of our work, we also contribute to four benchmark-
ing datasets used for DTI prediction tasks. These datasets
include KIBA and Davis, as the two most widely used datasets
in the DTA prediction task, as well as the recent IDG-DREAM
Drug-Kinase challenge dataset [16], as it contains activ-
ity data on understudied human kinomes, so-called dark
kinases. (see supplementary material for more details on
IDG-DREAM challenge data and results). These datasets lack
information on the 3D structure of proteins, which might
be required by many advanced prediction models, including
ours. We extract this information from Protein Data Bank
(PDB) files of proteins available at https://www.uniprot.org/,
and we provide the community with more complete versions
of these datasets.

BindingSite-AugmentedDTA FOR In-Silico
PREDICTION
We utilize our recently developed model, called AttentionSiteDTI
[17], to improve the prediction performance of state-of-the-art
DTA regression models. Our model finds the probability with
which each binding site (pocket) of the protein will interact with
the drug. Finding the most probable binding sites of the protein,

we can then integrate this critical auxiliary information with DTA
prediction models to enhance their performance. We refer to this
customized version as BindingSite-AugmentedDTA, which can
utilize any DL-based regression model to perform DTA prediction
task. Given the fact that intermolecular interactions between
protein and ligand occur in pocket-like regions of the protein
(binding sites), identification of the most probable binding sites
can help narrow down the search space, which, in turn, leads to
more efficient and accurate DTA predictions.

As the computational and experimental results confirm, our
model not only improves the prediction performance of state-
of-the-art models, but also our self-attention bidirectional long
short-term memory (LSTM) mechanism is proven to be useful
in capturing the desired interaction features, which provides
interpretability to the predictions. The results illustrate that our
regression-based framework offers a more realistic, interpretable,
yet accurate formulation of the DTI prediction task in practical
applications. A brief description of our model is provided in the
supplementary material section 1.1, and our detailed approach
is documented in [17]. Figure 2 provides visualizations of our
attention-based interpretation module where it detects the
most probable binding sites of the main proteins of SARS-
CoV-2 in interaction with the drug named Remdesivir. The
interpretability of AttentionSiteDTI is enabled through a self-
attention mechanism, which makes the model learn which parts
of the protein interact with the ligand in a given DT pair. The use
of such mechanism is facilitated due to our novel formulation of
DTI prediction problem as a sentence classification problem in
NLP, where the drug–target complex is treated as a sentence with
relational meaning between its biochemical entities a.k.a. protein
pockets and drug molecule. That being said, the self-attention
module works by comparing every binding site of the protein to
the drug in the biochemical sentence of drug–target complex,
and reweighing the embeddings of each binding pocket to include
contextual relevance. The self-attention block is comprised of
three main steps. Dot product to determine the alignment score
by calculating similarities between each pair of entities (words)
in the sentence; normalization of the alignment scores to obtain
a set of scaled weights; reweighing of the original embeddings
using the weights to return new contextualized word embeddings.
We refer the interested readers to the original work in [17] for
more detailed description on this approach. Moreover, we provide
in the Appendix, a visualized description of how self-attention
mechanism works to facilitate interpretability.

Also, the overall architecture of our AttentionSiteDTI is shown
in the Supplementary materials Figure 1.

RELATED WORK: DEEP LEARNING FOR
DRUG–TARGET AFFINITY PREDICTION
Motivated by the success of the first studies that employed DL
methods to model DTI, there has been an increasing number of
later studies that adopted new DL architectures, such as convo-
lutional neural networks (CNNs) and recurrent neural networks
(RNNs) [18, 19] as well as stacked-autoencoders [20] to perform
DTI binary interaction prediction using different input models for
proteins and drugs. Apart from different types of neural networks,
various representations of the input data for the drug and target
have been applied to train DL models for DTI prediction. These
models can be categorized into two main branches in terms
of data representation. First is sequence representation-based
approaches, which take as input the sequence information of
drugs and targets (e.g. SMILES for drugs and amino acid sequence

https://www.uniprot.org/
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Figure 2. Pojected heatmap of self-attention weights on the 4 main proteins of SARS-CoV-2. This figure shows the interpretability of our model, which
can give us the binding site that has the most probability of binding to the ligand.

for proteins). The second category includes those approaches
with graph representations for drug and/or protein (e.g. graph
representations for drugs and amino acid sequence for proteins).

A major limitation of the former is that these models use
string representations for the drug compounds. However, this
is not a natural and effective way to characterize molecules.
Among all these approaches, we can refer to DeepDTA as the first
approach that was introduced by [9] to predict binding affinity as
opposed to a binary (interact, no-interact) value. This model uses
SMILES to represent drug input data and amino acid sequences
to represent protein input data. Also, Integer/label encoding was
used to encode both drug SMILES and the protein sequences. A
CNN model with three 1D convolutional layers followed by a max-
pooling function (called the first CNN block) was then applied to
each drug embedding. The latest features for each protein are
also learned using an identical CNN block. The feature vectors
for each DT pair are then concatenated and fed into three FC
layers and finally regressed with the DTA scores. WideDTA is an
attempt to improve upon DeepDTA, which was introduced by the

same authors [11]. Along with SMILES and amino acid sequences,
WideDTA uses two other text-based information sources, which
are ligand maximum common substructure (LMCS) for drugs,
and protein domains and motifs (PDM) based on PROSITE for
proteins. Unlike DeepDTA, this model is a word-based model. That
being said, both ligand SMILES and protein (amino acid) sequences
are represented using a set of words instead of characters. More
specifically, they represent a word in a drug SMILES using eight
residues in the sequence and a protein with three residues in
the sequence. A CNN model with four identical feature extracting
blocks (extracting features from each of the text-based informa-
tion sources) is then used to predict binding affinity scores. The
concatenated features are then fed into 3 FC layers with two
dropout layers to avoid overfitting. The output of the network is
the scores for binding affinity for DT pairs. AttentionDTA [21] is
another DL model that has been developed to predict compound–
protein affinity using the semantic information of the drug’s
SMILES string and protein’s amino acid sequence. This model uses
two separate one-dimensional CNNsonvolution Neural Networks
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along with four different attention mechanisms to explore the
relationship between drug and protein features.

As mentioned earlier, these sequence representations-based
models fail at capturing the structural information of molecules,
which in turn leads to the degraded predictive performance of
the predictive model. On the other hand, a more natural way to
describe the molecules seems to be graph representation, wherein
the atom can be viewed as the nodes of the graph and chemical
bonds as the edges. This form of data representation has inspired
the use of DL models such as GCNNs that take graph structures
as well as the characteristics of nodes or edges as their input
data. Although GCNNs have already been used in drug discovery
applications, including DTI, they are mainly focused on binary
prediction task [22, 23] to address the problem of DTI. That being
said, among the graph-based approaches that frame the predic-
tion problem as a regression task, we can refer to GraphDTA [24]
that predicts a continuous value for binding affinity. GraphDTA
utilizes a GCCN-based module (with four different variants) on
the molecular graph, describing drug molecules, along with a
CCN-based module with three 1D convolutional layers, followed
by a max pooling layer to extract feature representation of the
input protein sequence. Finally, the concatenated vector of two
representations is fed into several fully connected layers to predict
the output DTA values. Inspired by GraphDTA, DGraphDTA [25]
was also proposed for DTA prediction task. Similar to GraphDTA,
DGraphDTA also uses graph representations for drug molecules.
However, unlike GraphDTA, they use graph representation for
protein sequences, as well. The focus of DGraphDTA (double graph
DTA predictor) is on the protein graph representations. The pro-
tein graph construction is based on two sources of information.
First is the protein residues as the nodes of the graphs; the
Second is a representation called a contact map, which provides
the spatial information of the interaction of residue pairs in the
protein. More specifically, a contact map is a 2D representation of
the 3D protein structure, usually in the form of a matrix consistent
with the adjacency matrix in GNNs. The authors in [26] pro-
posed a deep heterogeneous learning framework called DeepH-
DTA, wherein three different modules have been used to extract
features for drug molecules and protein sequences. Specifically,
the drug molecules are encoded using two modules; one uses the
SMILES representations along with a bidirectional ConvLSTM to
model spatio-sequential information of the molecules, and the
other one takes the topological drug information as input to gen-
erate drug representation using a heterogeneous graph attention
(HGAT) network. The third module takes the amino acid sequence
of a protein to learn an embedding using a squeezed-excited
dense convolutional network. The output of these three modules
is finally concatenated to estimate the final prediction score of
DTA. DeepGS [27] in another graph-based approach, which con-
sider both local chemical context and the molecular structure in
DTA prediction task. With the help of some embedding techniques
such as Smi2Vec and Prot2Vec, DeepGS encodes the amino acid
sequences of proteins as well as the atoms of drug molecules to
distributed representations. Similar to deep-DTA, DeepGS learns
two representations for the drug using two different modules;
one uses the molecular graph as the input to a graph attention
network (GAT) that extracts the topological information of the
drug, and the second one takes an atom matrix A of embedding
vectors (based on a pre-trained dictionary) as the input to a 1-
layer bi-directional gated recurrent unit (BiGRU) to captures the
local chemical context of atoms in the drug. A similar process to
the second module of drug encoding was used to encode proteins
using a CNN that allows capturing local chemical information

Figure 3. Number of experimentally validated vs AlphFold-predicted
proteins’ 3D structures

Table 1. Benchmark datasets

Dataset Compounds Proteins Interactions

Davis 68 442 30 056
KIBA 2111 229 118 254

of the amino acids. Finally, the concatenated vector of the three
latent representations is fed into a stack of fully connected layers
to predict the binding affinity scores for DT pairs.

EXPERIMENTS AND RESULTS
Benchmark datasets
In this paper, two broadly used benchmark datasets for DTA,
namely Davis [28], and KIBA [29] datasets, are used to compare
the performance of our proposed model with the state-of-the-
art models. The Davis dataset contains 442 proteins related to
the kinase protein family along their inhibitors (68 compounds)
and the dissociation constant (kd) values corresponding to each
assay. Similar to [9, 30] we convert the kd values to log space, pKd

as explained in subsection 1

pKd = −log10
Kd

109
. (1)

KIBA dataset combines different kinase inhibitor bioactivities (ki,
kd and IC50) to construct the KIBA score to optimize the consis-
tency. [30] filtered this dataset to include the drugs and targets
with at least 10 interactions, generating 229 unique proteins and
2111 unique drugs. subsection 1 provides the statistics of the two
datasets.

Data collection and preprocessing
For the input of our model, we needed to extract PDB structures
for the proteins. First, we extracted the identifier numbers for the
proteins from https://www.uniprot.org/. Specifically, we restricted
our search to human proteins, from which we chose the ones
identified via the X-ray method. Although, there were a few
proteins (total of 115 for Kiba and Davis, as shown in subsection 3)
for which no experimental data (PDB structure) were available. For
these proteins, we used the PDB structures predicted by Alphafold
(https://alphafold.ebi.ac.uk/).

Evaluation metrics
Four widely used metrics in regression tasks were used to evaluate
the performance of the models. CI was first introduced by [31] and
is a ranking metric that measures whether the predicted binding
affinity value of two random DT pairs is in the same order as their

https://www.uniprot.org/
https://alphafold.ebi.ac.uk/
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Figure 4. Performance of various DL-based DTA prediction models on KIBA dataset, with and without their integration with AttentionSiteDTI. Note that
the scores of integrated DeepH-DTA do not show in the bar plots because of the missing information in the implementation of this model.

corresponding true values or not. CI metric is defined as:

CI = 1
Z

∑
δi>δj

h(bi − bj) (2)

where bi is the prediction value for the larger affinity δi, and bj is
the prediction value for the smaller affinity δj, Z is a normalization

constant, h(x) is the step function [32, 33] which is defined as:

h(x) =

⎧⎪⎨
⎪⎩

1; if x > 0
0.5; if x = 0
0; if x < 0

(3)

MSE [34] is a commonly used loss function in regression-based
models that measures the average squared difference between
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Figure 5. Performance of various DL-based DTA prediction models on Davis dataset, with and without their integration with AttentionSiteDTI. Note
that the scores of integrated DeepH-DTA do not show in the bar plots because of the missing information in the implementation of this model. Also,
the missing scores of DeepGS in the last two plots are because they are lower than the lower bound of the y-axis.

the predicted values and the actual values, and it is defined as:

MSE = 1
n

n∑
i=1

(pi − yi)
2 (4)

where pi corresponds to the prediction value, and yi represents the
actual output. Also, n is the number of samples.

r2
m index [35] is another reported metric that was previously

used to evaluate the external predictive performance of the mod-
els. The higher values (higher than 0.5) of this index determine

whether a model is acceptable or not. As described in [36, 37],
the metric is defined as below where r2 and r2

0 are the squared
correlation coefficients with and without intercept:

r2
m = r2(1 −

√
r2 − r2

0) (5)

The area under precision-recall (AUPR) is another reported
metric previously used in many studies. In order to measure this
metric, the quantitative values were converted into binary values.
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Table 2. Difference scores on performance metrics between vanilla and augmented models for KIBA dataset. The values in the table
reflect augmentedscore − vanillascore for different performance measures. To calculate average values, we used min–max normalized of the
difference scores to avoid the dependence on the choice of measurement units

Difference scores

Methods CI MSE r2
m AUPC

String representation-based approaches
DeepDTA 0.018 0.043 0.105 0.042
WideDTA 0.005 0.009 0.089 0.033
AttentionDTA -0.008 0.01 0.042 0.001
Graph representation-based approaches
GraphDTA-GAT 0.037 0.032 0.049 0.02
GraphDTA-GIN 0.028 0.021 0.064 0.028
DGraphDTA 0.008 0.007 0.013 0.013
DeepGS 0.048 0.166 0.112 0.052
Min –0.008 0.007 0.013 0.001
Max 0.048 0.166 0.112 0.052
Normalized average 0.022 0.215 0.553 0.510

Table 3. Difference scores on performance metrics between vanilla and augmented models for Davis dataset. The values in the table
reflect augmentedscore − vanillascore for different performance measures. To calculate average values, we used min–max normalized of the
difference scores to avoid the dependence on the choice of measurement units

Difference scores

Methods CI MSE r2
m AUPC

String representation-based approaches
DeepDTA 0.009 0.052 0.104 0.106
WideDTA 0.008 0.021 0.076 0.061
AttentionDTA 0.015 0.053 0.098 0.084
Graph representation-based approaches

GraphDTA-GAT 0.006 0.026 0.071 0.084
GraphDTA-GIN 0.008 0.031 0.097 0.087
DGraphDTA 0 0.009 0.038 0.116
DeepGS 0.088 0.291 0.438 0.198
Min 0 0.009 0.038 0.061
Max 0.088 0.291 0.438 0.198
Normalized average 0.218 0.213 0.234 0.322

Similar to [9, 29, 30], the thresholds of pKd = 7 for Davis dataset
and 12.1 for KIBA dataset were used to utilize binarization.

Results and comparison
To assess the effectiveness of our proposed framework, we com-
pare the predictive power of six cutting-edge binding affinity
DL-based prediction approaches with and without their inte-
gration with our AttentionSiteDTI module. The benchmarking
approaches include both sequence representation-based models
such as DeepDTA, WideDTA and AttentionDTA, as well as graph
representation-based approaches such as GraphDTA, DGraphDTA
and DeepGS. We compare the performance of all these models
with and without the help of our AttentionSiteDTI in finding
the most probable binding sites of the proteins. All models’ per-
formances are evaluated under the same experimental condi-
tions on the two benchmark datasets, KIBA and Davis. We used
CI, MSE, modified squared correlation coefficient (r2

m) and the
AUPC for model evaluation. Detailed definitions of these met-
rics are provided in the Supplementary material. As the results
in subsection 4 and subsection 5 illustrate, all six models show
improved performance when assisted with the AttentionSiteDTI
model. The boost in models’ performance can be explained by the
effectiveness of our model in finding the most probable binding

sites of the proteins, which helps narrow down the search space
of the prediction models by making them selectively concentrate
on valuable parts of the proteins when learning the interactions
between proteins and drugs; hence, enhancing the quality of the
predictions. The missing values on the performance of the DeepH-
DTA [26] is due to the missing information in the implementation
of this model that was not provided in their code. Therefore,
we were not able to produce the results of this model when
combined with our AttentionSiteDTI. We gathered the results
from the original paper on DeepH-DTA, as it was shown to outper-
form all other approaches in terms of all four metrics. However,
its performance becomes very competitive with AttentionSite-
augmented DGraphDTA and AttentionDTA on Kiba and Davis
datasets, respectively.

According to the results in subsection 2, in the KIBA dataset,
all AttentionSite-augmented models exceed their own plain ver-
sions in all evaluation metrics, where DeepGS enjoys the most
improvement in all metrics, achieving 0.048, 0.166, 0.112 and 0.052
improvements for CI, MSE, r2

m and AUPC, respectively. An excep-
tion is AttentionDTA, whose performance in CI metric in the aug-
mented version is lower 0.008 than vanilla AttentionDTA. Among
all metrics, r2

m and AUPC have the most noticeable changes, where
their normalized average improvements are 0.55 and 0.51 over all
models. Note that we used min–max normalized of the difference
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Table 4. Performance comparison of the computational models
on in-vitro experimental bioactivity results

Methods CI MSE Pearson Correlation

DeepDTA 0.4358 3.7729 0.0463
DeepDTA +
AttentionSiteDTI

0.4487 2.6907 0.4245

scores to avoid the dependence on the choice of measurement
units.

For the Davis dataset, as the results show in subsection 3, the
augmented models also achieve better results compared to their
plain versions. similarly, DeepGS benefits the most from Atten-
tionSiteDTI, where it attains 0.088 0.291, 0.438, 0.198 improve-
ments for CI, MSE, r2

m and AUPC, respectively. Again, the two
performance metrics r2

m and AUPC show the most average changes
with 0.23 and 0.32 improvements across all models.

It is worth mentioning that there exist other DL-based models
such as [38–42], which were specifically proposed for binding
site prediction task. However, none of them have been shown
to be generalizable in integration with DL-based DTA prediction
models. Indeed, to the best of our knowledge, we are the first
to propose this unified framework, which also provides inter-
pretability to the integrated models. From the figures in these two
tables, we can also observe that sequence-based DL models have
lower predictive power compared to graph-based models, which
explains the effectiveness of graph representations in capturing
structural information of drugs and/or proteins as deciding fac-
tors in the prediction of DTIs.

In-Vitro VALIDATION: SARS-CoV-2 CASE
STUDY
We further experimentally tested and validated the performance
of our proposed framework through experimentations in the
laboratory by measuring the binding affinities between 13
candidate compounds and the Spike-ACE2 complex. These
compounds include Darunavir, N-acetyl-neuraminic acid, N-
Acetyllactosamine, 3α, 6α Mannopentaose, N-glycolylneuraminic
acid, 2-Keto-3-deoxyoctonate ammonium salt, cytidine5-
monophospho-N-acetylneuraminic acid sodium salt, Congo red,
Direct Violet, Evans Blue, Calcomine scarlet 3B, Chlorazol Black
and Methylene Blue as inhibitor molecules to bind to the Spike
protein, or the ACE2 receptor protein (as the primary host factor
recognized and targeted by SARS-CoV-2 Spike protein). Additional
information on our choice of compounds is provided in the
Supplementary material. We then assessed the prediction per-
formance using three metrics: (1) Pearson correlation coefficient
to measure the scoring power, indicating the binding affinity
prediction capacity of the model, (2) CI to measure the ranking
power, presenting the affinity-ranking capacity of the model and
(3) MSE to measure the overall prediction error, showing the
quality of the model in estimating the true values. To predict
compound-protein binding affinities, we selected DeepDTA
because of its wide adoption in previous studies as the first
DL approach developed to predict drug–target binding affinity.
DeepDTA is among state-of-the-art methods that have shown
relatively good performance compared to many DL-based models
with higher complexity in architecture and computation time.
In order to show the effectiveness of our prediction framework,
the performance measures were calculated under two settings;

Table 5. Top 10 FDA-approved antiviral drugs predicted by
AttentionSite-Augmented DeepDTA model to have highest
affinity scores with 4 genome sequences related to SARS-CoV-2

Drug Name pIC50

Rank in 3416
FDA-Approved
Drugs

Rank in 85
Antiviral Drugs

Spike-ACE2
Oseltamivir phosphate 8.29 42 1
Etravirine 8.22 52 2
Fosamprenavir calcium 8.20 57 3
Tipranavir 7.94 108 4
elvitegravir 7.88 141 5
ganciclovir 7.84 162 6
Simeprevir 7.71 221 7
Rimantadine 7.67 248 8
saquinavir 7.65 259 9
danoprevir 7.57 314 10
helicase
Fosamprenavir calcium
(FPV)

7.51 21 1

Simeprevir 7.47 24 2
Elvitegravir 7.28 52 3
Simeprevir sodium 7.11 87 4
elvitegravir 7.09 97 5
ritonavir 7.01 120 6
Indinavir sulfate 6.98 132 7
Amprenavir 6.93 155 8
nelfinavir 6.88 182 9
Tenofovir alafenamide
fumarate

6.86 190 10

3C-like
Fosamprenavir calcium 7.72 5 1
elvitegravir 7.25 29 2
Tipranavir 7.17 37 3
Asunaprevir 7.08 46 4
Elvitegravir 7.06 47 5
Atazanavir sulfate 6.92 68 6
Daclatasvir 6.88 77 7
Saquinavir mesylate 6.77 97 8
Simeprevir 6.71 121 9
Simeprevir sodium 6.68 129 10
RdRp
elvitegravir 7.60 8 1
Fosamprenavir calcium 7.24 24 2
ritonavir 6.96 53 3
Asunaprevir 6.90 66 4
Simeprevir sodium 6.87 71 5
Daclatasvir 6.85 74 6
Simeprevir 6.82 79 7
nelfinavir 6.81 82 8
Amprenavir 6.79 93 9
Saquinavir mesylate 6.78 96 10

with and without the incorporation of AttentionSiteDTI with the
DeepDTA regression model.

As the results in section 4 indicate, the AttentionSiteDTI helps
enhance the performance of DeepDTA, especially in the two met-
rics, MSE and Pearson correlation coefficient, where the improve-
ments are 1.08 and 0.38, respectively. As a matter of fact, when
using DeepDTA, we observe a very low correlation of 0.04 between
the predicted and measured bioactivities, which is significantly
boosted to 0.42, considered a relatively good correlation as a
result of higher quality binding affinity predictions by augmented
DeepDTA. In fact, this illustrates the effectiveness of our proposed
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Figure 6. Predicted and measured binding affinity values of Spike-ACE2 complex with 13 drug-like compounds in our experimental assay. The predicted
values are reported for DeepDTA model with and without its integration with AttentionSiteDTI. We chose DeepDTA for computational convenience, as
we needed to pre-train the model on the BindingDB dataset due to the small size of our experimental data.

framework in improving the performance of DeepDTA when aug-
mented with our AttentionSiteDTI. Note that section 6 reports
the predicted and measured bioactivity profiles of Spike-ACE2
complex against 13 drug-like compounds tested in our experi-
mental assay.

DRUG REPURPOSING: SARS-Cov-2 CASE
STUDY
Encouraged by the excellent performance of our framework, we
now apply it to predict binding affinity values between 3445 com-
mercially available FDA-approved drugs (including 85 antiviral
drugs) and key proteins of SARS-CoV-2, including 3C-like pro-
tease, RNA-dependent RNA polymerase(RdRp), helicase as well as
Spike/ACE2 complex. We use AttentionSite-augmented DeepDTA,
which is pre-trained on the BindingDB dataset to predict binding
affinities between genome sequences of SARS-CoV-2—extracted
from the National Center for Biotechnology Information (NCBI)
database—with 85 FDA-approved antiviral drugs from DrugBank.
The exhaustive list of drugs is provided in the Supplementary
material.

As the results show in section 5, the Spike protein–ACE2 inter-
face was predicted to have the highest binding affinity with
Oseltamivir phosphate, Etravirine and Fosamprenavir calcium, all
with PIC50 values > 8 nM, which are followed by other antiviral
drugs with predicted binding affinities of PIC50 > 7 nM potency
(we only included top 10 antiviral drugs in section 5 with highest
binding affinity). Among the prediction results, Fosamprenavir
calcium, Simeprevir, Elvitegravir, Simeprevir sodium, elvitegravir
and ritonavir have shown good inhibition towards SARS-CoV-2
helicase, with predicted binding affinity values > 7 nM. Further-
more, Fosamprenavir calcium, elvitegravir, Tipranavir, Asunapre-
vir and Elvitegravir were predicted to have a potential affinity
(PIC50 > 7 nM) to SARS-CoV-2 3C-like Proteinase. Finally, elvite-
gravir and Fosamprenavir calcium were the only inhibitors that
were predicted to have binding affinities > 7 nM in binding

with RNA-dependent RNA polymerase. These verifying studies are
available in section 5. Despite the existence of any strong real-
world evidence on the effectiveness of these drugs (except for
the FDA-approved drug Remdesivir) against COVID-19, we found
that some of these candidate drugs have already been suggested
or introduced by other studies, including in-silico, preclinical and
clinical trials.

A more interesting observation in our prediction results can
be seen in section 6. There are eight antiviral drugs that are
currently in clinical trials to be assessed for their efficacy against
COVID-19. These drugs include Atazanavir, Daclatasvir, Danopre-
vir, Darunavir, Elvitegravir, Lopinavir, Oseltamivir and Ritonavir,
which are also listed in the present prediction results as suitable
potential inhibitors to all four subunits of SARS-CoV-2 (Spike-
ACE2 interface, helicase, 3C-like protease and RdRp), mostly with
binding affinity values > 6 nM in PIC50. Also, Remdesivir, which
is the only FDA-approved drug for the treatment of COVID-19,
shows great predicted potency to all subunits of SARS-CoV-2
as follows: against Spike-ACE interface (PIC50 7.47 nM), RNA-
dependent RNA polymerase (PIC50 6 nM), helicase (PIC50 6 nM)
and 3C-like protease(PIC50 5.68 nM).

CONCLUSION
In this paper, we proposed a framework that can enhance DTA
predictions by first finding the most probable binding sites of
the protein, thus, making the binding affinity prediction more
efficient and accurate. Our AttentionalSiteDTA is not only highly
generalizable as it can be combined with any DL-based regression
model but also provides interpretability to integrated models due
to its attention mechanism, which enables learning which binding
sites of a protein interact with a given ligand. The computational
results confirm that our framework leads to improved prediction
performance of seven state-of- the-art DTA prediction algorithms
in terms of four widely used evaluation metrics, including CI,
MSE, the modified, squared coefficient of correlation (r2

m) and the
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Table 6. Binding affinity values of selected antiviral drugs in clinical trials to treat COVID-19, binding with different SARS-CoV-2 related
receptors. The ranks are listed among 85 antiviral drugs∗

Drug Name # Clinical # Supporting Spike-ACE2 helicase 3C-like RdRp

Trial References pIC50 rank pIC50 rank pIC50 rank pIC50 rank

Atazanavir 3 6 6.89 36 6.36 32 6.18 23 6.10 21
Daclatasvir 8 5 7.23 24 6.57 21 6.88 7 6.85 6
Danoprevir 2 3 7.57 10 5.68 54 6.46 17 5.71 33
Darunavir 2 6 6.40 50 6.72 15 5.85 39 6.05 24
Elvitegravir 7 2 7.43 14 7.28 3 7.06 5 6.61 12
Lopinavir 39 26 7.44 12 5.55 60 5.26 60 5.18 53
Oseltamivir 9 5 6.75 41 5.24 70 5.27 59 5.12 57
Remdesivir 67 70 7.47 11 6.00 44 5.68 43 6.00 26
ritonavir 57 27 7.16 26 7.01 6 6.62 11 6.96 3

∗The information on the number of clinical trials and supporting references are gathered from https://covid19-help.org/ as of July 2022.

AUPC. Furthermore, we experimentally validated the prediction
potential of our framework by conduction in-vitro experiments.
To achieve this, we measured the binding affinities between 13
drug-like compounds and the Spike-ACE2 interface and compared
these experimental results against binding affinity values that we
predicted by our computational models. The results of our in-lab
validation illustrated the potential of our framework to signifi-
cantly enhance the performance of the widely adopted DeepDTA
model in the prediction of binding affinity values in real-world
applications. Also, following the analysis of our drug screening,
we proposed several FDA-approved antivirals that could display
antiviral activities against SARS-CoV-2. Some of these compounds
are currently undergoing clinical trials, and some others are also
suggested by other studies for further evaluation in experimental
assays and clinical trials to investigate their actual activity against
COVID-19. Another contribution of this work is to provide the
community with extended versions of the two most commonly
used datasets, Kiba and Davis, for which we manually extracted
information on the 3D structure of all proteins in these two
datasets from the PDB files of proteins available in https://www.
uniprot.org/.

Key Points

• We developed an experimental–computational pipeline
based on a graph neural networks, which improves
prediction performance, when combined with many
state-of-the-art DTA prediction models. Our proposed
framework outperforms many state-of-the-art models,
in terms of several performance metrics. These models
are improved by focusing on the most relevant parts of
input proteins when learning interaction relationships
between drugs and targets.

• Our approach van be easily integrated with any DL-
based predictin model.

• Our model is highly generalizable due to the use of
protein pockets (i.e. molecular fragments of binding sites
influencing binding character) encoded as graphs, repre-
senting input proteins to the model. Also, our framework
enables interpretability by learning which parts of the
protein interact most efficiently with a given ligand.

• We validated our result through conducting in-vitro
experiments. We also utilized our method for drug repur-
posing by predicting binding affinity values between
FDA-approved drugs and key proteins of SARS-CoV-2.

• We contributed to the two most widely used benchmark-
ing datasets in the DTA prediction task, namely Kiba
and Davis, by manually extracting 3D structures of the
proteins in these two datasets.

SUPPLEMENTARY DATA
Supplementary data are available online at http://bib.oxfordjournals.
org/.

DATA AND CODE AVAILABILITY
All datasets and codes are publicly available at https://github.
com/yazdanimehdi/BindingSite-AugmentedDTA.
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16. Cichońska A, Ravikumar B, Allaway RJ, et al. Crowdsourced
mapping of unexplored target space of kinase inhibitors. Nat
Commun 2021; 12(1): 3307.

17. Yazdani-Jahromi M, Yousefi N, Tayebi A, et al. Attentionsitedti:
an interpretable graph-based model for drug–target interaction
prediction using nlp sentence-level relation classification. Brief
Bioinform 2022; 23(4): bbac272.

18. Gómez-Bombarelli R, Wei JN, Duvenaud D, et al. Automatic
chemical design using a data-driven continuous representa-
tion of molecules. ACS Central Science 2018; 4(2): 268–76 PMID:
29532027. https://doi.org/10.1021/acscentsci.7b00572.
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